/* -*- c++ -*- */ /* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #pragma once #ifndef IR_H #define IR_H #include #include #include "ralloc.h" #include "glsl_types.h" #include "list.h" #include "ir_visitor.h" #include "ir_hierarchical_visitor.h" #include "main/mtypes.h" #ifdef __cplusplus /** * \defgroup IR Intermediate representation nodes * * @{ */ /** * Class tags * * Each concrete class derived from \c ir_instruction has a value in this * enumerant. The value for the type is stored in \c ir_instruction::ir_type * by the constructor. While using type tags is not very C++, it is extremely * convenient. For example, during debugging you can simply inspect * \c ir_instruction::ir_type to find out the actual type of the object. * * In addition, it is possible to use a switch-statement based on \c * \c ir_instruction::ir_type to select different behavior for different object * types. For functions that have only slight differences for several object * types, this allows writing very straightforward, readable code. */ enum ir_node_type { /** * Zero is unused so that the IR validator can detect cases where * \c ir_instruction::ir_type has not been initialized. */ ir_type_unset, ir_type_variable, ir_type_assignment, ir_type_call, ir_type_constant, ir_type_dereference_array, ir_type_dereference_record, ir_type_dereference_variable, ir_type_discard, ir_type_expression, ir_type_function, ir_type_function_signature, ir_type_if, ir_type_loop, ir_type_loop_jump, ir_type_return, ir_type_swizzle, ir_type_texture, ir_type_emit_vertex, ir_type_end_primitive, ir_type_max /**< maximum ir_type enum number, for validation */ }; /** * Base class of all IR instructions */ class ir_instruction : public exec_node { public: enum ir_node_type ir_type; /** * GCC 4.7+ and clang warn when deleting an ir_instruction unless * there's a virtual destructor present. Because we almost * universally use ralloc for our memory management of * ir_instructions, the destructor doesn't need to do any work. */ virtual ~ir_instruction() { } /** ir_print_visitor helper for debugging. */ void print(void) const; virtual void accept(ir_visitor *) = 0; virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0; virtual ir_instruction *clone(void *mem_ctx, struct hash_table *ht) const = 0; /** * \name IR instruction downcast functions * * These functions either cast the object to a derived class or return * \c NULL if the object's type does not match the specified derived class. * Additional downcast functions will be added as needed. */ /*@{*/ virtual class ir_variable * as_variable() { return NULL; } virtual class ir_function * as_function() { return NULL; } virtual class ir_dereference * as_dereference() { return NULL; } virtual class ir_dereference_array * as_dereference_array() { return NULL; } virtual class ir_dereference_variable *as_dereference_variable() { return NULL; } virtual class ir_dereference_record *as_dereference_record() { return NULL; } virtual class ir_expression * as_expression() { return NULL; } virtual class ir_rvalue * as_rvalue() { return NULL; } virtual class ir_loop * as_loop() { return NULL; } virtual class ir_assignment * as_assignment() { return NULL; } virtual class ir_call * as_call() { return NULL; } virtual class ir_return * as_return() { return NULL; } virtual class ir_if * as_if() { return NULL; } virtual class ir_swizzle * as_swizzle() { return NULL; } virtual class ir_texture * as_texture() { return NULL; } virtual class ir_constant * as_constant() { return NULL; } virtual class ir_discard * as_discard() { return NULL; } virtual class ir_jump * as_jump() { return NULL; } /*@}*/ /** * IR equality method: Return true if the referenced instruction would * return the same value as this one. * * This intended to be used for CSE and algebraic optimizations, on rvalues * in particular. No support for other instruction types (assignments, * jumps, calls, etc.) is planned. */ virtual bool equals(ir_instruction *ir); protected: ir_instruction() { ir_type = ir_type_unset; } }; /** * The base class for all "values"/expression trees. */ class ir_rvalue : public ir_instruction { public: const struct glsl_type *type; virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual ir_rvalue * as_rvalue() { return this; } ir_rvalue *as_rvalue_to_saturate(); virtual bool is_lvalue() const { return false; } /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() const { return NULL; } /** * If an r-value is a reference to a whole variable, get that variable * * \return * Pointer to a variable that is completely dereferenced by the r-value. If * the r-value is not a dereference or the dereference does not access the * entire variable (i.e., it's just one array element, struct field), \c NULL * is returned. */ virtual ir_variable *whole_variable_referenced() { return NULL; } /** * Determine if an r-value has the value zero * * The base implementation of this function always returns \c false. The * \c ir_constant class over-rides this function to return \c true \b only * for vector and scalar types that have all elements set to the value * zero (or \c false for booleans). * * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one, * ir_constant::is_basis */ virtual bool is_zero() const; /** * Determine if an r-value has the value one * * The base implementation of this function always returns \c false. The * \c ir_constant class over-rides this function to return \c true \b only * for vector and scalar types that have all elements set to the value * one (or \c true for booleans). * * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one, * ir_constant::is_basis */ virtual bool is_one() const; /** * Determine if an r-value has the value negative one * * The base implementation of this function always returns \c false. The * \c ir_constant class over-rides this function to return \c true \b only * for vector and scalar types that have all elements set to the value * negative one. For boolean types, the result is always \c false. * * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one * ir_constant::is_basis */ virtual bool is_negative_one() const; /** * Determine if an r-value is a basis vector * * The base implementation of this function always returns \c false. The * \c ir_constant class over-rides this function to return \c true \b only * for vector and scalar types that have one element set to the value one, * and the other elements set to the value zero. For boolean types, the * result is always \c false. * * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one, * is_constant::is_negative_one */ virtual bool is_basis() const; /** * Return a generic value of error_type. * * Allocation will be performed with 'mem_ctx' as ralloc owner. */ static ir_rvalue *error_value(void *mem_ctx); protected: ir_rvalue(); }; /** * Variable storage classes */ enum ir_variable_mode { ir_var_auto = 0, /**< Function local variables and globals. */ ir_var_uniform, /**< Variable declared as a uniform. */ ir_var_shader_in, ir_var_shader_out, ir_var_function_in, ir_var_function_out, ir_var_function_inout, ir_var_const_in, /**< "in" param that must be a constant expression */ ir_var_system_value, /**< Ex: front-face, instance-id, etc. */ ir_var_temporary, /**< Temporary variable generated during compilation. */ ir_var_mode_count /**< Number of variable modes */ }; /** * Enum keeping track of how a variable was declared. For error checking of * the gl_PerVertex redeclaration rules. */ enum ir_var_declaration_type { /** * Normal declaration (for most variables, this means an explicit * declaration. Exception: temporaries are always implicitly declared, but * they still use ir_var_declared_normally). * * Note: an ir_variable that represents a named interface block uses * ir_var_declared_normally. */ ir_var_declared_normally = 0, /** * Variable was explicitly declared (or re-declared) in an unnamed * interface block. */ ir_var_declared_in_block, /** * Variable is an implicitly declared built-in that has not been explicitly * re-declared by the shader. */ ir_var_declared_implicitly, }; /** * \brief Layout qualifiers for gl_FragDepth. * * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared * with a layout qualifier. */ enum ir_depth_layout { ir_depth_layout_none, /**< No depth layout is specified. */ ir_depth_layout_any, ir_depth_layout_greater, ir_depth_layout_less, ir_depth_layout_unchanged }; /** * \brief Convert depth layout qualifier to string. */ const char* depth_layout_string(ir_depth_layout layout); /** * Description of built-in state associated with a uniform * * \sa ir_variable::state_slots */ struct ir_state_slot { int tokens[5]; int swizzle; }; /** * Get the string value for an interpolation qualifier * * \return The string that would be used in a shader to specify \c * mode will be returned. * * This function is used to generate error messages of the form "shader * uses %s interpolation qualifier", so in the case where there is no * interpolation qualifier, it returns "no". * * This function should only be used on a shader input or output variable. */ const char *interpolation_string(unsigned interpolation); class ir_variable : public ir_instruction { public: ir_variable(const struct glsl_type *, const char *, ir_variable_mode); virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const; virtual ir_variable *as_variable() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Determine how this variable should be interpolated based on its * interpolation qualifier (if present), whether it is gl_Color or * gl_SecondaryColor, and whether flatshading is enabled in the current GL * state. * * The return value will always be either INTERP_QUALIFIER_SMOOTH, * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT. */ glsl_interp_qualifier determine_interpolation_mode(bool flat_shade); /** * Determine whether or not a variable is part of a uniform block. */ inline bool is_in_uniform_block() const { return this->mode == ir_var_uniform && this->interface_type != NULL; } /** * Determine whether or not a variable is the declaration of an interface * block * * For the first declaration below, there will be an \c ir_variable named * "instance" whose type and whose instance_type will be the same * \cglsl_type. For the second declaration, there will be an \c ir_variable * named "f" whose type is float and whose instance_type is B2. * * "instance" is an interface instance variable, but "f" is not. * * uniform B1 { * float f; * } instance; * * uniform B2 { * float f; * }; */ inline bool is_interface_instance() const { const glsl_type *const t = this->type; return (t == this->interface_type) || (t->is_array() && t->fields.array == this->interface_type); } /** * Set this->interface_type on a newly created variable. */ void init_interface_type(const struct glsl_type *type) { assert(this->interface_type == NULL); this->interface_type = type; if (this->is_interface_instance()) { this->max_ifc_array_access = rzalloc_array(this, unsigned, type->length); } } /** * Change this->interface_type on a variable that previously had a * different, but compatible, interface_type. This is used during linking * to set the size of arrays in interface blocks. */ void change_interface_type(const struct glsl_type *type) { if (this->max_ifc_array_access != NULL) { /* max_ifc_array_access has already been allocated, so make sure the * new interface has the same number of fields as the old one. */ assert(this->interface_type->length == type->length); } this->interface_type = type; } /** * Change this->interface_type on a variable that previously had a * different, and incompatible, interface_type. This is used during * compilation to handle redeclaration of the built-in gl_PerVertex * interface block. */ void reinit_interface_type(const struct glsl_type *type) { if (this->max_ifc_array_access != NULL) { #ifndef _NDEBUG /* Redeclaring gl_PerVertex is only allowed if none of the built-ins * it defines have been accessed yet; so it's safe to throw away the * old max_ifc_array_access pointer, since all of its values are * zero. */ for (unsigned i = 0; i < this->interface_type->length; i++) assert(this->max_ifc_array_access[i] == 0); #endif ralloc_free(this->max_ifc_array_access); this->max_ifc_array_access = NULL; } this->interface_type = NULL; init_interface_type(type); } const glsl_type *get_interface_type() const { return this->interface_type; } /** * Declared type of the variable */ const struct glsl_type *type; /** * Declared name of the variable */ const char *name; /** * Highest element accessed with a constant expression array index * * Not used for non-array variables. */ unsigned max_array_access; /** * For variables which satisfy the is_interface_instance() predicate, this * points to an array of integers such that if the ith member of the * interface block is an array, max_ifc_array_access[i] is the maximum * array element of that member that has been accessed. If the ith member * of the interface block is not an array, max_ifc_array_access[i] is * unused. * * For variables whose type is not an interface block, this pointer is * NULL. */ unsigned *max_ifc_array_access; /** * Is the variable read-only? * * This is set for variables declared as \c const, shader inputs, * and uniforms. */ unsigned read_only:1; unsigned centroid:1; unsigned sample:1; unsigned invariant:1; /** * Has this variable been used for reading or writing? * * Several GLSL semantic checks require knowledge of whether or not a * variable has been used. For example, it is an error to redeclare a * variable as invariant after it has been used. * * This is only maintained in the ast_to_hir.cpp path, not in * Mesa's fixed function or ARB program paths. */ unsigned used:1; /** * Has this variable been statically assigned? * * This answers whether the variable was assigned in any path of * the shader during ast_to_hir. This doesn't answer whether it is * still written after dead code removal, nor is it maintained in * non-ast_to_hir.cpp (GLSL parsing) paths. */ unsigned assigned:1; /** * Enum indicating how the variable was declared. See * ir_var_declaration_type. * * This is used to detect certain kinds of illegal variable redeclarations. */ unsigned how_declared:2; /** * Storage class of the variable. * * \sa ir_variable_mode */ unsigned mode:4; /** * Interpolation mode for shader inputs / outputs * * \sa ir_variable_interpolation */ unsigned interpolation:2; /** * \name ARB_fragment_coord_conventions * @{ */ unsigned origin_upper_left:1; unsigned pixel_center_integer:1; /*@}*/ /** * Was the location explicitly set in the shader? * * If the location is explicitly set in the shader, it \b cannot be changed * by the linker or by the API (e.g., calls to \c glBindAttribLocation have * no effect). */ unsigned explicit_location:1; unsigned explicit_index:1; /** * Was an initial binding explicitly set in the shader? * * If so, constant_value contains an integer ir_constant representing the * initial binding point. */ unsigned explicit_binding:1; /** * Does this variable have an initializer? * * This is used by the linker to cross-validiate initializers of global * variables. */ unsigned has_initializer:1; /** * Is this variable a generic output or input that has not yet been matched * up to a variable in another stage of the pipeline? * * This is used by the linker as scratch storage while assigning locations * to generic inputs and outputs. */ unsigned is_unmatched_generic_inout:1; /** * If non-zero, then this variable may be packed along with other variables * into a single varying slot, so this offset should be applied when * accessing components. For example, an offset of 1 means that the x * component of this variable is actually stored in component y of the * location specified by \c location. */ unsigned location_frac:2; /** * Non-zero if this variable was created by lowering a named interface * block which was not an array. * * Note that this variable and \c from_named_ifc_block_array will never * both be non-zero. */ unsigned from_named_ifc_block_nonarray:1; /** * Non-zero if this variable was created by lowering a named interface * block which was an array. * * Note that this variable and \c from_named_ifc_block_nonarray will never * both be non-zero. */ unsigned from_named_ifc_block_array:1; /** * \brief Layout qualifier for gl_FragDepth. * * This is not equal to \c ir_depth_layout_none if and only if this * variable is \c gl_FragDepth and a layout qualifier is specified. */ ir_depth_layout depth_layout; /** * Storage location of the base of this variable * * The precise meaning of this field depends on the nature of the variable. * * - Vertex shader input: one of the values from \c gl_vert_attrib. * - Vertex shader output: one of the values from \c gl_varying_slot. * - Geometry shader input: one of the values from \c gl_varying_slot. * - Geometry shader output: one of the values from \c gl_varying_slot. * - Fragment shader input: one of the values from \c gl_varying_slot. * - Fragment shader output: one of the values from \c gl_frag_result. * - Uniforms: Per-stage uniform slot number for default uniform block. * - Uniforms: Index within the uniform block definition for UBO members. * - Other: This field is not currently used. * * If the variable is a uniform, shader input, or shader output, and the * slot has not been assigned, the value will be -1. */ int location; /** * output index for dual source blending. */ int index; /** * Initial binding point for a sampler or UBO. * * For array types, this represents the binding point for the first element. */ int binding; /** * Location an atomic counter is stored at. */ struct { unsigned buffer_index; unsigned offset; } atomic; /** * Built-in state that backs this uniform * * Once set at variable creation, \c state_slots must remain invariant. * This is because, ideally, this array would be shared by all clones of * this variable in the IR tree. In other words, we'd really like for it * to be a fly-weight. * * If the variable is not a uniform, \c num_state_slots will be zero and * \c state_slots will be \c NULL. */ /*@{*/ unsigned num_state_slots; /**< Number of state slots used */ ir_state_slot *state_slots; /**< State descriptors. */ /*@}*/ /** * Emit a warning if this variable is accessed. */ const char *warn_extension; /** * Value assigned in the initializer of a variable declared "const" */ ir_constant *constant_value; /** * Constant expression assigned in the initializer of the variable * * \warning * This field and \c ::constant_value are distinct. Even if the two fields * refer to constants with the same value, they must point to separate * objects. */ ir_constant *constant_initializer; private: /** * For variables that are in an interface block or are an instance of an * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block. * * \sa ir_variable::location */ const glsl_type *interface_type; }; /** * A function that returns whether a built-in function is available in the * current shading language (based on version, ES or desktop, and extensions). */ typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *); /*@{*/ /** * The representation of a function instance; may be the full definition or * simply a prototype. */ class ir_function_signature : public ir_instruction { /* An ir_function_signature will be part of the list of signatures in * an ir_function. */ public: ir_function_signature(const glsl_type *return_type, builtin_available_predicate builtin_avail = NULL); virtual ir_function_signature *clone(void *mem_ctx, struct hash_table *ht) const; ir_function_signature *clone_prototype(void *mem_ctx, struct hash_table *ht) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Attempt to evaluate this function as a constant expression, * given a list of the actual parameters and the variable context. * Returns NULL for non-built-ins. */ ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context); /** * Get the name of the function for which this is a signature */ const char *function_name() const; /** * Get a handle to the function for which this is a signature * * There is no setter function, this function returns a \c const pointer, * and \c ir_function_signature::_function is private for a reason. The * only way to make a connection between a function and function signature * is via \c ir_function::add_signature. This helps ensure that certain * invariants (i.e., a function signature is in the list of signatures for * its \c _function) are met. * * \sa ir_function::add_signature */ inline const class ir_function *function() const { return this->_function; } /** * Check whether the qualifiers match between this signature's parameters * and the supplied parameter list. If not, returns the name of the first * parameter with mismatched qualifiers (for use in error messages). */ const char *qualifiers_match(exec_list *params); /** * Replace the current parameter list with the given one. This is useful * if the current information came from a prototype, and either has invalid * or missing parameter names. */ void replace_parameters(exec_list *new_params); /** * Function return type. * * \note This discards the optional precision qualifier. */ const struct glsl_type *return_type; /** * List of ir_variable of function parameters. * * This represents the storage. The paramaters passed in a particular * call will be in ir_call::actual_paramaters. */ struct exec_list parameters; /** Whether or not this function has a body (which may be empty). */ unsigned is_defined:1; /** Whether or not this function signature is a built-in. */ bool is_builtin() const; /** * Whether or not this function is an intrinsic to be implemented * by the driver. */ bool is_intrinsic; /** Whether or not a built-in is available for this shader. */ bool is_builtin_available(const _mesa_glsl_parse_state *state) const; /** Body of instructions in the function. */ struct exec_list body; private: /** * A function pointer to a predicate that answers whether a built-in * function is available in the current shader. NULL if not a built-in. */ builtin_available_predicate builtin_avail; /** Function of which this signature is one overload. */ class ir_function *_function; /** Function signature of which this one is a prototype clone */ const ir_function_signature *origin; friend class ir_function; /** * Helper function to run a list of instructions for constant * expression evaluation. * * The hash table represents the values of the visible variables. * There are no scoping issues because the table is indexed on * ir_variable pointers, not variable names. * * Returns false if the expression is not constant, true otherwise, * and the value in *result if result is non-NULL. */ bool constant_expression_evaluate_expression_list(const struct exec_list &body, struct hash_table *variable_context, ir_constant **result); }; /** * Header for tracking multiple overloaded functions with the same name. * Contains a list of ir_function_signatures representing each of the * actual functions. */ class ir_function : public ir_instruction { public: ir_function(const char *name); virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const; virtual ir_function *as_function() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); void add_signature(ir_function_signature *sig) { sig->_function = this; this->signatures.push_tail(sig); } /** * Get an iterator for the set of function signatures */ exec_list_iterator iterator() { return signatures.iterator(); } /** * Find a signature that matches a set of actual parameters, taking implicit * conversions into account. Also flags whether the match was exact. */ ir_function_signature *matching_signature(_mesa_glsl_parse_state *state, const exec_list *actual_param, bool *match_is_exact); /** * Find a signature that matches a set of actual parameters, taking implicit * conversions into account. */ ir_function_signature *matching_signature(_mesa_glsl_parse_state *state, const exec_list *actual_param); /** * Find a signature that exactly matches a set of actual parameters without * any implicit type conversions. */ ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state, const exec_list *actual_ps); /** * Name of the function. */ const char *name; /** Whether or not this function has a signature that isn't a built-in. */ bool has_user_signature(); /** * List of ir_function_signature for each overloaded function with this name. */ struct exec_list signatures; }; inline const char *ir_function_signature::function_name() const { return this->_function->name; } /*@}*/ /** * IR instruction representing high-level if-statements */ class ir_if : public ir_instruction { public: ir_if(ir_rvalue *condition) : condition(condition) { ir_type = ir_type_if; } virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const; virtual ir_if *as_if() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *condition; /** List of ir_instruction for the body of the then branch */ exec_list then_instructions; /** List of ir_instruction for the body of the else branch */ exec_list else_instructions; }; /** * IR instruction representing a high-level loop structure. */ class ir_loop : public ir_instruction { public: ir_loop(); virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual ir_loop *as_loop() { return this; } /** * Get an iterator for the instructions of the loop body */ exec_list_iterator iterator() { return body_instructions.iterator(); } /** List of ir_instruction that make up the body of the loop. */ exec_list body_instructions; }; class ir_assignment : public ir_instruction { public: ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL); /** * Construct an assignment with an explicit write mask * * \note * Since a write mask is supplied, the LHS must already be a bare * \c ir_dereference. The cannot be any swizzles in the LHS. */ ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition, unsigned write_mask); virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const; virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual ir_assignment * as_assignment() { return this; } /** * Get a whole variable written by an assignment * * If the LHS of the assignment writes a whole variable, the variable is * returned. Otherwise \c NULL is returned. Examples of whole-variable * assignment are: * * - Assigning to a scalar * - Assigning to all components of a vector * - Whole array (or matrix) assignment * - Whole structure assignment */ ir_variable *whole_variable_written(); /** * Set the LHS of an assignment */ void set_lhs(ir_rvalue *lhs); /** * Left-hand side of the assignment. * * This should be treated as read only. If you need to set the LHS of an * assignment, use \c ir_assignment::set_lhs. */ ir_dereference *lhs; /** * Value being assigned */ ir_rvalue *rhs; /** * Optional condition for the assignment. */ ir_rvalue *condition; /** * Component mask written * * For non-vector types in the LHS, this field will be zero. For vector * types, a bit will be set for each component that is written. Note that * for \c vec2 and \c vec3 types only the lower bits will ever be set. * * A partially-set write mask means that each enabled channel gets * the value from a consecutive channel of the rhs. For example, * to write just .xyw of gl_FrontColor with color: * * (assign (constant bool (1)) (xyw) * (var_ref gl_FragColor) * (swiz xyw (var_ref color))) */ unsigned write_mask:4; }; /* Update ir_expression::get_num_operands() and operator_strs when * updating this list. */ enum ir_expression_operation { ir_unop_bit_not, ir_unop_logic_not, ir_unop_neg, ir_unop_abs, ir_unop_sign, ir_unop_rcp, ir_unop_rsq, ir_unop_sqrt, ir_unop_exp, /**< Log base e on gentype */ ir_unop_log, /**< Natural log on gentype */ ir_unop_exp2, ir_unop_log2, ir_unop_f2i, /**< Float-to-integer conversion. */ ir_unop_f2u, /**< Float-to-unsigned conversion. */ ir_unop_i2f, /**< Integer-to-float conversion. */ ir_unop_f2b, /**< Float-to-boolean conversion */ ir_unop_b2f, /**< Boolean-to-float conversion */ ir_unop_i2b, /**< int-to-boolean conversion */ ir_unop_b2i, /**< Boolean-to-int conversion */ ir_unop_u2f, /**< Unsigned-to-float conversion. */ ir_unop_i2u, /**< Integer-to-unsigned conversion. */ ir_unop_u2i, /**< Unsigned-to-integer conversion. */ ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */ ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */ ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */ ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */ ir_unop_any, /** * \name Unary floating-point rounding operations. */ /*@{*/ ir_unop_trunc, ir_unop_ceil, ir_unop_floor, ir_unop_fract, ir_unop_round_even, /*@}*/ /** * \name Trigonometric operations. */ /*@{*/ ir_unop_sin, ir_unop_cos, ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */ ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */ /*@}*/ /** * \name Partial derivatives. */ /*@{*/ ir_unop_dFdx, ir_unop_dFdy, /*@}*/ /** * \name Floating point pack and unpack operations. */ /*@{*/ ir_unop_pack_snorm_2x16, ir_unop_pack_snorm_4x8, ir_unop_pack_unorm_2x16, ir_unop_pack_unorm_4x8, ir_unop_pack_half_2x16, ir_unop_unpack_snorm_2x16, ir_unop_unpack_snorm_4x8, ir_unop_unpack_unorm_2x16, ir_unop_unpack_unorm_4x8, ir_unop_unpack_half_2x16, /*@}*/ /** * \name Lowered floating point unpacking operations. * * \see lower_packing_builtins_visitor::split_unpack_half_2x16 */ /*@{*/ ir_unop_unpack_half_2x16_split_x, ir_unop_unpack_half_2x16_split_y, /*@}*/ /** * \name Bit operations, part of ARB_gpu_shader5. */ /*@{*/ ir_unop_bitfield_reverse, ir_unop_bit_count, ir_unop_find_msb, ir_unop_find_lsb, /*@}*/ ir_unop_noise, /** * A sentinel marking the last of the unary operations. */ ir_last_unop = ir_unop_noise, ir_binop_add, ir_binop_sub, ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */ ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */ ir_binop_div, /** * Returns the carry resulting from the addition of the two arguments. */ /*@{*/ ir_binop_carry, /*@}*/ /** * Returns the borrow resulting from the subtraction of the second argument * from the first argument. */ /*@{*/ ir_binop_borrow, /*@}*/ /** * Takes one of two combinations of arguments: * * - mod(vecN, vecN) * - mod(vecN, float) * * Does not take integer types. */ ir_binop_mod, /** * \name Binary comparison operators which return a boolean vector. * The type of both operands must be equal. */ /*@{*/ ir_binop_less, ir_binop_greater, ir_binop_lequal, ir_binop_gequal, ir_binop_equal, ir_binop_nequal, /** * Returns single boolean for whether all components of operands[0] * equal the components of operands[1]. */ ir_binop_all_equal, /** * Returns single boolean for whether any component of operands[0] * is not equal to the corresponding component of operands[1]. */ ir_binop_any_nequal, /*@}*/ /** * \name Bit-wise binary operations. */ /*@{*/ ir_binop_lshift, ir_binop_rshift, ir_binop_bit_and, ir_binop_bit_xor, ir_binop_bit_or, /*@}*/ ir_binop_logic_and, ir_binop_logic_xor, ir_binop_logic_or, ir_binop_dot, ir_binop_min, ir_binop_max, ir_binop_pow, /** * \name Lowered floating point packing operations. * * \see lower_packing_builtins_visitor::split_pack_half_2x16 */ /*@{*/ ir_binop_pack_half_2x16_split, /*@}*/ /** * \name First half of a lowered bitfieldInsert() operation. * * \see lower_instructions::bitfield_insert_to_bfm_bfi */ /*@{*/ ir_binop_bfm, /*@}*/ /** * Load a value the size of a given GLSL type from a uniform block. * * operand0 is the ir_constant uniform block index in the linked shader. * operand1 is a byte offset within the uniform block. */ ir_binop_ubo_load, /** * \name Multiplies a number by two to a power, part of ARB_gpu_shader5. */ /*@{*/ ir_binop_ldexp, /*@}*/ /** * Extract a scalar from a vector * * operand0 is the vector * operand1 is the index of the field to read from operand0 */ ir_binop_vector_extract, /** * A sentinel marking the last of the binary operations. */ ir_last_binop = ir_binop_vector_extract, /** * \name Fused floating-point multiply-add, part of ARB_gpu_shader5. */ /*@{*/ ir_triop_fma, /*@}*/ ir_triop_lrp, /** * \name Conditional Select * * A vector conditional select instruction (like ?:, but operating per- * component on vectors). * * \see lower_instructions_visitor::ldexp_to_arith */ /*@{*/ ir_triop_csel, /*@}*/ /** * \name Second half of a lowered bitfieldInsert() operation. * * \see lower_instructions::bitfield_insert_to_bfm_bfi */ /*@{*/ ir_triop_bfi, /*@}*/ ir_triop_bitfield_extract, /** * Generate a value with one field of a vector changed * * operand0 is the vector * operand1 is the value to write into the vector result * operand2 is the index in operand0 to be modified */ ir_triop_vector_insert, /** * A sentinel marking the last of the ternary operations. */ ir_last_triop = ir_triop_vector_insert, ir_quadop_bitfield_insert, ir_quadop_vector, /** * A sentinel marking the last of the ternary operations. */ ir_last_quadop = ir_quadop_vector, /** * A sentinel marking the last of all operations. */ ir_last_opcode = ir_quadop_vector }; class ir_expression : public ir_rvalue { public: ir_expression(int op, const struct glsl_type *type, ir_rvalue *op0, ir_rvalue *op1 = NULL, ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL); /** * Constructor for unary operation expressions */ ir_expression(int op, ir_rvalue *); /** * Constructor for binary operation expressions */ ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1); /** * Constructor for ternary operation expressions */ ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2); virtual ir_expression *as_expression() { return this; } virtual bool equals(ir_instruction *ir); virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const; /** * Attempt to constant-fold the expression * * The "variable_context" hash table links ir_variable * to ir_constant * * that represent the variables' values. \c NULL represents an empty * context. * * If the expression cannot be constant folded, this method will return * \c NULL. */ virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); /** * Determine the number of operands used by an expression */ static unsigned int get_num_operands(ir_expression_operation); /** * Determine the number of operands used by an expression */ unsigned int get_num_operands() const { return (this->operation == ir_quadop_vector) ? this->type->vector_elements : get_num_operands(operation); } /** * Return a string representing this expression's operator. */ const char *operator_string(); /** * Return a string representing this expression's operator. */ static const char *operator_string(ir_expression_operation); /** * Do a reverse-lookup to translate the given string into an operator. */ static ir_expression_operation get_operator(const char *); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_expression_operation operation; ir_rvalue *operands[4]; }; /** * HIR instruction representing a high-level function call, containing a list * of parameters and returning a value in the supplied temporary. */ class ir_call : public ir_instruction { public: ir_call(ir_function_signature *callee, ir_dereference_variable *return_deref, exec_list *actual_parameters) : return_deref(return_deref), callee(callee) { ir_type = ir_type_call; assert(callee->return_type != NULL); actual_parameters->move_nodes_to(& this->actual_parameters); this->use_builtin = callee->is_builtin(); } virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const; virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual ir_call *as_call() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Get an iterator for the set of acutal parameters */ exec_list_iterator iterator() { return actual_parameters.iterator(); } /** * Get the name of the function being called. */ const char *callee_name() const { return callee->function_name(); } /** * Generates an inline version of the function before @ir, * storing the return value in return_deref. */ void generate_inline(ir_instruction *ir); /** * Storage for the function's return value. * This must be NULL if the return type is void. */ ir_dereference_variable *return_deref; /** * The specific function signature being called. */ ir_function_signature *callee; /* List of ir_rvalue of paramaters passed in this call. */ exec_list actual_parameters; /** Should this call only bind to a built-in function? */ bool use_builtin; }; /** * \name Jump-like IR instructions. * * These include \c break, \c continue, \c return, and \c discard. */ /*@{*/ class ir_jump : public ir_instruction { protected: ir_jump() { ir_type = ir_type_unset; } public: virtual ir_jump *as_jump() { return this; } }; class ir_return : public ir_jump { public: ir_return() : value(NULL) { this->ir_type = ir_type_return; } ir_return(ir_rvalue *value) : value(value) { this->ir_type = ir_type_return; } virtual ir_return *clone(void *mem_ctx, struct hash_table *) const; virtual ir_return *as_return() { return this; } ir_rvalue *get_value() const { return value; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *value; }; /** * Jump instructions used inside loops * * These include \c break and \c continue. The \c break within a loop is * different from the \c break within a switch-statement. * * \sa ir_switch_jump */ class ir_loop_jump : public ir_jump { public: enum jump_mode { jump_break, jump_continue }; ir_loop_jump(jump_mode mode) { this->ir_type = ir_type_loop_jump; this->mode = mode; } virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); bool is_break() const { return mode == jump_break; } bool is_continue() const { return mode == jump_continue; } /** Mode selector for the jump instruction. */ enum jump_mode mode; }; /** * IR instruction representing discard statements. */ class ir_discard : public ir_jump { public: ir_discard() { this->ir_type = ir_type_discard; this->condition = NULL; } ir_discard(ir_rvalue *cond) { this->ir_type = ir_type_discard; this->condition = cond; } virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual ir_discard *as_discard() { return this; } ir_rvalue *condition; }; /*@}*/ /** * Texture sampling opcodes used in ir_texture */ enum ir_texture_opcode { ir_tex, /**< Regular texture look-up */ ir_txb, /**< Texture look-up with LOD bias */ ir_txl, /**< Texture look-up with explicit LOD */ ir_txd, /**< Texture look-up with partial derivatvies */ ir_txf, /**< Texel fetch with explicit LOD */ ir_txf_ms, /**< Multisample texture fetch */ ir_txs, /**< Texture size */ ir_lod, /**< Texture lod query */ ir_tg4, /**< Texture gather */ ir_query_levels /**< Texture levels query */ }; /** * IR instruction to sample a texture * * The specific form of the IR instruction depends on the \c mode value * selected from \c ir_texture_opcodes. In the printed IR, these will * appear as: * * Texel offset (0 or an expression) * | Projection divisor * | | Shadow comparitor * | | | * v v v * (tex 0 1 ( )) * (txb 0 1 ( ) ) * (txl 0 1 ( ) ) * (txd 0 1 ( ) (dPdx dPdy)) * (txf 0 ) * (txf_ms * ) * (txs ) * (lod ) * (tg4 ) * (query_levels ) */ class ir_texture : public ir_rvalue { public: ir_texture(enum ir_texture_opcode op) : op(op), sampler(NULL), coordinate(NULL), projector(NULL), shadow_comparitor(NULL), offset(NULL) { this->ir_type = ir_type_texture; memset(&lod_info, 0, sizeof(lod_info)); } virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const; virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_texture *as_texture() { return this; } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual bool equals(ir_instruction *ir); /** * Return a string representing the ir_texture_opcode. */ const char *opcode_string(); /** Set the sampler and type. */ void set_sampler(ir_dereference *sampler, const glsl_type *type); /** * Do a reverse-lookup to translate a string into an ir_texture_opcode. */ static ir_texture_opcode get_opcode(const char *); enum ir_texture_opcode op; /** Sampler to use for the texture access. */ ir_dereference *sampler; /** Texture coordinate to sample */ ir_rvalue *coordinate; /** * Value used for projective divide. * * If there is no projective divide (the common case), this will be * \c NULL. Optimization passes should check for this to point to a constant * of 1.0 and replace that with \c NULL. */ ir_rvalue *projector; /** * Coordinate used for comparison on shadow look-ups. * * If there is no shadow comparison, this will be \c NULL. For the * \c ir_txf opcode, this *must* be \c NULL. */ ir_rvalue *shadow_comparitor; /** Texel offset. */ ir_rvalue *offset; union { ir_rvalue *lod; /**< Floating point LOD */ ir_rvalue *bias; /**< Floating point LOD bias */ ir_rvalue *sample_index; /**< MSAA sample index */ ir_rvalue *component; /**< Gather component selector */ struct { ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */ ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */ } grad; } lod_info; }; struct ir_swizzle_mask { unsigned x:2; unsigned y:2; unsigned z:2; unsigned w:2; /** * Number of components in the swizzle. */ unsigned num_components:3; /** * Does the swizzle contain duplicate components? * * L-value swizzles cannot contain duplicate components. */ unsigned has_duplicates:1; }; class ir_swizzle : public ir_rvalue { public: ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w, unsigned count); ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count); ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask); virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const; virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual ir_swizzle *as_swizzle() { return this; } /** * Construct an ir_swizzle from the textual representation. Can fail. */ static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual bool equals(ir_instruction *ir); bool is_lvalue() const { return val->is_lvalue() && !mask.has_duplicates; } /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() const; ir_rvalue *val; ir_swizzle_mask mask; private: /** * Initialize the mask component of a swizzle * * This is used by the \c ir_swizzle constructors. */ void init_mask(const unsigned *components, unsigned count); }; class ir_dereference : public ir_rvalue { public: virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0; virtual ir_dereference *as_dereference() { return this; } bool is_lvalue() const; /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() const = 0; /** * Get the constant that is ultimately referenced by an r-value, * in a constant expression evaluation context. * * The offset is used when the reference is to a specific column of * a matrix. */ virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0; }; class ir_dereference_variable : public ir_dereference { public: ir_dereference_variable(ir_variable *var); virtual ir_dereference_variable *clone(void *mem_ctx, struct hash_table *) const; virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual ir_dereference_variable *as_dereference_variable() { return this; } virtual bool equals(ir_instruction *ir); /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() const { return this->var; } /** * Get the constant that is ultimately referenced by an r-value, * in a constant expression evaluation context. * * The offset is used when the reference is to a specific column of * a matrix. */ virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const; virtual ir_variable *whole_variable_referenced() { /* ir_dereference_variable objects always dereference the entire * variable. However, if this dereference is dereferenced by anything * else, the complete deferefernce chain is not a whole-variable * dereference. This method should only be called on the top most * ir_rvalue in a dereference chain. */ return this->var; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Object being dereferenced. */ ir_variable *var; }; class ir_dereference_array : public ir_dereference { public: ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index); ir_dereference_array(ir_variable *var, ir_rvalue *array_index); virtual ir_dereference_array *clone(void *mem_ctx, struct hash_table *) const; virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual ir_dereference_array *as_dereference_array() { return this; } virtual bool equals(ir_instruction *ir); /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() const { return this->array->variable_referenced(); } /** * Get the constant that is ultimately referenced by an r-value, * in a constant expression evaluation context. * * The offset is used when the reference is to a specific column of * a matrix. */ virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *array; ir_rvalue *array_index; private: void set_array(ir_rvalue *value); }; class ir_dereference_record : public ir_dereference { public: ir_dereference_record(ir_rvalue *value, const char *field); ir_dereference_record(ir_variable *var, const char *field); virtual ir_dereference_record *clone(void *mem_ctx, struct hash_table *) const; virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual ir_dereference_record *as_dereference_record() { return this; } /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() const { return this->record->variable_referenced(); } /** * Get the constant that is ultimately referenced by an r-value, * in a constant expression evaluation context. * * The offset is used when the reference is to a specific column of * a matrix. */ virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *record; const char *field; }; /** * Data stored in an ir_constant */ union ir_constant_data { unsigned u[16]; int i[16]; float f[16]; bool b[16]; }; class ir_constant : public ir_rvalue { public: ir_constant(const struct glsl_type *type, const ir_constant_data *data); ir_constant(bool b, unsigned vector_elements=1); ir_constant(unsigned int u, unsigned vector_elements=1); ir_constant(int i, unsigned vector_elements=1); ir_constant(float f, unsigned vector_elements=1); /** * Construct an ir_constant from a list of ir_constant values */ ir_constant(const struct glsl_type *type, exec_list *values); /** * Construct an ir_constant from a scalar component of another ir_constant * * The new \c ir_constant inherits the type of the component from the * source constant. * * \note * In the case of a matrix constant, the new constant is a scalar, \b not * a vector. */ ir_constant(const ir_constant *c, unsigned i); /** * Return a new ir_constant of the specified type containing all zeros. */ static ir_constant *zero(void *mem_ctx, const glsl_type *type); virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const; virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); virtual ir_constant *as_constant() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual bool equals(ir_instruction *ir); /** * Get a particular component of a constant as a specific type * * This is useful, for example, to get a value from an integer constant * as a float or bool. This appears frequently when constructors are * called with all constant parameters. */ /*@{*/ bool get_bool_component(unsigned i) const; float get_float_component(unsigned i) const; int get_int_component(unsigned i) const; unsigned get_uint_component(unsigned i) const; /*@}*/ ir_constant *get_array_element(unsigned i) const; ir_constant *get_record_field(const char *name); /** * Copy the values on another constant at a given offset. * * The offset is ignored for array or struct copies, it's only for * scalars or vectors into vectors or matrices. * * With identical types on both sides and zero offset it's clone() * without creating a new object. */ void copy_offset(ir_constant *src, int offset); /** * Copy the values on another constant at a given offset and * following an assign-like mask. * * The mask is ignored for scalars. * * Note that this function only handles what assign can handle, * i.e. at most a vector as source and a column of a matrix as * destination. */ void copy_masked_offset(ir_constant *src, int offset, unsigned int mask); /** * Determine whether a constant has the same value as another constant * * \sa ir_constant::is_zero, ir_constant::is_one, * ir_constant::is_negative_one, ir_constant::is_basis */ bool has_value(const ir_constant *) const; virtual bool is_zero() const; virtual bool is_one() const; virtual bool is_negative_one() const; virtual bool is_basis() const; /** * Value of the constant. * * The field used to back the values supplied by the constant is determined * by the type associated with the \c ir_instruction. Constants may be * scalars, vectors, or matrices. */ union ir_constant_data value; /* Array elements */ ir_constant **array_elements; /* Structure fields */ exec_list components; private: /** * Parameterless constructor only used by the clone method */ ir_constant(void); }; /*@}*/ /** * IR instruction to emit a vertex in a geometry shader. */ class ir_emit_vertex : public ir_instruction { public: ir_emit_vertex() { ir_type = ir_type_emit_vertex; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *) const { return new(mem_ctx) ir_emit_vertex(); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); }; /** * IR instruction to complete the current primitive and start a new one in a * geometry shader. */ class ir_end_primitive : public ir_instruction { public: ir_end_primitive() { ir_type = ir_type_end_primitive; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *) const { return new(mem_ctx) ir_end_primitive(); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); }; /** * Apply a visitor to each IR node in a list */ void visit_exec_list(exec_list *list, ir_visitor *visitor); /** * Validate invariants on each IR node in a list */ void validate_ir_tree(exec_list *instructions); struct _mesa_glsl_parse_state; struct gl_shader_program; /** * Detect whether an unlinked shader contains static recursion * * If the list of instructions is determined to contain static recursion, * \c _mesa_glsl_error will be called to emit error messages for each function * that is in the recursion cycle. */ void detect_recursion_unlinked(struct _mesa_glsl_parse_state *state, exec_list *instructions); /** * Detect whether a linked shader contains static recursion * * If the list of instructions is determined to contain static recursion, * \c link_error_printf will be called to emit error messages for each function * that is in the recursion cycle. In addition, * \c gl_shader_program::LinkStatus will be set to false. */ void detect_recursion_linked(struct gl_shader_program *prog, exec_list *instructions); /** * Make a clone of each IR instruction in a list * * \param in List of IR instructions that are to be cloned * \param out List to hold the cloned instructions */ void clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in); extern void _mesa_glsl_initialize_variables(exec_list *instructions, struct _mesa_glsl_parse_state *state); extern void _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state); extern void _mesa_glsl_initialize_builtin_functions(); extern ir_function_signature * _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state, const char *name, exec_list *actual_parameters); extern gl_shader * _mesa_glsl_get_builtin_function_shader(void); extern void _mesa_glsl_release_functions(void); extern void _mesa_glsl_release_builtin_functions(void); extern void reparent_ir(exec_list *list, void *mem_ctx); struct glsl_symbol_table; extern void import_prototypes(const exec_list *source, exec_list *dest, struct glsl_symbol_table *symbols, void *mem_ctx); extern bool ir_has_call(ir_instruction *ir); extern void do_set_program_inouts(exec_list *instructions, struct gl_program *prog, GLenum shader_type); extern char * prototype_string(const glsl_type *return_type, const char *name, exec_list *parameters); const char * mode_string(const ir_variable *var); extern "C" { #endif /* __cplusplus */ extern void _mesa_print_ir(struct exec_list *instructions, struct _mesa_glsl_parse_state *state); #ifdef __cplusplus } /* extern "C" */ #endif unsigned vertices_per_prim(GLenum prim); #endif /* IR_H */