/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "ir_builder.h" #include "program/prog_instruction.h" using namespace ir_builder; namespace ir_builder { void ir_factory::emit(ir_instruction *ir) { instructions->push_tail(ir); } ir_variable * ir_factory::make_temp(const glsl_type *type, const char *name) { ir_variable *var; var = new(mem_ctx) ir_variable(type, name, ir_var_temporary); emit(var); return var; } ir_assignment * assign(deref lhs, operand rhs, operand condition, int writemask) { void *mem_ctx = ralloc_parent(lhs.val); ir_assignment *assign = new(mem_ctx) ir_assignment(lhs.val, rhs.val, condition.val, writemask); return assign; } ir_assignment * assign(deref lhs, operand rhs) { return assign(lhs, rhs, (1 << lhs.val->type->vector_elements) - 1); } ir_assignment * assign(deref lhs, operand rhs, int writemask) { return assign(lhs, rhs, (ir_rvalue *) NULL, writemask); } ir_assignment * assign(deref lhs, operand rhs, operand condition) { return assign(lhs, rhs, condition, (1 << lhs.val->type->vector_elements) - 1); } ir_return * ret(operand retval) { void *mem_ctx = ralloc_parent(retval.val); return new(mem_ctx) ir_return(retval.val); } ir_swizzle * swizzle(operand a, int swizzle, int components) { void *mem_ctx = ralloc_parent(a.val); return new(mem_ctx) ir_swizzle(a.val, GET_SWZ(swizzle, 0), GET_SWZ(swizzle, 1), GET_SWZ(swizzle, 2), GET_SWZ(swizzle, 3), components); } ir_swizzle * swizzle_for_size(operand a, unsigned components) { void *mem_ctx = ralloc_parent(a.val); if (a.val->type->vector_elements < components) components = a.val->type->vector_elements; unsigned s[4] = { 0, 1, 2, 3 }; for (int i = components; i < 4; i++) s[i] = components - 1; return new(mem_ctx) ir_swizzle(a.val, s, components); } ir_swizzle * swizzle_xxxx(operand a) { return swizzle(a, SWIZZLE_XXXX, 4); } ir_swizzle * swizzle_yyyy(operand a) { return swizzle(a, SWIZZLE_YYYY, 4); } ir_swizzle * swizzle_zzzz(operand a) { return swizzle(a, SWIZZLE_ZZZZ, 4); } ir_swizzle * swizzle_wwww(operand a) { return swizzle(a, SWIZZLE_WWWW, 4); } ir_swizzle * swizzle_x(operand a) { return swizzle(a, SWIZZLE_XXXX, 1); } ir_swizzle * swizzle_y(operand a) { return swizzle(a, SWIZZLE_YYYY, 1); } ir_swizzle * swizzle_z(operand a) { return swizzle(a, SWIZZLE_ZZZZ, 1); } ir_swizzle * swizzle_w(operand a) { return swizzle(a, SWIZZLE_WWWW, 1); } ir_swizzle * swizzle_xy(operand a) { return swizzle(a, SWIZZLE_XYZW, 2); } ir_swizzle * swizzle_xyz(operand a) { return swizzle(a, SWIZZLE_XYZW, 3); } ir_swizzle * swizzle_xyzw(operand a) { return swizzle(a, SWIZZLE_XYZW, 4); } ir_expression * expr(ir_expression_operation op, operand a) { void *mem_ctx = ralloc_parent(a.val); return new(mem_ctx) ir_expression(op, a.val); } ir_expression * expr(ir_expression_operation op, operand a, operand b) { void *mem_ctx = ralloc_parent(a.val); return new(mem_ctx) ir_expression(op, a.val, b.val); } ir_expression * expr(ir_expression_operation op, operand a, operand b, operand c) { void *mem_ctx = ralloc_parent(a.val); return new(mem_ctx) ir_expression(op, a.val, b.val, c.val); } ir_expression *add(operand a, operand b) { return expr(ir_binop_add, a, b); } ir_expression *sub(operand a, operand b) { return expr(ir_binop_sub, a, b); } ir_expression *min2(operand a, operand b) { return expr(ir_binop_min, a, b); } ir_expression *max2(operand a, operand b) { return expr(ir_binop_max, a, b); } ir_expression *mul(operand a, operand b) { return expr(ir_binop_mul, a, b); } ir_expression *imul_high(operand a, operand b) { return expr(ir_binop_imul_high, a, b); } ir_expression *div(operand a, operand b) { return expr(ir_binop_div, a, b); } ir_expression *carry(operand a, operand b) { return expr(ir_binop_carry, a, b); } ir_expression *borrow(operand a, operand b) { return expr(ir_binop_borrow, a, b); } ir_expression *trunc(operand a) { return expr(ir_unop_trunc, a); } ir_expression *round_even(operand a) { return expr(ir_unop_round_even, a); } ir_expression *fract(operand a) { return expr(ir_unop_fract, a); } /* dot for vectors, mul for scalars */ ir_expression *dot(operand a, operand b) { assert(a.val->type == b.val->type); if (a.val->type->vector_elements == 1) return expr(ir_binop_mul, a, b); return expr(ir_binop_dot, a, b); } ir_expression* clamp(operand a, operand b, operand c) { return expr(ir_binop_min, expr(ir_binop_max, a, b), c); } ir_expression * saturate(operand a) { return expr(ir_unop_saturate, a); } ir_expression * abs(operand a) { return expr(ir_unop_abs, a); } ir_expression * neg(operand a) { return expr(ir_unop_neg, a); } ir_expression * sin(operand a) { return expr(ir_unop_sin, a); } ir_expression * cos(operand a) { return expr(ir_unop_cos, a); } ir_expression * exp(operand a) { return expr(ir_unop_exp, a); } ir_expression * rsq(operand a) { return expr(ir_unop_rsq, a); } ir_expression * sqrt(operand a) { return expr(ir_unop_sqrt, a); } ir_expression * log(operand a) { return expr(ir_unop_log, a); } ir_expression * sign(operand a) { return expr(ir_unop_sign, a); } ir_expression * subr_to_int(operand a) { return expr(ir_unop_subroutine_to_int, a); } ir_expression* equal(operand a, operand b) { return expr(ir_binop_equal, a, b); } ir_expression* nequal(operand a, operand b) { return expr(ir_binop_nequal, a, b); } ir_expression* less(operand a, operand b) { return expr(ir_binop_less, a, b); } ir_expression* greater(operand a, operand b) { return expr(ir_binop_greater, a, b); } ir_expression* lequal(operand a, operand b) { return expr(ir_binop_lequal, a, b); } ir_expression* gequal(operand a, operand b) { return expr(ir_binop_gequal, a, b); } ir_expression* logic_not(operand a) { return expr(ir_unop_logic_not, a); } ir_expression* logic_and(operand a, operand b) { return expr(ir_binop_logic_and, a, b); } ir_expression* logic_or(operand a, operand b) { return expr(ir_binop_logic_or, a, b); } ir_expression* bit_not(operand a) { return expr(ir_unop_bit_not, a); } ir_expression* bit_and(operand a, operand b) { return expr(ir_binop_bit_and, a, b); } ir_expression* bit_or(operand a, operand b) { return expr(ir_binop_bit_or, a, b); } ir_expression* lshift(operand a, operand b) { return expr(ir_binop_lshift, a, b); } ir_expression* rshift(operand a, operand b) { return expr(ir_binop_rshift, a, b); } ir_expression* f2i(operand a) { return expr(ir_unop_f2i, a); } ir_expression* bitcast_f2i(operand a) { return expr(ir_unop_bitcast_f2i, a); } ir_expression* i2f(operand a) { return expr(ir_unop_i2f, a); } ir_expression* bitcast_i2f(operand a) { return expr(ir_unop_bitcast_i2f, a); } ir_expression* i2u(operand a) { return expr(ir_unop_i2u, a); } ir_expression* u2i(operand a) { return expr(ir_unop_u2i, a); } ir_expression* f2u(operand a) { return expr(ir_unop_f2u, a); } ir_expression* bitcast_f2u(operand a) { return expr(ir_unop_bitcast_f2u, a); } ir_expression* u2f(operand a) { return expr(ir_unop_u2f, a); } ir_expression* bitcast_u2f(operand a) { return expr(ir_unop_bitcast_u2f, a); } ir_expression* i2b(operand a) { return expr(ir_unop_i2b, a); } ir_expression* b2i(operand a) { return expr(ir_unop_b2i, a); } ir_expression * f2b(operand a) { return expr(ir_unop_f2b, a); } ir_expression * b2f(operand a) { return expr(ir_unop_b2f, a); } ir_expression * interpolate_at_centroid(operand a) { return expr(ir_unop_interpolate_at_centroid, a); } ir_expression * interpolate_at_offset(operand a, operand b) { return expr(ir_binop_interpolate_at_offset, a, b); } ir_expression * interpolate_at_sample(operand a, operand b) { return expr(ir_binop_interpolate_at_sample, a, b); } ir_expression * f2d(operand a) { return expr(ir_unop_f2d, a); } ir_expression * i2d(operand a) { return expr(ir_unop_i2d, a); } ir_expression * u2d(operand a) { return expr(ir_unop_u2d, a); } ir_expression * fma(operand a, operand b, operand c) { return expr(ir_triop_fma, a, b, c); } ir_expression * lrp(operand x, operand y, operand a) { return expr(ir_triop_lrp, x, y, a); } ir_expression * csel(operand a, operand b, operand c) { return expr(ir_triop_csel, a, b, c); } ir_expression * bitfield_insert(operand a, operand b, operand c, operand d) { void *mem_ctx = ralloc_parent(a.val); return new(mem_ctx) ir_expression(ir_quadop_bitfield_insert, a.val->type, a.val, b.val, c.val, d.val); } ir_if* if_tree(operand condition, ir_instruction *then_branch) { assert(then_branch != NULL); void *mem_ctx = ralloc_parent(condition.val); ir_if *result = new(mem_ctx) ir_if(condition.val); result->then_instructions.push_tail(then_branch); return result; } ir_if* if_tree(operand condition, ir_instruction *then_branch, ir_instruction *else_branch) { assert(then_branch != NULL); assert(else_branch != NULL); void *mem_ctx = ralloc_parent(condition.val); ir_if *result = new(mem_ctx) ir_if(condition.val); result->then_instructions.push_tail(then_branch); result->else_instructions.push_tail(else_branch); return result; } } /* namespace ir_builder */