/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file linker.cpp * GLSL linker implementation * * Given a set of shaders that are to be linked to generate a final program, * there are three distinct stages. * * In the first stage shaders are partitioned into groups based on the shader * type. All shaders of a particular type (e.g., vertex shaders) are linked * together. * * - Undefined references in each shader are resolve to definitions in * another shader. * - Types and qualifiers of uniforms, outputs, and global variables defined * in multiple shaders with the same name are verified to be the same. * - Initializers for uniforms and global variables defined * in multiple shaders with the same name are verified to be the same. * * The result, in the terminology of the GLSL spec, is a set of shader * executables for each processing unit. * * After the first stage is complete, a series of semantic checks are performed * on each of the shader executables. * * - Each shader executable must define a \c main function. * - Each vertex shader executable must write to \c gl_Position. * - Each fragment shader executable must write to either \c gl_FragData or * \c gl_FragColor. * * In the final stage individual shader executables are linked to create a * complete exectuable. * * - Types of uniforms defined in multiple shader stages with the same name * are verified to be the same. * - Initializers for uniforms defined in multiple shader stages with the * same name are verified to be the same. * - Types and qualifiers of outputs defined in one stage are verified to * be the same as the types and qualifiers of inputs defined with the same * name in a later stage. * * \author Ian Romanick */ #include #include #include extern "C" { #include } #include "main/mtypes.h" #include "glsl_symbol_table.h" #include "ir.h" #include "program.h" #include "hash_table.h" #include "shader_api.h" #include "linker.h" /** * Visitor that determines whether or not a variable is ever written. */ class find_assignment_visitor : public ir_hierarchical_visitor { public: find_assignment_visitor(const char *name) : name(name), found(false) { /* empty */ } virtual ir_visitor_status visit_enter(ir_assignment *ir) { ir_variable *const var = ir->lhs->variable_referenced(); if (strcmp(name, var->name) == 0) { found = true; return visit_stop; } return visit_continue_with_parent; } bool variable_found() { return found; } private: const char *name; /**< Find writes to a variable with this name. */ bool found; /**< Was a write to the variable found? */ }; void linker_error_printf(gl_shader_program *prog, const char *fmt, ...) { va_list ap; prog->InfoLog = talloc_strdup_append(prog->InfoLog, "error: "); va_start(ap, fmt); prog->InfoLog = talloc_vasprintf_append(prog->InfoLog, fmt, ap); va_end(ap); } void invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode, int generic_base) { foreach_list(node, sh->ir) { ir_variable *const var = ((ir_instruction *) node)->as_variable(); if ((var == NULL) || (var->mode != (unsigned) mode)) continue; /* Only assign locations for generic attributes / varyings / etc. */ if (var->location >= generic_base) var->location = -1; } } /** * Determine the number of attribute slots required for a particular type * * This code is here because it implements the language rules of a specific * GLSL version. Since it's a property of the language and not a property of * types in general, it doesn't really belong in glsl_type. */ unsigned count_attribute_slots(const glsl_type *t) { /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: * * "A scalar input counts the same amount against this limit as a vec4, * so applications may want to consider packing groups of four * unrelated float inputs together into a vector to better utilize the * capabilities of the underlying hardware. A matrix input will use up * multiple locations. The number of locations used will equal the * number of columns in the matrix." * * The spec does not explicitly say how arrays are counted. However, it * should be safe to assume the total number of slots consumed by an array * is the number of entries in the array multiplied by the number of slots * consumed by a single element of the array. */ if (t->is_array()) return t->array_size() * count_attribute_slots(t->element_type()); if (t->is_matrix()) return t->matrix_columns; return 1; } /** * Verify that a vertex shader executable meets all semantic requirements * * \param shader Vertex shader executable to be verified */ bool validate_vertex_shader_executable(struct gl_shader_program *prog, struct gl_shader *shader) { if (shader == NULL) return true; if (!shader->symbols->get_function("main")) { linker_error_printf(prog, "vertex shader lacks `main'\n"); return false; } find_assignment_visitor find("gl_Position"); find.run(shader->ir); if (!find.variable_found()) { linker_error_printf(prog, "vertex shader does not write to `gl_Position'\n"); return false; } return true; } /** * Verify that a fragment shader executable meets all semantic requirements * * \param shader Fragment shader executable to be verified */ bool validate_fragment_shader_executable(struct gl_shader_program *prog, struct gl_shader *shader) { if (shader == NULL) return true; if (!shader->symbols->get_function("main")) { linker_error_printf(prog, "fragment shader lacks `main'\n"); return false; } find_assignment_visitor frag_color("gl_FragColor"); find_assignment_visitor frag_data("gl_FragData"); frag_color.run(shader->ir); frag_data.run(shader->ir); if (frag_color.variable_found() && frag_data.variable_found()) { linker_error_printf(prog, "fragment shader writes to both " "`gl_FragColor' and `gl_FragData'\n"); return false; } return true; } /** * Generate a string describing the mode of a variable */ static const char * mode_string(const ir_variable *var) { switch (var->mode) { case ir_var_auto: return (var->read_only) ? "global constant" : "global variable"; case ir_var_uniform: return "uniform"; case ir_var_in: return "shader input"; case ir_var_out: return "shader output"; case ir_var_inout: return "shader inout"; default: assert(!"Should not get here."); return "invalid variable"; } } /** * Perform validation of global variables used across multiple shaders */ bool cross_validate_globals(struct gl_shader_program *prog, struct gl_shader **shader_list, unsigned num_shaders, bool uniforms_only) { /* Examine all of the uniforms in all of the shaders and cross validate * them. */ glsl_symbol_table variables; for (unsigned i = 0; i < num_shaders; i++) { foreach_list(node, shader_list[i]->ir) { ir_variable *const var = ((ir_instruction *) node)->as_variable(); if (var == NULL) continue; if (uniforms_only && (var->mode != ir_var_uniform)) continue; /* If a global with this name has already been seen, verify that the * new instance has the same type. In addition, if the globals have * initializers, the values of the initializers must be the same. */ ir_variable *const existing = variables.get_variable(var->name); if (existing != NULL) { if (var->type != existing->type) { linker_error_printf(prog, "%s `%s' declared as type " "`%s' and type `%s'\n", mode_string(var), var->name, var->type->name, existing->type->name); return false; } /* FINISHME: Handle non-constant initializers. */ if (var->constant_value != NULL) { if (existing->constant_value != NULL) { if (!var->constant_value->has_value(existing->constant_value)) { linker_error_printf(prog, "initializers for %s " "`%s' have differing values\n", mode_string(var), var->name); return false; } } else /* If the first-seen instance of a particular uniform did not * have an initializer but a later instance does, copy the * initializer to the version stored in the symbol table. */ /* FINISHME: This is wrong. The constant_value field should * FINISHME: not be modified! Imagine a case where a shader * FINISHME: without an initializer is linked in two different * FINISHME: programs with shaders that have differing * FINISHME: initializers. Linking with the first will * FINISHME: modify the shader, and linking with the second * FINISHME: will fail. */ existing->constant_value = var->constant_value->clone(NULL); } } else variables.add_variable(var->name, var); } } return true; } /** * Perform validation of uniforms used across multiple shader stages */ bool cross_validate_uniforms(struct gl_shader_program *prog) { return cross_validate_globals(prog, prog->_LinkedShaders, prog->_NumLinkedShaders, true); } /** * Validate that outputs from one stage match inputs of another */ bool cross_validate_outputs_to_inputs(struct gl_shader_program *prog, gl_shader *producer, gl_shader *consumer) { glsl_symbol_table parameters; /* FINISHME: Figure these out dynamically. */ const char *const producer_stage = "vertex"; const char *const consumer_stage = "fragment"; /* Find all shader outputs in the "producer" stage. */ foreach_list(node, producer->ir) { ir_variable *const var = ((ir_instruction *) node)->as_variable(); /* FINISHME: For geometry shaders, this should also look for inout * FINISHME: variables. */ if ((var == NULL) || (var->mode != ir_var_out)) continue; parameters.add_variable(var->name, var); } /* Find all shader inputs in the "consumer" stage. Any variables that have * matching outputs already in the symbol table must have the same type and * qualifiers. */ foreach_list(node, consumer->ir) { ir_variable *const input = ((ir_instruction *) node)->as_variable(); /* FINISHME: For geometry shaders, this should also look for inout * FINISHME: variables. */ if ((input == NULL) || (input->mode != ir_var_in)) continue; ir_variable *const output = parameters.get_variable(input->name); if (output != NULL) { /* Check that the types match between stages. */ if (input->type != output->type) { linker_error_printf(prog, "%s shader output `%s' delcared as " "type `%s', but %s shader input declared " "as type `%s'\n", producer_stage, output->name, output->type->name, consumer_stage, input->type->name); return false; } /* Check that all of the qualifiers match between stages. */ if (input->centroid != output->centroid) { linker_error_printf(prog, "%s shader output `%s' %s centroid qualifier, " "but %s shader input %s centroid qualifier\n", producer_stage, output->name, (output->centroid) ? "has" : "lacks", consumer_stage, (input->centroid) ? "has" : "lacks"); return false; } if (input->invariant != output->invariant) { linker_error_printf(prog, "%s shader output `%s' %s invariant qualifier, " "but %s shader input %s invariant qualifier\n", producer_stage, output->name, (output->invariant) ? "has" : "lacks", consumer_stage, (input->invariant) ? "has" : "lacks"); return false; } if (input->interpolation != output->interpolation) { linker_error_printf(prog, "%s shader output `%s' specifies %s " "interpolation qualifier, " "but %s shader input specifies %s " "interpolation qualifier\n", producer_stage, output->name, output->interpolation_string(), consumer_stage, input->interpolation_string()); return false; } } } return true; } /** * Populates a shaders symbol table with all global declarations */ static void populate_symbol_table(gl_shader *sh) { sh->symbols = new(sh) glsl_symbol_table; foreach_list(node, sh->ir) { ir_instruction *const inst = (ir_instruction *) node; ir_variable *var; ir_function *func; if ((func = inst->as_function()) != NULL) { sh->symbols->add_function(func->name, func); } else if ((var = inst->as_variable()) != NULL) { sh->symbols->add_variable(var->name, var); } } } /** * Remap variables referenced in an instruction tree * * This is used when instruction trees are cloned from one shader and placed in * another. These trees will contain references to \c ir_variable nodes that * do not exist in the target shader. This function finds these \c ir_variable * references and replaces the references with matching variables in the target * shader. * * If there is no matching variable in the target shader, a clone of the * \c ir_variable is made and added to the target shader. The new variable is * added to \b both the instruction stream and the symbol table. * * \param inst IR tree that is to be processed. * \param symbols Symbol table containing global scope symbols in the * linked shader. * \param instructions Instruction stream where new variable declarations * should be added. */ void remap_variables(ir_instruction *inst, glsl_symbol_table *symbols, exec_list *instructions) { class remap_visitor : public ir_hierarchical_visitor { public: remap_visitor(glsl_symbol_table *symbols, exec_list *instructions) { this->symbols = symbols; this->instructions = instructions; } virtual ir_visitor_status visit(ir_dereference_variable *ir) { ir_variable *const existing = this->symbols->get_variable(ir->var->name); if (existing != NULL) ir->var = existing; else { ir_variable *copy = ir->var->clone(NULL); this->symbols->add_variable(copy->name, copy); this->instructions->push_head(copy); } return visit_continue; } private: glsl_symbol_table *symbols; exec_list *instructions; }; remap_visitor v(symbols, instructions); inst->accept(&v); } /** * Move non-declarations from one instruction stream to another * * The intended usage pattern of this function is to pass the pointer to the * head sentinal of a list (i.e., a pointer to the list cast to an \c exec_node * pointer) for \c last and \c false for \c make_copies on the first * call. Successive calls pass the return value of the previous call for * \c last and \c true for \c make_copies. * * \param instructions Source instruction stream * \param last Instruction after which new instructions should be * inserted in the target instruction stream * \param make_copies Flag selecting whether instructions in \c instructions * should be copied (via \c ir_instruction::clone) into the * target list or moved. * * \return * The new "last" instruction in the target instruction stream. This pointer * is suitable for use as the \c last parameter of a later call to this * function. */ exec_node * move_non_declarations(exec_list *instructions, exec_node *last, bool make_copies, gl_shader *target) { foreach_list_safe(node, instructions) { ir_instruction *inst = (ir_instruction *) node; if (inst->as_variable() || inst->as_function()) continue; assert(inst->as_assignment()); if (make_copies) { inst = inst->clone(NULL); remap_variables(inst, target->symbols, target->ir); } else { inst->remove(); } last->insert_after(inst); last = inst; } return last; } /** * Get the function signature for main from a shader */ static ir_function_signature * get_main_function_signature(gl_shader *sh) { ir_function *const f = sh->symbols->get_function("main"); if (f != NULL) { exec_list void_parameters; /* Look for the 'void main()' signature and ensure that it's defined. * This keeps the linker from accidentally pick a shader that just * contains a prototype for main. * * We don't have to check for multiple definitions of main (in multiple * shaders) because that would have already been caught above. */ ir_function_signature *sig = f->matching_signature(&void_parameters); if ((sig != NULL) && sig->is_defined) { return sig; } } return NULL; } /** * Combine a group of shaders for a single stage to generate a linked shader * * \note * If this function is supplied a single shader, it is cloned, and the new * shader is returned. */ static struct gl_shader * link_intrastage_shaders(struct gl_shader_program *prog, struct gl_shader **shader_list, unsigned num_shaders) { /* Check that global variables defined in multiple shaders are consistent. */ if (!cross_validate_globals(prog, shader_list, num_shaders, false)) return NULL; /* Check that there is only a single definition of each function signature * across all shaders. */ for (unsigned i = 0; i < (num_shaders - 1); i++) { foreach_list(node, shader_list[i]->ir) { ir_function *const f = ((ir_instruction *) node)->as_function(); if (f == NULL) continue; for (unsigned j = i + 1; j < num_shaders; j++) { ir_function *const other = shader_list[j]->symbols->get_function(f->name); /* If the other shader has no function (and therefore no function * signatures) with the same name, skip to the next shader. */ if (other == NULL) continue; foreach_iter (exec_list_iterator, iter, *f) { ir_function_signature *sig = (ir_function_signature *) iter.get(); if (!sig->is_defined || sig->is_built_in) continue; ir_function_signature *other_sig = other->exact_matching_signature(& sig->parameters); if ((other_sig != NULL) && other_sig->is_defined && !other_sig->is_built_in) { linker_error_printf(prog, "function `%s' is multiply defined", f->name); return NULL; } } } } } /* Find the shader that defines main, and make a clone of it. * * Starting with the clone, search for undefined references. If one is * found, find the shader that defines it. Clone the reference and add * it to the shader. Repeat until there are no undefined references or * until a reference cannot be resolved. */ gl_shader *main = NULL; for (unsigned i = 0; i < num_shaders; i++) { if (get_main_function_signature(shader_list[i]) != NULL) { main = shader_list[i]; break; } } if (main == NULL) { linker_error_printf(prog, "%s shader lacks `main'\n", (shader_list[0]->Type == GL_VERTEX_SHADER) ? "vertex" : "fragment"); return NULL; } gl_shader *const linked = _mesa_new_shader(NULL, 0, main->Type); linked->ir = new(linked) exec_list; clone_ir_list(linked->ir, main->ir); populate_symbol_table(linked); /* The a pointer to the main function in the final linked shader (i.e., the * copy of the original shader that contained the main function). */ ir_function_signature *const main_sig = get_main_function_signature(linked); /* Move any instructions other than variable declarations or function * declarations into main. */ exec_node *insertion_point = move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, linked); for (unsigned i = 0; i < num_shaders; i++) { if (shader_list[i] == main) continue; insertion_point = move_non_declarations(shader_list[i]->ir, insertion_point, true, linked); } /* Resolve initializers for global variables in the linked shader. */ link_function_calls(prog, linked, shader_list, num_shaders); return linked; } struct uniform_node { exec_node link; struct gl_uniform *u; unsigned slots; }; void assign_uniform_locations(struct gl_shader_program *prog) { /* */ exec_list uniforms; unsigned total_uniforms = 0; hash_table *ht = hash_table_ctor(32, hash_table_string_hash, hash_table_string_compare); for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) { unsigned next_position = 0; foreach_list(node, prog->_LinkedShaders[i]->ir) { ir_variable *const var = ((ir_instruction *) node)->as_variable(); if ((var == NULL) || (var->mode != ir_var_uniform)) continue; const unsigned vec4_slots = (var->component_slots() + 3) / 4; assert(vec4_slots != 0); uniform_node *n = (uniform_node *) hash_table_find(ht, var->name); if (n == NULL) { n = (uniform_node *) calloc(1, sizeof(struct uniform_node)); n->u = (gl_uniform *) calloc(vec4_slots, sizeof(struct gl_uniform)); n->slots = vec4_slots; n->u[0].Name = strdup(var->name); for (unsigned j = 1; j < vec4_slots; j++) n->u[j].Name = n->u[0].Name; hash_table_insert(ht, n, n->u[0].Name); uniforms.push_tail(& n->link); total_uniforms += vec4_slots; } if (var->constant_value != NULL) for (unsigned j = 0; j < vec4_slots; j++) n->u[j].Initialized = true; var->location = next_position; for (unsigned j = 0; j < vec4_slots; j++) { switch (prog->_LinkedShaders[i]->Type) { case GL_VERTEX_SHADER: n->u[j].VertPos = next_position; break; case GL_FRAGMENT_SHADER: n->u[j].FragPos = next_position; break; case GL_GEOMETRY_SHADER: /* FINISHME: Support geometry shaders. */ assert(prog->_LinkedShaders[i]->Type != GL_GEOMETRY_SHADER); break; } next_position++; } } } gl_uniform_list *ul = (gl_uniform_list *) calloc(1, sizeof(gl_uniform_list)); ul->Size = total_uniforms; ul->NumUniforms = total_uniforms; ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform)); unsigned idx = 0; uniform_node *next; for (uniform_node *node = (uniform_node *) uniforms.head ; node->link.next != NULL ; node = next) { next = (uniform_node *) node->link.next; node->link.remove(); memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform) * node->slots); idx += node->slots; free(node->u); free(node); } hash_table_dtor(ht); prog->Uniforms = ul; } /** * Find a contiguous set of available bits in a bitmask * * \param used_mask Bits representing used (1) and unused (0) locations * \param needed_count Number of contiguous bits needed. * * \return * Base location of the available bits on success or -1 on failure. */ int find_available_slots(unsigned used_mask, unsigned needed_count) { unsigned needed_mask = (1 << needed_count) - 1; const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; /* The comparison to 32 is redundant, but without it GCC emits "warning: * cannot optimize possibly infinite loops" for the loop below. */ if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) return -1; for (int i = 0; i <= max_bit_to_test; i++) { if ((needed_mask & ~used_mask) == needed_mask) return i; needed_mask <<= 1; } return -1; } bool assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index) { /* Mark invalid attribute locations as being used. */ unsigned used_locations = (max_attribute_index >= 32) ? ~0 : ~((1 << max_attribute_index) - 1); gl_shader *const sh = prog->_LinkedShaders[0]; assert(sh->Type == GL_VERTEX_SHADER); /* Operate in a total of four passes. * * 1. Invalidate the location assignments for all vertex shader inputs. * * 2. Assign locations for inputs that have user-defined (via * glBindVertexAttribLocation) locatoins. * * 3. Sort the attributes without assigned locations by number of slots * required in decreasing order. Fragmentation caused by attribute * locations assigned by the application may prevent large attributes * from having enough contiguous space. * * 4. Assign locations to any inputs without assigned locations. */ invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0); if (prog->Attributes != NULL) { for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) { ir_variable *const var = sh->symbols->get_variable(prog->Attributes->Parameters[i].Name); /* Note: attributes that occupy multiple slots, such as arrays or * matrices, may appear in the attrib array multiple times. */ if ((var == NULL) || (var->location != -1)) continue; /* From page 61 of the OpenGL 4.0 spec: * * "LinkProgram will fail if the attribute bindings assigned by * BindAttribLocation do not leave not enough space to assign a * location for an active matrix attribute or an active attribute * array, both of which require multiple contiguous generic * attributes." * * Previous versions of the spec contain similar language but omit the * bit about attribute arrays. * * Page 61 of the OpenGL 4.0 spec also says: * * "It is possible for an application to bind more than one * attribute name to the same location. This is referred to as * aliasing. This will only work if only one of the aliased * attributes is active in the executable program, or if no path * through the shader consumes more than one attribute of a set * of attributes aliased to the same location. A link error can * occur if the linker determines that every path through the * shader consumes multiple aliased attributes, but * implementations are not required to generate an error in this * case." * * These two paragraphs are either somewhat contradictory, or I don't * fully understand one or both of them. */ /* FINISHME: The code as currently written does not support attribute * FINISHME: location aliasing (see comment above). */ const int attr = prog->Attributes->Parameters[i].StateIndexes[0]; const unsigned slots = count_attribute_slots(var->type); /* Mask representing the contiguous slots that will be used by this * attribute. */ const unsigned use_mask = (1 << slots) - 1; /* Generate a link error if the set of bits requested for this * attribute overlaps any previously allocated bits. */ if ((~(use_mask << attr) & used_locations) != used_locations) { linker_error_printf(prog, "insufficient contiguous attribute locations " "available for vertex shader input `%s'", var->name); return false; } var->location = VERT_ATTRIB_GENERIC0 + attr; used_locations |= (use_mask << attr); } } /* Temporary storage for the set of attributes that need locations assigned. */ struct temp_attr { unsigned slots; ir_variable *var; /* Used below in the call to qsort. */ static int compare(const void *a, const void *b) { const temp_attr *const l = (const temp_attr *) a; const temp_attr *const r = (const temp_attr *) b; /* Reversed because we want a descending order sort below. */ return r->slots - l->slots; } } to_assign[16]; unsigned num_attr = 0; foreach_list(node, sh->ir) { ir_variable *const var = ((ir_instruction *) node)->as_variable(); if ((var == NULL) || (var->mode != ir_var_in)) continue; /* The location was explicitly assigned, nothing to do here. */ if (var->location != -1) continue; to_assign[num_attr].slots = count_attribute_slots(var->type); to_assign[num_attr].var = var; num_attr++; } /* If all of the attributes were assigned locations by the application (or * are built-in attributes with fixed locations), return early. This should * be the common case. */ if (num_attr == 0) return true; qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only * be explicitly assigned by via glBindAttribLocation. Mark it as reserved * to prevent it from being automatically allocated below. */ used_locations |= (1 << 0); for (unsigned i = 0; i < num_attr; i++) { /* Mask representing the contiguous slots that will be used by this * attribute. */ const unsigned use_mask = (1 << to_assign[i].slots) - 1; int location = find_available_slots(used_locations, to_assign[i].slots); if (location < 0) { linker_error_printf(prog, "insufficient contiguous attribute locations " "available for vertex shader input `%s'", to_assign[i].var->name); return false; } to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location; used_locations |= (use_mask << location); } return true; } void assign_varying_locations(gl_shader *producer, gl_shader *consumer) { /* FINISHME: Set dynamically when geometry shader support is added. */ unsigned output_index = VERT_RESULT_VAR0; unsigned input_index = FRAG_ATTRIB_VAR0; /* Operate in a total of three passes. * * 1. Assign locations for any matching inputs and outputs. * * 2. Mark output variables in the producer that do not have locations as * not being outputs. This lets the optimizer eliminate them. * * 3. Mark input variables in the consumer that do not have locations as * not being inputs. This lets the optimizer eliminate them. */ invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0); invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0); foreach_list(node, producer->ir) { ir_variable *const output_var = ((ir_instruction *) node)->as_variable(); if ((output_var == NULL) || (output_var->mode != ir_var_out) || (output_var->location != -1)) continue; ir_variable *const input_var = consumer->symbols->get_variable(output_var->name); if ((input_var == NULL) || (input_var->mode != ir_var_in)) continue; assert(input_var->location == -1); /* FINISHME: Location assignment will need some changes when arrays, * FINISHME: matrices, and structures are allowed as shader inputs / * FINISHME: outputs. */ output_var->location = output_index; input_var->location = input_index; output_index++; input_index++; } foreach_list(node, producer->ir) { ir_variable *const var = ((ir_instruction *) node)->as_variable(); if ((var == NULL) || (var->mode != ir_var_out)) continue; /* An 'out' variable is only really a shader output if its value is read * by the following stage. */ if (var->location == -1) { var->shader_out = false; var->mode = ir_var_auto; } } foreach_list(node, consumer->ir) { ir_variable *const var = ((ir_instruction *) node)->as_variable(); if ((var == NULL) || (var->mode != ir_var_in)) continue; /* An 'in' variable is only really a shader input if its value is written * by the previous stage. */ var->shader_in = (var->location != -1); } } void link_shaders(struct gl_shader_program *prog) { prog->LinkStatus = false; prog->Validated = false; prog->_Used = false; if (prog->InfoLog != NULL) talloc_free(prog->InfoLog); prog->InfoLog = talloc_strdup(NULL, ""); /* Separate the shaders into groups based on their type. */ struct gl_shader **vert_shader_list; unsigned num_vert_shaders = 0; struct gl_shader **frag_shader_list; unsigned num_frag_shaders = 0; vert_shader_list = (struct gl_shader **) calloc(2 * prog->NumShaders, sizeof(struct gl_shader *)); frag_shader_list = &vert_shader_list[prog->NumShaders]; for (unsigned i = 0; i < prog->NumShaders; i++) { switch (prog->Shaders[i]->Type) { case GL_VERTEX_SHADER: vert_shader_list[num_vert_shaders] = prog->Shaders[i]; num_vert_shaders++; break; case GL_FRAGMENT_SHADER: frag_shader_list[num_frag_shaders] = prog->Shaders[i]; num_frag_shaders++; break; case GL_GEOMETRY_SHADER: /* FINISHME: Support geometry shaders. */ assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER); break; } } /* FINISHME: Implement intra-stage linking. */ prog->_NumLinkedShaders = 0; if (num_vert_shaders > 0) { gl_shader *const sh = link_intrastage_shaders(prog, vert_shader_list, num_vert_shaders); if (sh == NULL) goto done; if (!validate_vertex_shader_executable(prog, sh)) goto done; prog->_LinkedShaders[prog->_NumLinkedShaders] = sh; prog->_NumLinkedShaders++; } if (num_frag_shaders > 0) { gl_shader *const sh = link_intrastage_shaders(prog, frag_shader_list, num_frag_shaders); if (sh == NULL) goto done; if (!validate_fragment_shader_executable(prog, sh)) goto done; prog->_LinkedShaders[prog->_NumLinkedShaders] = sh; prog->_NumLinkedShaders++; } /* Here begins the inter-stage linking phase. Some initial validation is * performed, then locations are assigned for uniforms, attributes, and * varyings. */ if (cross_validate_uniforms(prog)) { /* Validate the inputs of each stage with the output of the preceeding * stage. */ for (unsigned i = 1; i < prog->_NumLinkedShaders; i++) { if (!cross_validate_outputs_to_inputs(prog, prog->_LinkedShaders[i - 1], prog->_LinkedShaders[i])) goto done; } prog->LinkStatus = true; } /* FINISHME: Perform whole-program optimization here. */ assign_uniform_locations(prog); if (prog->_LinkedShaders[0]->Type == GL_VERTEX_SHADER) /* FINISHME: The value of the max_attribute_index parameter is * FINISHME: implementation dependent based on the value of * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be * FINISHME: at least 16, so hardcode 16 for now. */ if (!assign_attribute_locations(prog, 16)) goto done; for (unsigned i = 1; i < prog->_NumLinkedShaders; i++) assign_varying_locations(prog->_LinkedShaders[i - 1], prog->_LinkedShaders[i]); /* FINISHME: Assign fragment shader output locations. */ done: free(vert_shader_list); }