/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "main/core.h" #include "ir.h" #include "linker.h" #include "glsl_symbol_table.h" #include "program/hash_table.h" /** * \file link_uniforms.cpp * Assign locations for GLSL uniforms. * * \author Ian Romanick */ /** * Count the backing storage requirements for a type */ static unsigned values_for_type(const glsl_type *type) { if (type->is_sampler()) { return 1; } else if (type->is_array() && type->fields.array->is_sampler()) { return type->array_size(); } else { return type->component_slots(); } } void uniform_field_visitor::process(ir_variable *var) { const glsl_type *t = var->type; /* Only strdup the name if we actually will need to modify it. */ if (t->is_record() || (t->is_array() && t->fields.array->is_record())) { char *name = ralloc_strdup(NULL, var->name); recursion(var->type, &name, strlen(name)); ralloc_free(name); } else { this->visit_field(t, var->name); } } void uniform_field_visitor::recursion(const glsl_type *t, char **name, unsigned name_length) { /* Records need to have each field processed individually. * * Arrays of records need to have each array element processed * individually, then each field of the resulting array elements processed * individually. */ if (t->is_record()) { for (unsigned i = 0; i < t->length; i++) { const char *field = t->fields.structure[i].name; /* Append '.field' to the current uniform name. */ ralloc_asprintf_rewrite_tail(name, name_length, ".%s", field); recursion(t->fields.structure[i].type, name, name_length + 1 + strlen(field)); } } else if (t->is_array() && t->fields.array->is_record()) { for (unsigned i = 0; i < t->length; i++) { char subscript[13]; /* Append the subscript to the current uniform name */ const unsigned subscript_length = snprintf(subscript, 13, "[%u]", i); ralloc_asprintf_rewrite_tail(name, name_length, "%s", subscript); recursion(t->fields.array, name, name_length + subscript_length); } } else { this->visit_field(t, *name); } } /** * Class to help calculate the storage requirements for a set of uniforms * * As uniforms are added to the active set the number of active uniforms and * the storage requirements for those uniforms are accumulated. The active * uniforms are added the the hash table supplied to the constructor. * * If the same uniform is added multiple times (i.e., once for each shader * target), it will only be accounted once. */ class count_uniform_size : public uniform_field_visitor { public: count_uniform_size(struct string_to_uint_map *map) : num_active_uniforms(0), num_values(0), map(map) { /* empty */ } /** * Total number of active uniforms counted */ unsigned num_active_uniforms; /** * Number of data values required to back the storage for the active uniforms */ unsigned num_values; private: virtual void visit_field(const glsl_type *type, const char *name) { assert(!type->is_record()); assert(!(type->is_array() && type->fields.array->is_record())); /* If the uniform is already in the map, there's nothing more to do. */ unsigned id; if (this->map->get(id, name)) return; char *key = strdup(name); this->map->put(this->num_active_uniforms, key); /* Each leaf uniform occupies one entry in the list of active * uniforms. */ this->num_active_uniforms++; this->num_values += values_for_type(type); } struct string_to_uint_map *map; };