/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file ir_constant_expression.cpp * Evaluate and process constant valued expressions * * In GLSL, constant valued expressions are used in several places. These * must be processed and evaluated very early in the compilation process. * * * Sizes of arrays * * Initializers for uniforms * * Initializers for \c const variables */ #include #include "main/macros.h" #include "ir.h" #include "ir_visitor.h" #include "glsl_types.h" ir_constant * ir_expression::constant_expression_value() { ir_constant *op[2] = { NULL, NULL }; ir_constant_data data; memset(&data, 0, sizeof(data)); for (unsigned operand = 0; operand < this->get_num_operands(); operand++) { op[operand] = this->operands[operand]->constant_expression_value(); if (!op[operand]) return NULL; } if (op[1] != NULL) assert(op[0]->type->base_type == op[1]->type->base_type); bool op0_scalar = op[0]->type->is_scalar(); bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); /* When iterating over a vector or matrix's components, we want to increase * the loop counter. However, for scalars, we want to stay at 0. */ unsigned c0_inc = op0_scalar ? 0 : 1; unsigned c1_inc = op1_scalar ? 0 : 1; unsigned components; if (op1_scalar || !op[1]) { components = op[0]->type->components(); } else { components = op[1]->type->components(); } void *ctx = talloc_parent(this); /* Handle array operations here, rather than below. */ if (op[0]->type->is_array()) { assert(op[1] != NULL && op[1]->type->is_array()); switch (this->operation) { case ir_binop_equal: return new(ctx) ir_constant(op[0]->has_value(op[1])); case ir_binop_nequal: return new(ctx) ir_constant(!op[0]->has_value(op[1])); default: break; } return NULL; } switch (this->operation) { case ir_unop_logic_not: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = !op[0]->value.b[c]; break; case ir_unop_f2i: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = op[0]->value.f[c]; } break; case ir_unop_i2f: assert(op[0]->type->base_type == GLSL_TYPE_INT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = op[0]->value.i[c]; } break; case ir_unop_u2f: assert(op[0]->type->base_type == GLSL_TYPE_UINT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = op[0]->value.u[c]; } break; case ir_unop_b2f: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = op[0]->value.b[c] ? 1.0 : 0.0; } break; case ir_unop_f2b: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.b[c] = bool(op[0]->value.f[c]); } break; case ir_unop_b2i: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.u[c] = op[0]->value.b[c] ? 1 : 0; } break; case ir_unop_i2b: assert(op[0]->type->is_integer()); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.b[c] = bool(op[0]->value.u[c]); } break; case ir_unop_trunc: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = truncf(op[0]->value.f[c]); } break; case ir_unop_ceil: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = ceilf(op[0]->value.f[c]); } break; case ir_unop_floor: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = floorf(op[0]->value.f[c]); } break; case ir_unop_fract: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = 0; break; case GLSL_TYPE_INT: data.i[c] = 0; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]); break; default: assert(0); } } break; case ir_unop_sin: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = sinf(op[0]->value.f[c]); } break; case ir_unop_cos: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = cosf(op[0]->value.f[c]); } break; case ir_unop_neg: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = -op[0]->value.u[c]; break; case GLSL_TYPE_INT: data.i[c] = -op[0]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.f[c] = -op[0]->value.f[c]; break; default: assert(0); } } break; case ir_unop_abs: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c]; if (data.i[c] < 0) data.i[c] = -data.i[c]; break; case GLSL_TYPE_FLOAT: data.f[c] = fabs(op[0]->value.f[c]); break; default: assert(0); } } break; case ir_unop_sign: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.i[c] > 0; break; case GLSL_TYPE_INT: data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0); break; case GLSL_TYPE_FLOAT: data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0)); break; default: assert(0); } } break; case ir_unop_rcp: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: if (op[0]->value.u[c] != 0.0) data.u[c] = 1 / op[0]->value.u[c]; break; case GLSL_TYPE_INT: if (op[0]->value.i[c] != 0.0) data.i[c] = 1 / op[0]->value.i[c]; break; case GLSL_TYPE_FLOAT: if (op[0]->value.f[c] != 0.0) data.f[c] = 1.0 / op[0]->value.f[c]; break; default: assert(0); } } break; case ir_unop_rsq: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = 1.0 / sqrtf(op[0]->value.f[c]); } break; case ir_unop_sqrt: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = sqrtf(op[0]->value.f[c]); } break; case ir_unop_exp: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = expf(op[0]->value.f[c]); } break; case ir_unop_exp2: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = exp2f(op[0]->value.f[c]); } break; case ir_unop_log: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = logf(op[0]->value.f[c]); } break; case ir_unop_log2: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = log2f(op[0]->value.f[c]); } break; case ir_unop_dFdx: case ir_unop_dFdy: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = 0.0; } break; case ir_binop_pow: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]); } break; case ir_binop_dot: assert(op[0]->type->is_vector() && op[1]->type->is_vector()); data.f[0] = 0; for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[0] += op[0]->value.u[c] * op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.i[0] += op[0]->value.i[c] * op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.f[0] += op[0]->value.f[c] * op[1]->value.f[c]; break; default: assert(0); } } break; case ir_binop_min: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]); break; case GLSL_TYPE_INT: data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]); break; case GLSL_TYPE_FLOAT: data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]); break; default: assert(0); } } break; case ir_binop_max: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]); break; case GLSL_TYPE_INT: data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]); break; case GLSL_TYPE_FLOAT: data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]); break; default: assert(0); } } break; case ir_binop_cross: assert(op[0]->type == glsl_type::vec3_type); assert(op[1]->type == glsl_type::vec3_type); data.f[0] = (op[0]->value.f[1] * op[1]->value.f[2] - op[1]->value.f[1] * op[0]->value.f[2]); data.f[1] = (op[0]->value.f[2] * op[1]->value.f[0] - op[1]->value.f[2] * op[0]->value.f[0]); data.f[2] = (op[0]->value.f[0] * op[1]->value.f[1] - op[1]->value.f[0] * op[0]->value.f[1]); break; case ir_binop_add: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1]; break; default: assert(0); } } break; case ir_binop_sub: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]; break; default: assert(0); } } break; case ir_binop_mul: /* Check for equal types, or unequal types involving scalars */ if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) || op0_scalar || op1_scalar) { for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1]; break; default: assert(0); } } } else { assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); /* Multiply an N-by-M matrix with an M-by-P matrix. Since either * matrix can be a GLSL vector, either N or P can be 1. * * For vec*mat, the vector is treated as a row vector. This * means the vector is a 1-row x M-column matrix. * * For mat*vec, the vector is treated as a column vector. Since * matrix_columns is 1 for vectors, this just works. */ const unsigned n = op[0]->type->is_vector() ? 1 : op[0]->type->vector_elements; const unsigned m = op[1]->type->vector_elements; const unsigned p = op[1]->type->matrix_columns; for (unsigned j = 0; j < p; j++) { for (unsigned i = 0; i < n; i++) { for (unsigned k = 0; k < m; k++) { data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; } } } } break; case ir_binop_div: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1]; break; default: assert(0); } } break; case ir_binop_mod: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: /* We don't use fmod because it rounds toward zero; GLSL specifies * the use of floor. */ data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1] * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]); break; default: assert(0); } } break; case ir_binop_logic_and: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] && op[1]->value.b[c]; break; case ir_binop_logic_xor: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c]; break; case ir_binop_logic_or: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] || op[1]->value.b[c]; break; case ir_binop_less: switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[0] = op[0]->value.u[0] < op[1]->value.u[0]; break; case GLSL_TYPE_INT: data.b[0] = op[0]->value.i[0] < op[1]->value.i[0]; break; case GLSL_TYPE_FLOAT: data.b[0] = op[0]->value.f[0] < op[1]->value.f[0]; break; default: assert(0); } break; case ir_binop_greater: switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[0] = op[0]->value.u[0] > op[1]->value.u[0]; break; case GLSL_TYPE_INT: data.b[0] = op[0]->value.i[0] > op[1]->value.i[0]; break; case GLSL_TYPE_FLOAT: data.b[0] = op[0]->value.f[0] > op[1]->value.f[0]; break; default: assert(0); } break; case ir_binop_lequal: switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[0] = op[0]->value.u[0] <= op[1]->value.u[0]; break; case GLSL_TYPE_INT: data.b[0] = op[0]->value.i[0] <= op[1]->value.i[0]; break; case GLSL_TYPE_FLOAT: data.b[0] = op[0]->value.f[0] <= op[1]->value.f[0]; break; default: assert(0); } break; case ir_binop_gequal: switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[0] = op[0]->value.u[0] >= op[1]->value.u[0]; break; case GLSL_TYPE_INT: data.b[0] = op[0]->value.i[0] >= op[1]->value.i[0]; break; case GLSL_TYPE_FLOAT: data.b[0] = op[0]->value.f[0] >= op[1]->value.f[0]; break; default: assert(0); } break; case ir_binop_equal: data.b[0] = op[0]->has_value(op[1]); break; case ir_binop_nequal: data.b[0] = !op[0]->has_value(op[1]); break; default: /* FINISHME: Should handle all expression types. */ return NULL; } return new(ctx) ir_constant(this->type, &data); } ir_constant * ir_texture::constant_expression_value() { /* texture lookups aren't constant expressions */ return NULL; } ir_constant * ir_swizzle::constant_expression_value() { ir_constant *v = this->val->constant_expression_value(); if (v != NULL) { ir_constant_data data; const unsigned swiz_idx[4] = { this->mask.x, this->mask.y, this->mask.z, this->mask.w }; for (unsigned i = 0; i < this->mask.num_components; i++) { switch (v->type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; default: assert(!"Should not get here."); break; } } void *ctx = talloc_parent(this); return new(ctx) ir_constant(this->type, &data); } return NULL; } ir_constant * ir_dereference_variable::constant_expression_value() { /* This may occur during compile and var->type is glsl_type::error_type */ if (!var) return NULL; return var->constant_value ? var->constant_value->clone(NULL) : NULL; } ir_constant * ir_dereference_array::constant_expression_value() { void *ctx = talloc_parent(this); ir_constant *array = this->array->constant_expression_value(); ir_constant *idx = this->array_index->constant_expression_value(); if ((array != NULL) && (idx != NULL)) { if (array->type->is_matrix()) { /* Array access of a matrix results in a vector. */ const unsigned column = idx->value.u[0]; const glsl_type *const column_type = array->type->column_type(); /* Offset in the constant matrix to the first element of the column * to be extracted. */ const unsigned mat_idx = column * column_type->vector_elements; ir_constant_data data; switch (column_type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: for (unsigned i = 0; i < column_type->vector_elements; i++) data.u[i] = array->value.u[mat_idx + i]; break; case GLSL_TYPE_FLOAT: for (unsigned i = 0; i < column_type->vector_elements; i++) data.f[i] = array->value.f[mat_idx + i]; break; default: assert(!"Should not get here."); break; } return new(ctx) ir_constant(column_type, &data); } else if (array->type->is_vector()) { const unsigned component = idx->value.u[0]; return new(ctx) ir_constant(array, component); } else { const unsigned index = idx->value.u[0]; return array->get_array_element(index)->clone(NULL); } } return NULL; } ir_constant * ir_dereference_record::constant_expression_value() { ir_constant *v = this->record->constant_expression_value(); return (v != NULL) ? v->get_record_field(this->field) : NULL; } ir_constant * ir_assignment::constant_expression_value() { /* FINISHME: Handle CEs involving assignment (return RHS) */ return NULL; } ir_constant * ir_constant::constant_expression_value() { return this; } ir_constant * ir_call::constant_expression_value() { if (this->type == glsl_type::error_type) return NULL; /* From the GLSL 1.20 spec, page 23: * "Function calls to user-defined functions (non-built-in functions) * cannot be used to form constant expressions." */ if (!this->callee->is_built_in) return NULL; unsigned num_parameters = 0; /* Check if all parameters are constant */ ir_constant *op[3]; foreach_list(n, &this->actual_parameters) { ir_constant *constant = ((ir_rvalue *) n)->constant_expression_value(); if (constant == NULL) return NULL; op[num_parameters] = constant; assert(num_parameters < 3); num_parameters++; } /* Individual cases below can either: * - Assign "expr" a new ir_expression to evaluate (for basic opcodes) * - Fill "data" with appopriate constant data * - Return an ir_constant directly. */ void *mem_ctx = talloc_parent(this); ir_expression *expr = NULL; ir_constant_data data; memset(&data, 0, sizeof(data)); const char *callee = this->callee_name(); if (strcmp(callee, "abs") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_abs, type, op[0], NULL); } else if (strcmp(callee, "all") == 0) { assert(op[0]->type->is_boolean()); for (unsigned c = 0; c < op[0]->type->components(); c++) { if (!op[0]->value.b[c]) return new(mem_ctx) ir_constant(false); } return new(mem_ctx) ir_constant(true); } else if (strcmp(callee, "any") == 0) { assert(op[0]->type->is_boolean()); for (unsigned c = 0; c < op[0]->type->components(); c++) { if (op[0]->value.b[c]) return new(mem_ctx) ir_constant(true); } return new(mem_ctx) ir_constant(false); } else if (strcmp(callee, "acos") == 0) { assert(op[0]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = acosf(op[0]->value.f[c]); } else if (strcmp(callee, "asin") == 0) { assert(op[0]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = asinf(op[0]->value.f[c]); } else if (strcmp(callee, "atan") == 0) { assert(op[0]->type->is_float()); if (num_parameters == 2) { assert(op[1]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = atan2f(op[0]->value.f[c], op[1]->value.f[c]); } else { for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = atanf(op[0]->value.f[c]); } } else if (strcmp(callee, "dFdx") == 0 || strcmp(callee, "dFdy") == 0) { return ir_constant::zero(mem_ctx, this->type); } else if (strcmp(callee, "ceil") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_ceil, type, op[0], NULL); } else if (strcmp(callee, "clamp") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "cos") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_cos, type, op[0], NULL); } else if (strcmp(callee, "cosh") == 0) { assert(op[0]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = coshf(op[0]->value.f[c]); } else if (strcmp(callee, "cross") == 0) { expr = new(mem_ctx) ir_expression(ir_binop_cross, type, op[0], op[1]); } else if (strcmp(callee, "degrees") == 0) { assert(op[0]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = 180.0/M_PI * op[0]->value.f[c]; } else if (strcmp(callee, "distance") == 0) { assert(op[0]->type->is_float() && op[1]->type->is_float()); float length_squared = 0.0; for (unsigned c = 0; c < op[0]->type->components(); c++) { float t = op[0]->value.f[c] - op[1]->value.f[c]; length_squared += t * t; } return new(mem_ctx) ir_constant(sqrtf(length_squared)); } else if (strcmp(callee, "dot") == 0) { expr = new(mem_ctx) ir_expression(ir_binop_dot, type, op[0], op[1]); } else if (strcmp(callee, "equal") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "exp") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_exp, type, op[0], NULL); } else if (strcmp(callee, "exp2") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_exp2, type, op[0], NULL); } else if (strcmp(callee, "faceforward") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "floor") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_floor, type, op[0], NULL); } else if (strcmp(callee, "fract") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_fract, type, op[0], NULL); } else if (strcmp(callee, "fwidth") == 0) { return ir_constant::zero(mem_ctx, this->type); } else if (strcmp(callee, "greaterThan") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "greaterThanEqual") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "inversesqrt") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_rsq, type, op[0], NULL); } else if (strcmp(callee, "length") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "lessThan") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "lessThanEqual") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "log") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_log, type, op[0], NULL); } else if (strcmp(callee, "log2") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_log2, type, op[0], NULL); } else if (strcmp(callee, "matrixCompMult") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "max") == 0) { expr = new(mem_ctx) ir_expression(ir_binop_max, type, op[0], op[1]); } else if (strcmp(callee, "min") == 0) { expr = new(mem_ctx) ir_expression(ir_binop_min, type, op[0], op[1]); } else if (strcmp(callee, "mix") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "mod") == 0) { expr = new(mem_ctx) ir_expression(ir_binop_mod, type, op[0], op[1]); } else if (strcmp(callee, "normalize") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "not") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_logic_not, type, op[0], NULL); } else if (strcmp(callee, "notEqual") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "outerProduct") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "pow") == 0) { expr = new(mem_ctx) ir_expression(ir_binop_pow, type, op[0], op[1]); } else if (strcmp(callee, "radians") == 0) { assert(op[0]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = M_PI/180.0 * op[0]->value.f[c]; } else if (strcmp(callee, "reflect") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "refract") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "sign") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_sign, type, op[0], NULL); } else if (strcmp(callee, "sin") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_sin, type, op[0], NULL); } else if (strcmp(callee, "sinh") == 0) { assert(op[0]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = sinhf(op[0]->value.f[c]); } else if (strcmp(callee, "smoothstep") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "sqrt") == 0) { expr = new(mem_ctx) ir_expression(ir_unop_sqrt, type, op[0], NULL); } else if (strcmp(callee, "step") == 0) { return NULL; /* FINISHME: implement this */ } else if (strcmp(callee, "tan") == 0) { assert(op[0]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = tanf(op[0]->value.f[c]); } else if (strcmp(callee, "tanh") == 0) { assert(op[0]->type->is_float()); for (unsigned c = 0; c < op[0]->type->components(); c++) data.f[c] = tanhf(op[0]->value.f[c]); } else if (strcmp(callee, "transpose") == 0) { return NULL; /* FINISHME: implement this */ } else { /* Unsupported builtin - some are not allowed in constant expressions. */ return NULL; } if (expr != NULL) return expr->constant_expression_value(); return new(mem_ctx) ir_constant(this->type, &data); }