/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file ir_validate.cpp * * Attempts to verify that various invariants of the IR tree are true. * * In particular, at the moment it makes sure that no single * ir_instruction node except for ir_variable appears multiple times * in the ir tree. ir_variable does appear multiple times: Once as a * declaration in an exec_list, and multiple times as the endpoint of * a dereference chain. */ #include #include "ir.h" #include "ir_hierarchical_visitor.h" #include "program/hash_table.h" #include "glsl_types.h" class ir_validate : public ir_hierarchical_visitor { public: ir_validate() { this->ht = hash_table_ctor(0, hash_table_pointer_hash, hash_table_pointer_compare); this->current_function = NULL; this->callback = ir_validate::validate_ir; this->data = ht; } ~ir_validate() { hash_table_dtor(this->ht); } virtual ir_visitor_status visit(ir_variable *v); virtual ir_visitor_status visit(ir_dereference_variable *ir); virtual ir_visitor_status visit(ir_if *ir); virtual ir_visitor_status visit_leave(ir_loop *ir); virtual ir_visitor_status visit_enter(ir_function *ir); virtual ir_visitor_status visit_leave(ir_function *ir); virtual ir_visitor_status visit_enter(ir_function_signature *ir); virtual ir_visitor_status visit_leave(ir_expression *ir); virtual ir_visitor_status visit_leave(ir_swizzle *ir); virtual ir_visitor_status visit_enter(ir_assignment *ir); virtual ir_visitor_status visit_enter(ir_call *ir); static void validate_ir(ir_instruction *ir, void *data); ir_function *current_function; struct hash_table *ht; }; ir_visitor_status ir_validate::visit(ir_dereference_variable *ir) { if ((ir->var == NULL) || (ir->var->as_variable() == NULL)) { printf("ir_dereference_variable @ %p does not specify a variable %p\n", (void *) ir, (void *) ir->var); abort(); } if (hash_table_find(ht, ir->var) == NULL) { printf("ir_dereference_variable @ %p specifies undeclared variable " "`%s' @ %p\n", (void *) ir, ir->var->name, (void *) ir->var); abort(); } this->validate_ir(ir, this->data); return visit_continue; } ir_visitor_status ir_validate::visit(ir_if *ir) { if (ir->condition->type != glsl_type::bool_type) { printf("ir_if condition %s type instead of bool.\n", ir->condition->type->name); ir->print(); printf("\n"); abort(); } return visit_continue; } ir_visitor_status ir_validate::visit_leave(ir_loop *ir) { if (ir->counter != NULL) { if ((ir->from == NULL) || (ir->from == NULL) || (ir->increment == NULL)) { printf("ir_loop has invalid loop controls:\n" " counter: %p\n" " from: %p\n" " to: %p\n" " increment: %p\n", (void *) ir->counter, (void *) ir->from, (void *) ir->to, (void *) ir->increment); abort(); } if ((ir->cmp < ir_binop_less) || (ir->cmp > ir_binop_nequal)) { printf("ir_loop has invalid comparitor %d\n", ir->cmp); abort(); } } else { if ((ir->from != NULL) || (ir->from != NULL) || (ir->increment != NULL)) { printf("ir_loop has invalid loop controls:\n" " counter: %p\n" " from: %p\n" " to: %p\n" " increment: %p\n", (void *) ir->counter, (void *) ir->from, (void *) ir->to, (void *) ir->increment); abort(); } } return visit_continue; } ir_visitor_status ir_validate::visit_enter(ir_function *ir) { /* Function definitions cannot be nested. */ if (this->current_function != NULL) { printf("Function definition nested inside another function " "definition:\n"); printf("%s %p inside %s %p\n", ir->name, (void *) ir, this->current_function->name, (void *) this->current_function); abort(); } /* Store the current function hierarchy being traversed. This is used * by the function signature visitor to ensure that the signatures are * linked with the correct functions. */ this->current_function = ir; this->validate_ir(ir, this->data); /* Verify that all of the things stored in the list of signatures are, * in fact, function signatures. */ foreach_list(node, &ir->signatures) { ir_instruction *sig = (ir_instruction *) node; if (sig->ir_type != ir_type_function_signature) { printf("Non-signature in signature list of function `%s'\n", ir->name); abort(); } } return visit_continue; } ir_visitor_status ir_validate::visit_leave(ir_function *ir) { assert(ralloc_parent(ir->name) == ir); this->current_function = NULL; return visit_continue; } ir_visitor_status ir_validate::visit_enter(ir_function_signature *ir) { if (this->current_function != ir->function()) { printf("Function signature nested inside wrong function " "definition:\n"); printf("%p inside %s %p instead of %s %p\n", (void *) ir, this->current_function->name, (void *) this->current_function, ir->function_name(), (void *) ir->function()); abort(); } if (ir->return_type == NULL) { printf("Function signature %p for function %s has NULL return type.\n", (void *) ir, ir->function_name()); abort(); } this->validate_ir(ir, this->data); return visit_continue; } ir_visitor_status ir_validate::visit_leave(ir_expression *ir) { switch (ir->operation) { case ir_unop_bit_not: assert(ir->operands[0]->type == ir->type); break; case ir_unop_logic_not: assert(ir->type->base_type == GLSL_TYPE_BOOL); assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL); break; case ir_unop_neg: case ir_unop_abs: case ir_unop_sign: case ir_unop_rcp: case ir_unop_rsq: case ir_unop_sqrt: assert(ir->type == ir->operands[0]->type); break; case ir_unop_exp: case ir_unop_log: case ir_unop_exp2: case ir_unop_log2: assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT); assert(ir->type == ir->operands[0]->type); break; case ir_unop_f2i: assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT); assert(ir->type->base_type == GLSL_TYPE_INT); break; case ir_unop_i2f: assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT); assert(ir->type->base_type == GLSL_TYPE_FLOAT); break; case ir_unop_f2b: assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT); assert(ir->type->base_type == GLSL_TYPE_BOOL); break; case ir_unop_b2f: assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL); assert(ir->type->base_type == GLSL_TYPE_FLOAT); break; case ir_unop_i2b: assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT); assert(ir->type->base_type == GLSL_TYPE_BOOL); break; case ir_unop_b2i: assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL); assert(ir->type->base_type == GLSL_TYPE_INT); break; case ir_unop_u2f: assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT); assert(ir->type->base_type == GLSL_TYPE_FLOAT); break; case ir_unop_i2u: assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT); assert(ir->type->base_type == GLSL_TYPE_UINT); break; case ir_unop_u2i: assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT); assert(ir->type->base_type == GLSL_TYPE_INT); break; case ir_unop_any: assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL); assert(ir->type == glsl_type::bool_type); break; case ir_unop_trunc: case ir_unop_round_even: case ir_unop_ceil: case ir_unop_floor: case ir_unop_fract: case ir_unop_sin: case ir_unop_cos: case ir_unop_sin_reduced: case ir_unop_cos_reduced: case ir_unop_dFdx: case ir_unop_dFdy: assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT); assert(ir->operands[0]->type == ir->type); break; case ir_unop_noise: /* XXX what can we assert here? */ break; case ir_binop_add: case ir_binop_sub: case ir_binop_mul: case ir_binop_div: case ir_binop_mod: case ir_binop_min: case ir_binop_max: case ir_binop_pow: if (ir->operands[0]->type->is_scalar()) assert(ir->operands[1]->type == ir->type); else if (ir->operands[1]->type->is_scalar()) assert(ir->operands[0]->type == ir->type); else if (ir->operands[0]->type->is_vector() && ir->operands[1]->type->is_vector()) { assert(ir->operands[0]->type == ir->operands[1]->type); assert(ir->operands[0]->type == ir->type); } break; case ir_binop_less: case ir_binop_greater: case ir_binop_lequal: case ir_binop_gequal: case ir_binop_equal: case ir_binop_nequal: /* The semantics of the IR operators differ from the GLSL <, >, <=, >=, * ==, and != operators. The IR operators perform a component-wise * comparison on scalar or vector types and return a boolean scalar or * vector type of the same size. */ assert(ir->type->base_type == GLSL_TYPE_BOOL); assert(ir->operands[0]->type == ir->operands[1]->type); assert(ir->operands[0]->type->is_vector() || ir->operands[0]->type->is_scalar()); assert(ir->operands[0]->type->vector_elements == ir->type->vector_elements); break; case ir_binop_all_equal: case ir_binop_any_nequal: /* GLSL == and != operate on scalars, vectors, matrices and arrays, and * return a scalar boolean. The IR matches that. */ assert(ir->type == glsl_type::bool_type); assert(ir->operands[0]->type == ir->operands[1]->type); break; case ir_binop_lshift: case ir_binop_rshift: assert(ir->operands[0]->type->is_integer() && ir->operands[1]->type->is_integer()); if (ir->operands[0]->type->is_scalar()) { assert(ir->operands[1]->type->is_scalar()); } if (ir->operands[0]->type->is_vector() && ir->operands[1]->type->is_vector()) { assert(ir->operands[0]->type->components() == ir->operands[1]->type->components()); } assert(ir->type == ir->operands[0]->type); break; case ir_binop_bit_and: case ir_binop_bit_xor: case ir_binop_bit_or: assert(ir->operands[0]->type->base_type == ir->operands[1]->type->base_type); assert(ir->type->is_integer()); if (ir->operands[0]->type->is_vector() && ir->operands[1]->type->is_vector()) { assert(ir->operands[0]->type->vector_elements == ir->operands[1]->type->vector_elements); } break; case ir_binop_logic_and: case ir_binop_logic_xor: case ir_binop_logic_or: assert(ir->type == glsl_type::bool_type); assert(ir->operands[0]->type == glsl_type::bool_type); assert(ir->operands[1]->type == glsl_type::bool_type); break; case ir_binop_dot: assert(ir->type == glsl_type::float_type); assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT); assert(ir->operands[0]->type->is_vector()); assert(ir->operands[0]->type == ir->operands[1]->type); break; case ir_quadop_vector: /* The vector operator collects some number of scalars and generates a * vector from them. * * - All of the operands must be scalar. * - Number of operands must matche the size of the resulting vector. * - Base type of the operands must match the base type of the result. */ assert(ir->type->is_vector()); switch (ir->type->vector_elements) { case 2: assert(ir->operands[0]->type->is_scalar()); assert(ir->operands[0]->type->base_type == ir->type->base_type); assert(ir->operands[1]->type->is_scalar()); assert(ir->operands[1]->type->base_type == ir->type->base_type); assert(ir->operands[2] == NULL); assert(ir->operands[3] == NULL); break; case 3: assert(ir->operands[0]->type->is_scalar()); assert(ir->operands[0]->type->base_type == ir->type->base_type); assert(ir->operands[1]->type->is_scalar()); assert(ir->operands[1]->type->base_type == ir->type->base_type); assert(ir->operands[2]->type->is_scalar()); assert(ir->operands[2]->type->base_type == ir->type->base_type); assert(ir->operands[3] == NULL); break; case 4: assert(ir->operands[0]->type->is_scalar()); assert(ir->operands[0]->type->base_type == ir->type->base_type); assert(ir->operands[1]->type->is_scalar()); assert(ir->operands[1]->type->base_type == ir->type->base_type); assert(ir->operands[2]->type->is_scalar()); assert(ir->operands[2]->type->base_type == ir->type->base_type); assert(ir->operands[3]->type->is_scalar()); assert(ir->operands[3]->type->base_type == ir->type->base_type); break; default: /* The is_vector assertion above should prevent execution from ever * getting here. */ assert(!"Should not get here."); break; } } return visit_continue; } ir_visitor_status ir_validate::visit_leave(ir_swizzle *ir) { int chans[4] = {ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w}; for (unsigned int i = 0; i < ir->type->vector_elements; i++) { if (chans[i] >= ir->val->type->vector_elements) { printf("ir_swizzle @ %p specifies a channel not present " "in the value.\n", (void *) ir); ir->print(); abort(); } } return visit_continue; } ir_visitor_status ir_validate::visit(ir_variable *ir) { /* An ir_variable is the one thing that can (and will) appear multiple times * in an IR tree. It is added to the hashtable so that it can be used * in the ir_dereference_variable handler to ensure that a variable is * declared before it is dereferenced. */ if (ir->name) assert(ralloc_parent(ir->name) == ir); hash_table_insert(ht, ir, ir); /* If a variable is an array, verify that the maximum array index is in * bounds. There was once an error in AST-to-HIR conversion that set this * to be out of bounds. */ if (ir->type->array_size() > 0) { if (ir->max_array_access >= ir->type->length) { printf("ir_variable has maximum access out of bounds (%d vs %d)\n", ir->max_array_access, ir->type->length - 1); ir->print(); abort(); } } return visit_continue; } ir_visitor_status ir_validate::visit_enter(ir_assignment *ir) { const ir_dereference *const lhs = ir->lhs; if (lhs->type->is_scalar() || lhs->type->is_vector()) { if (ir->write_mask == 0) { printf("Assignment LHS is %s, but write mask is 0:\n", lhs->type->is_scalar() ? "scalar" : "vector"); ir->print(); abort(); } int lhs_components = 0; for (int i = 0; i < 4; i++) { if (ir->write_mask & (1 << i)) lhs_components++; } if (lhs_components != ir->rhs->type->vector_elements) { printf("Assignment count of LHS write mask channels enabled not\n" "matching RHS vector size (%d LHS, %d RHS).\n", lhs_components, ir->rhs->type->vector_elements); ir->print(); abort(); } } this->validate_ir(ir, this->data); return visit_continue; } ir_visitor_status ir_validate::visit_enter(ir_call *ir) { ir_function_signature *const callee = ir->get_callee(); if (callee->ir_type != ir_type_function_signature) { printf("IR called by ir_call is not ir_function_signature!\n"); abort(); } const exec_node *formal_param_node = callee->parameters.head; const exec_node *actual_param_node = ir->actual_parameters.head; while (true) { if (formal_param_node->is_tail_sentinel() != actual_param_node->is_tail_sentinel()) { printf("ir_call has the wrong number of parameters:\n"); goto dump_ir; } if (formal_param_node->is_tail_sentinel()) { break; } const ir_variable *formal_param = (const ir_variable *) formal_param_node; const ir_rvalue *actual_param = (const ir_rvalue *) actual_param_node; if (formal_param->type != actual_param->type) { printf("ir_call parameter type mismatch:\n"); goto dump_ir; } if (formal_param->mode == ir_var_out || formal_param->mode == ir_var_inout) { if (!actual_param->is_lvalue()) { printf("ir_call out/inout parameters must be lvalues:\n"); goto dump_ir; } } formal_param_node = formal_param_node->next; actual_param_node = actual_param_node->next; } return visit_continue; dump_ir: ir->print(); printf("callee:\n"); callee->print(); abort(); } void ir_validate::validate_ir(ir_instruction *ir, void *data) { struct hash_table *ht = (struct hash_table *) data; if (hash_table_find(ht, ir)) { printf("Instruction node present twice in ir tree:\n"); ir->print(); printf("\n"); abort(); } hash_table_insert(ht, ir, ir); } void check_node_type(ir_instruction *ir, void *data) { (void) data; if (ir->ir_type <= ir_type_unset || ir->ir_type >= ir_type_max) { printf("Instruction node with unset type\n"); ir->print(); printf("\n"); } assert(ir->type != glsl_type::error_type); } void validate_ir_tree(exec_list *instructions) { ir_validate v; v.run(instructions); foreach_iter(exec_list_iterator, iter, *instructions) { ir_instruction *ir = (ir_instruction *)iter.get(); visit_tree(ir, check_node_type, NULL); } }