/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "main/core.h" #include "ir.h" #include "linker.h" #include "ir_uniform.h" #include "glsl_symbol_table.h" #include "program/hash_table.h" #include "program.h" /** * \file link_uniforms.cpp * Assign locations for GLSL uniforms. * * \author Ian Romanick */ /** * Used by linker to indicate uniforms that have no location set. */ #define UNMAPPED_UNIFORM_LOC ~0u /** * Count the backing storage requirements for a type */ static unsigned values_for_type(const glsl_type *type) { if (type->is_sampler()) { return 1; } else if (type->is_array() && type->fields.array->is_sampler()) { return type->array_size(); } else { return type->component_slots(); } } void program_resource_visitor::process(const glsl_type *type, const char *name) { assert(type->without_array()->is_record() || type->without_array()->is_interface()); char *name_copy = ralloc_strdup(NULL, name); recursion(type, &name_copy, strlen(name), false, NULL, false); ralloc_free(name_copy); } void program_resource_visitor::process(ir_variable *var) { const glsl_type *t = var->type; /* false is always passed for the row_major parameter to the other * processing functions because no information is available to do * otherwise. See the warning in linker.h. */ /* Only strdup the name if we actually will need to modify it. */ if (var->data.from_named_ifc_block_array) { /* lower_named_interface_blocks created this variable by lowering an * interface block array to an array variable. For example if the * original source code was: * * out Blk { vec4 bar } foo[3]; * * Then the variable is now: * * out vec4 bar[3]; * * We need to visit each array element using the names constructed like * so: * * Blk[0].bar * Blk[1].bar * Blk[2].bar */ assert(t->is_array()); const glsl_type *ifc_type = var->get_interface_type(); char *name = ralloc_strdup(NULL, ifc_type->name); size_t name_length = strlen(name); for (unsigned i = 0; i < t->length; i++) { size_t new_length = name_length; ralloc_asprintf_rewrite_tail(&name, &new_length, "[%u].%s", i, var->name); /* Note: row_major is only meaningful for uniform blocks, and * lowering is only applied to non-uniform interface blocks, so we * can safely pass false for row_major. */ recursion(var->type, &name, new_length, false, NULL, false); } ralloc_free(name); } else if (var->data.from_named_ifc_block_nonarray) { /* lower_named_interface_blocks created this variable by lowering a * named interface block (non-array) to an ordinary variable. For * example if the original source code was: * * out Blk { vec4 bar } foo; * * Then the variable is now: * * out vec4 bar; * * We need to visit this variable using the name: * * Blk.bar */ const glsl_type *ifc_type = var->get_interface_type(); char *name = ralloc_asprintf(NULL, "%s.%s", ifc_type->name, var->name); /* Note: row_major is only meaningful for uniform blocks, and lowering * is only applied to non-uniform interface blocks, so we can safely * pass false for row_major. */ recursion(var->type, &name, strlen(name), false, NULL, false); ralloc_free(name); } else if (t->without_array()->is_record()) { char *name = ralloc_strdup(NULL, var->name); recursion(var->type, &name, strlen(name), false, NULL, false); ralloc_free(name); } else if (t->is_interface()) { char *name = ralloc_strdup(NULL, var->type->name); recursion(var->type, &name, strlen(name), false, NULL, false); ralloc_free(name); } else if (t->is_array() && t->fields.array->is_interface()) { char *name = ralloc_strdup(NULL, var->type->fields.array->name); recursion(var->type, &name, strlen(name), false, NULL, false); ralloc_free(name); } else { this->visit_field(t, var->name, false, NULL, false); } } void program_resource_visitor::recursion(const glsl_type *t, char **name, size_t name_length, bool row_major, const glsl_type *record_type, bool last_field) { /* Records need to have each field processed individually. * * Arrays of records need to have each array element processed * individually, then each field of the resulting array elements processed * individually. */ if (t->is_record() || t->is_interface()) { if (record_type == NULL && t->is_record()) record_type = t; for (unsigned i = 0; i < t->length; i++) { const char *field = t->fields.structure[i].name; size_t new_length = name_length; if (t->fields.structure[i].type->is_record()) this->visit_field(&t->fields.structure[i]); /* Append '.field' to the current variable name. */ if (name_length == 0) { ralloc_asprintf_rewrite_tail(name, &new_length, "%s", field); } else { ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field); } recursion(t->fields.structure[i].type, name, new_length, t->fields.structure[i].row_major, record_type, (i + 1) == t->length); /* Only the first leaf-field of the record gets called with the * record type pointer. */ record_type = NULL; } } else if (t->is_array() && (t->fields.array->is_record() || t->fields.array->is_interface())) { if (record_type == NULL && t->fields.array->is_record()) record_type = t->fields.array; for (unsigned i = 0; i < t->length; i++) { size_t new_length = name_length; /* Append the subscript to the current variable name */ ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i); recursion(t->fields.array, name, new_length, row_major, record_type, (i + 1) == t->length); /* Only the first leaf-field of the record gets called with the * record type pointer. */ record_type = NULL; } } else { this->visit_field(t, *name, row_major, record_type, last_field); } } void program_resource_visitor::visit_field(const glsl_type *type, const char *name, bool row_major, const glsl_type *, bool /* last_field */) { visit_field(type, name, row_major); } void program_resource_visitor::visit_field(const glsl_struct_field *field) { (void) field; /* empty */ } namespace { /** * Class to help calculate the storage requirements for a set of uniforms * * As uniforms are added to the active set the number of active uniforms and * the storage requirements for those uniforms are accumulated. The active * uniforms are added the the hash table supplied to the constructor. * * If the same uniform is added multiple times (i.e., once for each shader * target), it will only be accounted once. */ class count_uniform_size : public program_resource_visitor { public: count_uniform_size(struct string_to_uint_map *map) : num_active_uniforms(0), num_values(0), num_shader_samplers(0), num_shader_images(0), num_shader_uniform_components(0), is_ubo_var(false), map(map) { /* empty */ } void start_shader() { this->num_shader_samplers = 0; this->num_shader_images = 0; this->num_shader_uniform_components = 0; } void process(ir_variable *var) { this->is_ubo_var = var->is_in_uniform_block(); if (var->is_interface_instance()) program_resource_visitor::process(var->get_interface_type(), var->get_interface_type()->name); else program_resource_visitor::process(var); } /** * Total number of active uniforms counted */ unsigned num_active_uniforms; /** * Number of data values required to back the storage for the active uniforms */ unsigned num_values; /** * Number of samplers used */ unsigned num_shader_samplers; /** * Number of images used */ unsigned num_shader_images; /** * Number of uniforms used in the current shader */ unsigned num_shader_uniform_components; bool is_ubo_var; private: virtual void visit_field(const glsl_type *type, const char *name, bool row_major) { assert(!type->without_array()->is_record()); assert(!type->without_array()->is_interface()); (void) row_major; /* Count the number of samplers regardless of whether the uniform is * already in the hash table. The hash table prevents adding the same * uniform for multiple shader targets, but in this case we want to * count it for each shader target. */ const unsigned values = values_for_type(type); if (type->contains_sampler()) { this->num_shader_samplers += values; } else if (type->contains_image()) { this->num_shader_images += values; /* As drivers are likely to represent image uniforms as * scalar indices, count them against the limit of uniform * components in the default block. The spec allows image * uniforms to use up no more than one scalar slot. */ this->num_shader_uniform_components += values; } else { /* Accumulate the total number of uniform slots used by this shader. * Note that samplers do not count against this limit because they * don't use any storage on current hardware. */ if (!is_ubo_var) this->num_shader_uniform_components += values; } /* If the uniform is already in the map, there's nothing more to do. */ unsigned id; if (this->map->get(id, name)) return; this->map->put(this->num_active_uniforms, name); /* Each leaf uniform occupies one entry in the list of active * uniforms. */ this->num_active_uniforms++; this->num_values += values; } struct string_to_uint_map *map; }; } /* anonymous namespace */ /** * Class to help parcel out pieces of backing storage to uniforms * * Each uniform processed has some range of the \c gl_constant_value * structures associated with it. The association is done by finding * the uniform in the \c string_to_uint_map and using the value from * the map to connect that slot in the \c gl_uniform_storage table * with the next available slot in the \c gl_constant_value array. * * \warning * This class assumes that every uniform that will be processed is * already in the \c string_to_uint_map. In addition, it assumes that * the \c gl_uniform_storage and \c gl_constant_value arrays are "big * enough." */ class parcel_out_uniform_storage : public program_resource_visitor { public: parcel_out_uniform_storage(struct string_to_uint_map *map, struct gl_uniform_storage *uniforms, union gl_constant_value *values) : map(map), uniforms(uniforms), values(values) { } void start_shader(gl_shader_stage shader_type) { assert(shader_type < MESA_SHADER_STAGES); this->shader_type = shader_type; this->shader_samplers_used = 0; this->shader_shadow_samplers = 0; this->next_sampler = 0; this->next_image = 0; memset(this->targets, 0, sizeof(this->targets)); } void set_and_process(struct gl_shader_program *prog, ir_variable *var) { current_var = var; field_counter = 0; ubo_block_index = -1; if (var->is_in_uniform_block()) { if (var->is_interface_instance() && var->type->is_array()) { unsigned l = strlen(var->get_interface_type()->name); for (unsigned i = 0; i < prog->NumUniformBlocks; i++) { if (strncmp(var->get_interface_type()->name, prog->UniformBlocks[i].Name, l) == 0 && prog->UniformBlocks[i].Name[l] == '[') { ubo_block_index = i; break; } } } else { for (unsigned i = 0; i < prog->NumUniformBlocks; i++) { if (strcmp(var->get_interface_type()->name, prog->UniformBlocks[i].Name) == 0) { ubo_block_index = i; break; } } } assert(ubo_block_index != -1); /* Uniform blocks that were specified with an instance name must be * handled a little bit differently. The name of the variable is the * name used to reference the uniform block instead of being the name * of a variable within the block. Therefore, searching for the name * within the block will fail. */ if (var->is_interface_instance()) { ubo_byte_offset = 0; ubo_row_major = false; } else { const struct gl_uniform_block *const block = &prog->UniformBlocks[ubo_block_index]; assert(var->data.location != -1); const struct gl_uniform_buffer_variable *const ubo_var = &block->Uniforms[var->data.location]; ubo_row_major = ubo_var->RowMajor; ubo_byte_offset = ubo_var->Offset; } if (var->is_interface_instance()) process(var->get_interface_type(), var->get_interface_type()->name); else process(var); } else process(var); } int ubo_block_index; int ubo_byte_offset; bool ubo_row_major; gl_shader_stage shader_type; private: void handle_samplers(const glsl_type *base_type, struct gl_uniform_storage *uniform) { if (base_type->is_sampler()) { uniform->sampler[shader_type].index = this->next_sampler; uniform->sampler[shader_type].active = true; /* Increment the sampler by 1 for non-arrays and by the number of * array elements for arrays. */ this->next_sampler += MAX2(1, uniform->array_elements); const gl_texture_index target = base_type->sampler_index(); const unsigned shadow = base_type->sampler_shadow; for (unsigned i = uniform->sampler[shader_type].index; i < MIN2(this->next_sampler, MAX_SAMPLERS); i++) { this->targets[i] = target; this->shader_samplers_used |= 1U << i; this->shader_shadow_samplers |= shadow << i; } } else { uniform->sampler[shader_type].index = ~0; uniform->sampler[shader_type].active = false; } } void handle_images(const glsl_type *base_type, struct gl_uniform_storage *uniform) { if (base_type->is_image()) { uniform->image[shader_type].index = this->next_image; uniform->image[shader_type].active = true; /* Increment the image index by 1 for non-arrays and by the * number of array elements for arrays. */ this->next_image += MAX2(1, uniform->array_elements); } else { uniform->image[shader_type].index = ~0; uniform->image[shader_type].active = false; } } virtual void visit_field(const glsl_type *type, const char *name, bool row_major) { (void) type; (void) name; (void) row_major; assert(!"Should not get here."); } virtual void visit_field(const glsl_type *type, const char *name, bool row_major, const glsl_type *record_type, bool last_field) { assert(!type->without_array()->is_record()); assert(!type->without_array()->is_interface()); (void) row_major; unsigned id; bool found = this->map->get(id, name); assert(found); if (!found) return; const glsl_type *base_type; if (type->is_array()) { this->uniforms[id].array_elements = type->length; base_type = type->fields.array; } else { this->uniforms[id].array_elements = 0; base_type = type; } /* This assigns uniform indices to sampler and image uniforms. */ handle_samplers(base_type, &this->uniforms[id]); handle_images(base_type, &this->uniforms[id]); /* If there is already storage associated with this uniform, it means * that it was set while processing an earlier shader stage. For * example, we may be processing the uniform in the fragment shader, but * the uniform was already processed in the vertex shader. */ if (this->uniforms[id].storage != NULL) { return; } /* Assign explicit locations. */ if (current_var->data.explicit_location) { /* Set sequential locations for struct fields. */ if (record_type != NULL) { const unsigned entries = MAX2(1, this->uniforms[id].array_elements); this->uniforms[id].remap_location = current_var->data.location + field_counter; field_counter += entries; } else { this->uniforms[id].remap_location = current_var->data.location; } } else { /* Initialize to to indicate that no location is set */ this->uniforms[id].remap_location = UNMAPPED_UNIFORM_LOC; } this->uniforms[id].name = ralloc_strdup(this->uniforms, name); this->uniforms[id].type = base_type; this->uniforms[id].initialized = 0; this->uniforms[id].num_driver_storage = 0; this->uniforms[id].driver_storage = NULL; this->uniforms[id].storage = this->values; this->uniforms[id].atomic_buffer_index = -1; if (this->ubo_block_index != -1) { this->uniforms[id].block_index = this->ubo_block_index; const unsigned alignment = record_type ? record_type->std140_base_alignment(ubo_row_major) : type->std140_base_alignment(ubo_row_major); this->ubo_byte_offset = glsl_align(this->ubo_byte_offset, alignment); this->uniforms[id].offset = this->ubo_byte_offset; this->ubo_byte_offset += type->std140_size(ubo_row_major); if (last_field) this->ubo_byte_offset = glsl_align(this->ubo_byte_offset, 16); if (type->is_array()) { this->uniforms[id].array_stride = glsl_align(type->fields.array->std140_size(ubo_row_major), 16); } else { this->uniforms[id].array_stride = 0; } if (type->without_array()->is_matrix()) { this->uniforms[id].matrix_stride = 16; this->uniforms[id].row_major = ubo_row_major; } else { this->uniforms[id].matrix_stride = 0; this->uniforms[id].row_major = false; } } else { this->uniforms[id].block_index = -1; this->uniforms[id].offset = -1; this->uniforms[id].array_stride = -1; this->uniforms[id].matrix_stride = -1; this->uniforms[id].row_major = false; } this->values += values_for_type(type); } struct string_to_uint_map *map; struct gl_uniform_storage *uniforms; unsigned next_sampler; unsigned next_image; public: union gl_constant_value *values; gl_texture_index targets[MAX_SAMPLERS]; /** * Current variable being processed. */ ir_variable *current_var; /** * Field counter is used to take care that uniform structures * with explicit locations get sequential locations. */ unsigned field_counter; /** * Mask of samplers used by the current shader stage. */ unsigned shader_samplers_used; /** * Mask of samplers used by the current shader stage for shadows. */ unsigned shader_shadow_samplers; }; /** * Merges a uniform block into an array of uniform blocks that may or * may not already contain a copy of it. * * Returns the index of the new block in the array. */ int link_cross_validate_uniform_block(void *mem_ctx, struct gl_uniform_block **linked_blocks, unsigned int *num_linked_blocks, struct gl_uniform_block *new_block) { for (unsigned int i = 0; i < *num_linked_blocks; i++) { struct gl_uniform_block *old_block = &(*linked_blocks)[i]; if (strcmp(old_block->Name, new_block->Name) == 0) return link_uniform_blocks_are_compatible(old_block, new_block) ? i : -1; } *linked_blocks = reralloc(mem_ctx, *linked_blocks, struct gl_uniform_block, *num_linked_blocks + 1); int linked_block_index = (*num_linked_blocks)++; struct gl_uniform_block *linked_block = &(*linked_blocks)[linked_block_index]; memcpy(linked_block, new_block, sizeof(*new_block)); linked_block->Uniforms = ralloc_array(*linked_blocks, struct gl_uniform_buffer_variable, linked_block->NumUniforms); memcpy(linked_block->Uniforms, new_block->Uniforms, sizeof(*linked_block->Uniforms) * linked_block->NumUniforms); for (unsigned int i = 0; i < linked_block->NumUniforms; i++) { struct gl_uniform_buffer_variable *ubo_var = &linked_block->Uniforms[i]; if (ubo_var->Name == ubo_var->IndexName) { ubo_var->Name = ralloc_strdup(*linked_blocks, ubo_var->Name); ubo_var->IndexName = ubo_var->Name; } else { ubo_var->Name = ralloc_strdup(*linked_blocks, ubo_var->Name); ubo_var->IndexName = ralloc_strdup(*linked_blocks, ubo_var->IndexName); } } return linked_block_index; } /** * Walks the IR and update the references to uniform blocks in the * ir_variables to point at linked shader's list (previously, they * would point at the uniform block list in one of the pre-linked * shaders). */ static void link_update_uniform_buffer_variables(struct gl_shader *shader) { foreach_in_list(ir_instruction, node, shader->ir) { ir_variable *const var = node->as_variable(); if ((var == NULL) || !var->is_in_uniform_block()) continue; assert(var->data.mode == ir_var_uniform); if (var->is_interface_instance()) { var->data.location = 0; continue; } bool found = false; char sentinel = '\0'; if (var->type->is_record()) { sentinel = '.'; } else if (var->type->is_array() && var->type->fields.array->is_record()) { sentinel = '['; } const unsigned l = strlen(var->name); for (unsigned i = 0; i < shader->NumUniformBlocks; i++) { for (unsigned j = 0; j < shader->UniformBlocks[i].NumUniforms; j++) { if (sentinel) { const char *begin = shader->UniformBlocks[i].Uniforms[j].Name; const char *end = strchr(begin, sentinel); if (end == NULL) continue; if (l != (end - begin)) continue; if (strncmp(var->name, begin, l) == 0) { found = true; var->data.location = j; break; } } else if (!strcmp(var->name, shader->UniformBlocks[i].Uniforms[j].Name)) { found = true; var->data.location = j; break; } } if (found) break; } assert(found); } } void link_assign_uniform_block_offsets(struct gl_shader *shader) { for (unsigned b = 0; b < shader->NumUniformBlocks; b++) { struct gl_uniform_block *block = &shader->UniformBlocks[b]; unsigned offset = 0; for (unsigned int i = 0; i < block->NumUniforms; i++) { struct gl_uniform_buffer_variable *ubo_var = &block->Uniforms[i]; const struct glsl_type *type = ubo_var->Type; unsigned alignment = type->std140_base_alignment(ubo_var->RowMajor); unsigned size = type->std140_size(ubo_var->RowMajor); offset = glsl_align(offset, alignment); ubo_var->Offset = offset; offset += size; } /* From the GL_ARB_uniform_buffer_object spec: * * "For uniform blocks laid out according to [std140] rules, * the minimum buffer object size returned by the * UNIFORM_BLOCK_DATA_SIZE query is derived by taking the * offset of the last basic machine unit consumed by the * last uniform of the uniform block (including any * end-of-array or end-of-structure padding), adding one, * and rounding up to the next multiple of the base * alignment required for a vec4." */ block->UniformBufferSize = glsl_align(offset, 16); } } /** * Scan the program for image uniforms and store image unit access * information into the gl_shader data structure. */ static void link_set_image_access_qualifiers(struct gl_shader_program *prog) { for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { gl_shader *sh = prog->_LinkedShaders[i]; if (sh == NULL) continue; foreach_in_list(ir_instruction, node, sh->ir) { ir_variable *var = node->as_variable(); if (var && var->data.mode == ir_var_uniform && var->type->contains_image()) { unsigned id = 0; bool found = prog->UniformHash->get(id, var->name); assert(found); (void) found; const gl_uniform_storage *storage = &prog->UniformStorage[id]; const unsigned index = storage->image[i].index; const GLenum access = (var->data.image.read_only ? GL_READ_ONLY : var->data.image.write_only ? GL_WRITE_ONLY : GL_READ_WRITE); for (unsigned j = 0; j < MAX2(1, storage->array_elements); ++j) sh->ImageAccess[index + j] = access; } } } } void link_assign_uniform_locations(struct gl_shader_program *prog) { ralloc_free(prog->UniformStorage); prog->UniformStorage = NULL; prog->NumUserUniformStorage = 0; if (prog->UniformHash != NULL) { prog->UniformHash->clear(); } else { prog->UniformHash = new string_to_uint_map; } /* First pass: Count the uniform resources used by the user-defined * uniforms. While this happens, each active uniform will have an index * assigned to it. * * Note: this is *NOT* the index that is returned to the application by * glGetUniformLocation. */ count_uniform_size uniform_size(prog->UniformHash); for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_shader *sh = prog->_LinkedShaders[i]; if (sh == NULL) continue; /* Uniforms that lack an initializer in the shader code have an initial * value of zero. This includes sampler uniforms. * * Page 24 (page 30 of the PDF) of the GLSL 1.20 spec says: * * "The link time initial value is either the value of the variable's * initializer, if present, or 0 if no initializer is present. Sampler * types cannot have initializers." */ memset(sh->SamplerUnits, 0, sizeof(sh->SamplerUnits)); memset(sh->ImageUnits, 0, sizeof(sh->ImageUnits)); link_update_uniform_buffer_variables(sh); /* Reset various per-shader target counts. */ uniform_size.start_shader(); foreach_in_list(ir_instruction, node, sh->ir) { ir_variable *const var = node->as_variable(); if ((var == NULL) || (var->data.mode != ir_var_uniform)) continue; /* FINISHME: Update code to process built-in uniforms! */ if (is_gl_identifier(var->name)) { uniform_size.num_shader_uniform_components += var->type->component_slots(); continue; } uniform_size.process(var); } sh->num_samplers = uniform_size.num_shader_samplers; sh->NumImages = uniform_size.num_shader_images; sh->num_uniform_components = uniform_size.num_shader_uniform_components; sh->num_combined_uniform_components = sh->num_uniform_components; for (unsigned i = 0; i < sh->NumUniformBlocks; i++) { sh->num_combined_uniform_components += sh->UniformBlocks[i].UniformBufferSize / 4; } } const unsigned num_user_uniforms = uniform_size.num_active_uniforms; const unsigned num_data_slots = uniform_size.num_values; /* On the outside chance that there were no uniforms, bail out. */ if (num_user_uniforms == 0) return; struct gl_uniform_storage *uniforms = rzalloc_array(prog, struct gl_uniform_storage, num_user_uniforms); union gl_constant_value *data = rzalloc_array(uniforms, union gl_constant_value, num_data_slots); #ifndef NDEBUG union gl_constant_value *data_end = &data[num_data_slots]; #endif parcel_out_uniform_storage parcel(prog->UniformHash, uniforms, data); for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i] == NULL) continue; parcel.start_shader((gl_shader_stage)i); foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { ir_variable *const var = node->as_variable(); if ((var == NULL) || (var->data.mode != ir_var_uniform)) continue; /* FINISHME: Update code to process built-in uniforms! */ if (is_gl_identifier(var->name)) continue; parcel.set_and_process(prog, var); } prog->_LinkedShaders[i]->active_samplers = parcel.shader_samplers_used; prog->_LinkedShaders[i]->shadow_samplers = parcel.shader_shadow_samplers; STATIC_ASSERT(sizeof(prog->_LinkedShaders[i]->SamplerTargets) == sizeof(parcel.targets)); memcpy(prog->_LinkedShaders[i]->SamplerTargets, parcel.targets, sizeof(prog->_LinkedShaders[i]->SamplerTargets)); } /* Reserve all the explicit locations of the active uniforms. */ for (unsigned i = 0; i < num_user_uniforms; i++) { if (uniforms[i].remap_location != UNMAPPED_UNIFORM_LOC) { /* How many new entries for this uniform? */ const unsigned entries = MAX2(1, uniforms[i].array_elements); /* Set remap table entries point to correct gl_uniform_storage. */ for (unsigned j = 0; j < entries; j++) { unsigned element_loc = uniforms[i].remap_location + j; assert(prog->UniformRemapTable[element_loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION); prog->UniformRemapTable[element_loc] = &uniforms[i]; } } } /* Reserve locations for rest of the uniforms. */ for (unsigned i = 0; i < num_user_uniforms; i++) { /* Explicit ones have been set already. */ if (uniforms[i].remap_location != UNMAPPED_UNIFORM_LOC) continue; /* how many new entries for this uniform? */ const unsigned entries = MAX2(1, uniforms[i].array_elements); /* resize remap table to fit new entries */ prog->UniformRemapTable = reralloc(prog, prog->UniformRemapTable, gl_uniform_storage *, prog->NumUniformRemapTable + entries); /* set pointers for this uniform */ for (unsigned j = 0; j < entries; j++) prog->UniformRemapTable[prog->NumUniformRemapTable+j] = &uniforms[i]; /* set the base location in remap table for the uniform */ uniforms[i].remap_location = prog->NumUniformRemapTable; prog->NumUniformRemapTable += entries; } #ifndef NDEBUG for (unsigned i = 0; i < num_user_uniforms; i++) { assert(uniforms[i].storage != NULL); } assert(parcel.values == data_end); #endif prog->NumUserUniformStorage = num_user_uniforms; prog->UniformStorage = uniforms; link_set_image_access_qualifiers(prog); link_set_uniform_initializers(prog); return; }