/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file lower_varyings_to_packed.cpp * * This lowering pass generates GLSL code that manually packs varyings into * vec4 slots, for the benefit of back-ends that don't support packed varyings * natively. * * For example, the following shader: * * out mat3x2 foo; // location=4, location_frac=0 * out vec3 bar[2]; // location=5, location_frac=2 * * main() * { * ... * } * * Is rewritten to: * * mat3x2 foo; * vec3 bar[2]; * out vec4 packed4; // location=4, location_frac=0 * out vec4 packed5; // location=5, location_frac=0 * out vec4 packed6; // location=6, location_frac=0 * * main() * { * ... * packed4.xy = foo[0]; * packed4.zw = foo[1]; * packed5.xy = foo[2]; * packed5.zw = bar[0].xy; * packed6.x = bar[0].z; * packed6.yzw = bar[1]; * } * * This lowering pass properly handles "double parking" of a varying vector * across two varying slots. For example, in the code above, two of the * components of bar[0] are stored in packed5, and the remaining component is * stored in packed6. * * Note that in theory, the extra instructions may cause some loss of * performance. However, hopefully in most cases the performance loss will * either be absorbed by a later optimization pass, or it will be offset by * memory bandwidth savings (because fewer varyings are used). * * This lowering pass also packs flat floats, ints, and uints together, by * using ivec4 as the base type of flat "varyings", and using appropriate * casts to convert floats and uints into ints. * * This lowering pass also handles varyings whose type is a struct or an array * of struct. Structs are packed in order and with no gaps, so there may be a * performance penalty due to structure elements being double-parked. */ #include "glsl_symbol_table.h" #include "ir.h" #include "ir_optimization.h" /** * Visitor that performs varying packing. For each varying declared in the * shader, this visitor determines whether it needs to be packed. If so, it * demotes it to an ordinary global, creates new packed varyings, and * generates assignments to convert between the original varying and the * packed varying. */ class lower_packed_varyings_visitor { public: lower_packed_varyings_visitor(void *mem_ctx, unsigned location_base, unsigned locations_used, ir_variable_mode mode, exec_list *main_instructions); void run(exec_list *instructions); private: ir_assignment *bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs); ir_assignment *bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs); unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location, ir_variable *unpacked_var, const char *name); unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size, unsigned fine_location, ir_variable *unpacked_var, const char *name); ir_variable *get_packed_varying(unsigned location, ir_variable *unpacked_var, const char *name); bool needs_lowering(ir_variable *var); /** * Memory context used to allocate new instructions for the shader. */ void * const mem_ctx; /** * Location representing the first generic varying slot for this shader * stage (e.g. VERT_RESULT_VAR0 if we are packing vertex shader outputs). * Varyings whose location is less than this value are assumed to * correspond to special fixed function hardware, so they are not lowered. */ const unsigned location_base; /** * Number of generic varying slots which are used by this shader. This is * used to allocate temporary intermediate data structures. If any any * varying used by this shader has a location greater than or equal to * location_base + locations_used, an assertion will fire. */ const unsigned locations_used; /** * Array of pointers to the packed varyings that have been created for each * generic varying slot. NULL entries in this array indicate varying slots * for which a packed varying has not been created yet. */ ir_variable **packed_varyings; /** * Type of varying which is being lowered in this pass (either * ir_var_shader_in or ir_var_shader_out). */ const ir_variable_mode mode; /** * List of instructions corresponding to the main() function. This is * where we add instructions to pack or unpack the varyings. */ exec_list *main_instructions; }; lower_packed_varyings_visitor::lower_packed_varyings_visitor( void *mem_ctx, unsigned location_base, unsigned locations_used, ir_variable_mode mode, exec_list *main_instructions) : mem_ctx(mem_ctx), location_base(location_base), locations_used(locations_used), packed_varyings((ir_variable **) rzalloc_array_size(mem_ctx, sizeof(*packed_varyings), locations_used)), mode(mode), main_instructions(main_instructions) { } void lower_packed_varyings_visitor::run(exec_list *instructions) { foreach_list (node, instructions) { ir_variable *var = ((ir_instruction *) node)->as_variable(); if (var == NULL) continue; if (var->mode != this->mode || var->location < (int) this->location_base || !this->needs_lowering(var)) continue; /* This lowering pass is only capable of packing floats and ints * together when their interpolation mode is "flat". Therefore, to be * safe, caller should ensure that integral varyings always use flat * interpolation, even when this is not required by GLSL. */ assert(var->interpolation == INTERP_QUALIFIER_FLAT || !var->type->contains_integer()); /* Change the old varying into an ordinary global. */ var->mode = ir_var_auto; /* Create a reference to the old varying. */ ir_dereference_variable *deref = new(this->mem_ctx) ir_dereference_variable(var); /* Recursively pack or unpack it. */ this->lower_rvalue(deref, var->location * 4 + var->location_frac, var, var->name); } } /** * Make an ir_assignment from \c rhs to \c lhs, performing appropriate * bitcasts if necessary to match up types. * * This function is called when packing varyings. */ ir_assignment * lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs) { if (lhs->type->base_type != rhs->type->base_type) { /* Since we only mix types in flat varyings, and we always store flat * varyings as type ivec4, we need only produce conversions from (uint * or float) to int. */ assert(lhs->type->base_type == GLSL_TYPE_INT); switch (rhs->type->base_type) { case GLSL_TYPE_UINT: rhs = new(this->mem_ctx) ir_expression(ir_unop_u2i, lhs->type, rhs); break; case GLSL_TYPE_FLOAT: rhs = new(this->mem_ctx) ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs); break; default: assert(!"Unexpected type conversion while lowering varyings"); break; } } return new(this->mem_ctx) ir_assignment(lhs, rhs); } /** * Make an ir_assignment from \c rhs to \c lhs, performing appropriate * bitcasts if necessary to match up types. * * This function is called when unpacking varyings. */ ir_assignment * lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs) { if (lhs->type->base_type != rhs->type->base_type) { /* Since we only mix types in flat varyings, and we always store flat * varyings as type ivec4, we need only produce conversions from int to * (uint or float). */ assert(rhs->type->base_type == GLSL_TYPE_INT); switch (lhs->type->base_type) { case GLSL_TYPE_UINT: rhs = new(this->mem_ctx) ir_expression(ir_unop_i2u, lhs->type, rhs); break; case GLSL_TYPE_FLOAT: rhs = new(this->mem_ctx) ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs); break; default: assert(!"Unexpected type conversion while lowering varyings"); break; } } return new(this->mem_ctx) ir_assignment(lhs, rhs); } /** * Recursively pack or unpack the given varying (or portion of a varying) by * traversing all of its constituent vectors. * * \param fine_location is the location where the first constituent vector * should be packed--the word "fine" indicates that this location is expressed * in multiples of a float, rather than multiples of a vec4 as is used * elsewhere in Mesa. * * \return the location where the next constituent vector (after this one) * should be packed. */ unsigned lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue, unsigned fine_location, ir_variable *unpacked_var, const char *name) { if (rvalue->type->is_record()) { for (unsigned i = 0; i < rvalue->type->length; i++) { if (i != 0) rvalue = rvalue->clone(this->mem_ctx, NULL); const char *field_name = rvalue->type->fields.structure[i].name; ir_dereference_record *dereference_record = new(this->mem_ctx) ir_dereference_record(rvalue, field_name); char *deref_name = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name); fine_location = this->lower_rvalue(dereference_record, fine_location, unpacked_var, deref_name); } return fine_location; } else if (rvalue->type->is_array()) { /* Arrays are packed/unpacked by considering each array element in * sequence. */ return this->lower_arraylike(rvalue, rvalue->type->array_size(), fine_location, unpacked_var, name); } else if (rvalue->type->is_matrix()) { /* Matrices are packed/unpacked by considering each column vector in * sequence. */ return this->lower_arraylike(rvalue, rvalue->type->matrix_columns, fine_location, unpacked_var, name); } else if (rvalue->type->vector_elements + fine_location % 4 > 4) { /* This vector is going to be "double parked" across two varying slots, * so handle it as two separate assignments. */ unsigned left_components = 4 - fine_location % 4; unsigned right_components = rvalue->type->vector_elements - left_components; unsigned left_swizzle_values[4] = { 0, 0, 0, 0 }; unsigned right_swizzle_values[4] = { 0, 0, 0, 0 }; char left_swizzle_name[4] = { 0, 0, 0, 0 }; char right_swizzle_name[4] = { 0, 0, 0, 0 }; for (unsigned i = 0; i < left_components; i++) { left_swizzle_values[i] = i; left_swizzle_name[i] = "xyzw"[i]; } for (unsigned i = 0; i < right_components; i++) { right_swizzle_values[i] = i + left_components; right_swizzle_name[i] = "xyzw"[i + left_components]; } ir_swizzle *left_swizzle = new(this->mem_ctx) ir_swizzle(rvalue, left_swizzle_values, left_components); ir_swizzle *right_swizzle = new(this->mem_ctx) ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values, right_components); char *left_name = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name); char *right_name = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name); fine_location = this->lower_rvalue(left_swizzle, fine_location, unpacked_var, left_name); return this->lower_rvalue(right_swizzle, fine_location, unpacked_var, right_name); } else { /* No special handling is necessary; pack the rvalue into the * varying. */ unsigned swizzle_values[4] = { 0, 0, 0, 0 }; unsigned components = rvalue->type->vector_elements; unsigned location = fine_location / 4; unsigned location_frac = fine_location % 4; for (unsigned i = 0; i < components; ++i) swizzle_values[i] = i + location_frac; ir_dereference_variable *packed_deref = new(this->mem_ctx) ir_dereference_variable(this->get_packed_varying(location, unpacked_var, name)); ir_swizzle *swizzle = new(this->mem_ctx) ir_swizzle(packed_deref, swizzle_values, components); if (this->mode == ir_var_shader_out) { ir_assignment *assignment = this->bitwise_assign_pack(swizzle, rvalue); this->main_instructions->push_tail(assignment); } else { ir_assignment *assignment = this->bitwise_assign_unpack(rvalue, swizzle); this->main_instructions->push_head(assignment); } return fine_location + components; } } /** * Recursively pack or unpack a varying for which we need to iterate over its * constituent elements, accessing each one using an ir_dereference_array. * This takes care of both arrays and matrices, since ir_dereference_array * treats a matrix like an array of its column vectors. */ unsigned lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue, unsigned array_size, unsigned fine_location, ir_variable *unpacked_var, const char *name) { for (unsigned i = 0; i < array_size; i++) { if (i != 0) rvalue = rvalue->clone(this->mem_ctx, NULL); ir_constant *constant = new(this->mem_ctx) ir_constant(i); ir_dereference_array *dereference_array = new(this->mem_ctx) ir_dereference_array(rvalue, constant); char *subscripted_name = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i); fine_location = this->lower_rvalue(dereference_array, fine_location, unpacked_var, subscripted_name); } return fine_location; } /** * Retrieve the packed varying corresponding to the given varying location. * If no packed varying has been created for the given varying location yet, * create it and add it to the shader before returning it. * * The newly created varying inherits its interpolation parameters from \c * unpacked_var. Its base type is ivec4 if we are lowering a flat varying, * vec4 otherwise. */ ir_variable * lower_packed_varyings_visitor::get_packed_varying(unsigned location, ir_variable *unpacked_var, const char *name) { unsigned slot = location - this->location_base; assert(slot < locations_used); if (this->packed_varyings[slot] == NULL) { char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name); const glsl_type *packed_type; if (unpacked_var->interpolation == INTERP_QUALIFIER_FLAT) packed_type = glsl_type::ivec4_type; else packed_type = glsl_type::vec4_type; ir_variable *packed_var = new(this->mem_ctx) ir_variable(packed_type, packed_name, this->mode); packed_var->centroid = unpacked_var->centroid; packed_var->interpolation = unpacked_var->interpolation; packed_var->location = location; unpacked_var->insert_before(packed_var); this->packed_varyings[slot] = packed_var; } else { ralloc_asprintf_append((char **) &this->packed_varyings[slot]->name, ",%s", name); } return this->packed_varyings[slot]; } bool lower_packed_varyings_visitor::needs_lowering(ir_variable *var) { /* Things composed of vec4's don't need lowering. Everything else does. */ const glsl_type *type = var->type; if (type->is_array()) type = type->fields.array; if (type->vector_elements == 4) return false; return true; } void lower_packed_varyings(void *mem_ctx, unsigned location_base, unsigned locations_used, ir_variable_mode mode, gl_shader *shader) { exec_list *instructions = shader->ir; ir_function *main_func = shader->symbols->get_function("main"); exec_list void_parameters; ir_function_signature *main_func_sig = main_func->matching_signature(&void_parameters); exec_list *main_instructions = &main_func_sig->body; lower_packed_varyings_visitor visitor(mem_ctx, location_base, locations_used, mode, main_instructions); visitor.run(instructions); }