/* -*- c++ -*- */ /* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #pragma once #ifndef IR_H #define IR_H #include #include extern "C" { #include } #include "list.h" #include "ir_visitor.h" #include "ir_hierarchical_visitor.h" #ifndef ARRAY_SIZE #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0])) #endif enum ir_node_type { ir_type_unset, ir_type_variable, ir_type_assignment, ir_type_call, ir_type_constant, ir_type_dereference_array, ir_type_dereference_record, ir_type_dereference_variable, ir_type_discard, ir_type_expression, ir_type_function, ir_type_function_signature, ir_type_if, ir_type_loop, ir_type_loop_jump, ir_type_return, ir_type_swizzle, ir_type_texture, ir_type_max, /**< maximum ir_type enum number, for validation */ }; /** * Base class of all IR instructions */ class ir_instruction : public exec_node { public: enum ir_node_type ir_type; const struct glsl_type *type; /** ir_print_visitor helper for debugging. */ void print(void) const; virtual void accept(ir_visitor *) = 0; virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0; virtual ir_instruction *clone(struct hash_table *ht) const = 0; /** * \name IR instruction downcast functions * * These functions either cast the object to a derived class or return * \c NULL if the object's type does not match the specified derived class. * Additional downcast functions will be added as needed. */ /*@{*/ virtual class ir_variable * as_variable() { return NULL; } virtual class ir_function * as_function() { return NULL; } virtual class ir_dereference * as_dereference() { return NULL; } virtual class ir_dereference_array * as_dereference_array() { return NULL; } virtual class ir_dereference_variable *as_dereference_variable() { return NULL; } virtual class ir_expression * as_expression() { return NULL; } virtual class ir_rvalue * as_rvalue() { return NULL; } virtual class ir_loop * as_loop() { return NULL; } virtual class ir_assignment * as_assignment() { return NULL; } virtual class ir_call * as_call() { return NULL; } virtual class ir_return * as_return() { return NULL; } virtual class ir_if * as_if() { return NULL; } virtual class ir_swizzle * as_swizzle() { return NULL; } virtual class ir_constant * as_constant() { return NULL; } /*@}*/ protected: ir_instruction() { ir_type = ir_type_unset; type = NULL; } }; class ir_rvalue : public ir_instruction { public: virtual ir_rvalue *clone(struct hash_table *) const = 0; virtual ir_constant *constant_expression_value() = 0; virtual ir_rvalue * as_rvalue() { return this; } virtual bool is_lvalue() { return false; } /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() { return NULL; } /** * If an r-value is a reference to a whole variable, get that variable * * \return * Pointer to a variable that is completely dereferenced by the r-value. If * the r-value is not a dereference or the dereference does not access the * entire variable (i.e., it's just one array element, struct field), \c NULL * is returned. */ virtual ir_variable *whole_variable_referenced() { return NULL; } protected: ir_rvalue(); }; enum ir_variable_mode { ir_var_auto = 0, ir_var_uniform, ir_var_in, ir_var_out, ir_var_inout, ir_var_temporary /**< Temporary variable generated during compilation. */ }; enum ir_variable_interpolation { ir_var_smooth = 0, ir_var_flat, ir_var_noperspective }; class ir_variable : public ir_instruction { public: ir_variable(const struct glsl_type *, const char *, ir_variable_mode); virtual ir_variable *clone(struct hash_table *ht) const; virtual ir_variable *as_variable() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Get the string value for the interpolation qualifier * * \return * If none of \c shader_in or \c shader_out is set, an empty string will * be returned. Otherwise the string that would be used in a shader to * specify \c mode will be returned. */ const char *interpolation_string() const; /** * Calculate the number of slots required to hold this variable * * This is used to determine how many uniform or varying locations a variable * occupies. The count is in units of floating point components. */ unsigned component_slots() const; const char *name; /** * Highest element accessed with a constant expression array index * * Not used for non-array variables. */ unsigned max_array_access; unsigned read_only:1; unsigned centroid:1; unsigned invariant:1; /** If the variable is initialized outside of the scope of the shader */ unsigned shader_in:1; /** * If the variable value is later used outside of the scope of the shader. */ unsigned shader_out:1; unsigned mode:3; unsigned interpolation:2; /** * Flag that the whole array is assignable * * In GLSL 1.20 and later whole arrays are assignable (and comparable for * equality). This flag enables this behavior. */ unsigned array_lvalue:1; /* ARB_fragment_coord_conventions */ unsigned origin_upper_left:1; unsigned pixel_center_integer:1; /** * Storage location of the base of this variable * * The precise meaning of this field depends on the nature of the variable. * * - Vertex shader input: one of the values from \c gl_vert_attrib. * - Vertex shader output: one of the values from \c gl_vert_result. * - Fragment shader input: one of the values from \c gl_frag_attrib. * - Fragment shader output: one of the values from \c gl_frag_result. * - Uniforms: Per-stage uniform slot number. * - Other: This field is not currently used. * * If the variable is a uniform, shader input, or shader output, and the * slot has not been assigned, the value will be -1. */ int location; /** * Emit a warning if this variable is accessed. */ const char *warn_extension; /** * Value assigned in the initializer of a variable declared "const" */ ir_constant *constant_value; }; /*@{*/ /** * The representation of a function instance; may be the full definition or * simply a prototype. */ class ir_function_signature : public ir_instruction { /* An ir_function_signature will be part of the list of signatures in * an ir_function. */ public: ir_function_signature(const glsl_type *return_type); virtual ir_function_signature *clone(struct hash_table *ht) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Get the name of the function for which this is a signature */ const char *function_name() const; /** * Get a handle to the function for which this is a signature * * There is no setter function, this function returns a \c const pointer, * and \c ir_function_signature::_function is private for a reason. The * only way to make a connection between a function and function signature * is via \c ir_function::add_signature. This helps ensure that certain * invariants (i.e., a function signature is in the list of signatures for * its \c _function) are met. * * \sa ir_function::add_signature */ inline const class ir_function *function() const { return this->_function; } /** * Check whether the qualifiers match between this signature's parameters * and the supplied parameter list. If not, returns the name of the first * parameter with mismatched qualifiers (for use in error messages). */ const char *qualifiers_match(exec_list *params); /** * Replace the current parameter list with the given one. This is useful * if the current information came from a prototype, and either has invalid * or missing parameter names. */ void replace_parameters(exec_list *new_params); /** * Function return type. * * \note This discards the optional precision qualifier. */ const struct glsl_type *return_type; /** * List of ir_variable of function parameters. * * This represents the storage. The paramaters passed in a particular * call will be in ir_call::actual_paramaters. */ struct exec_list parameters; /** Whether or not this function has a body (which may be empty). */ unsigned is_defined:1; /** Whether or not this function signature is a built-in. */ unsigned is_built_in:1; /** Body of instructions in the function. */ struct exec_list body; private: /** Function of which this signature is one overload. */ class ir_function *_function; friend class ir_function; }; /** * Header for tracking multiple overloaded functions with the same name. * Contains a list of ir_function_signatures representing each of the * actual functions. */ class ir_function : public ir_instruction { public: ir_function(const char *name); virtual ir_function *clone(struct hash_table *ht) const; virtual ir_function *as_function() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); void add_signature(ir_function_signature *sig) { sig->_function = this; this->signatures.push_tail(sig); } /** * Get an iterator for the set of function signatures */ exec_list_iterator iterator() { return signatures.iterator(); } /** * Find a signature that matches a set of actual parameters, taking implicit * conversions into account. */ ir_function_signature *matching_signature(const exec_list *actual_param); /** * Find a signature that exactly matches a set of actual parameters without * any implicit type conversions. */ ir_function_signature *exact_matching_signature(const exec_list *actual_ps); /** * Name of the function. */ const char *name; private: /** * List of ir_function_signature for each overloaded function with this name. */ struct exec_list signatures; }; inline const char *ir_function_signature::function_name() const { return this->_function->name; } /*@}*/ /** * IR instruction representing high-level if-statements */ class ir_if : public ir_instruction { public: ir_if(ir_rvalue *condition) : condition(condition) { ir_type = ir_type_if; } virtual ir_if *clone(struct hash_table *ht) const; virtual ir_if *as_if() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *condition; /** List of ir_instruction for the body of the then branch */ exec_list then_instructions; /** List of ir_instruction for the body of the else branch */ exec_list else_instructions; }; /** * IR instruction representing a high-level loop structure. */ class ir_loop : public ir_instruction { public: ir_loop() : from(NULL), to(NULL), increment(NULL), counter(NULL) { ir_type = ir_type_loop; } virtual ir_loop *clone(struct hash_table *ht) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual ir_loop *as_loop() { return this; } /** * Get an iterator for the instructions of the loop body */ exec_list_iterator iterator() { return body_instructions.iterator(); } /** List of ir_instruction that make up the body of the loop. */ exec_list body_instructions; /** * \name Loop counter and controls */ /*@{*/ ir_rvalue *from; ir_rvalue *to; ir_rvalue *increment; ir_variable *counter; /*@}*/ }; class ir_assignment : public ir_instruction { public: ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition); virtual ir_assignment *clone(struct hash_table *ht) const; virtual ir_constant *constant_expression_value(); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); virtual ir_assignment * as_assignment() { return this; } /** * Left-hand side of the assignment. */ ir_rvalue *lhs; /** * Value being assigned */ ir_rvalue *rhs; /** * Optional condition for the assignment. */ ir_rvalue *condition; }; /* Update ir_expression::num_operands() and operator_strs when * updating this list. */ enum ir_expression_operation { ir_unop_bit_not, ir_unop_logic_not, ir_unop_neg, ir_unop_abs, ir_unop_sign, ir_unop_rcp, ir_unop_rsq, ir_unop_sqrt, ir_unop_exp, ir_unop_log, ir_unop_exp2, ir_unop_log2, ir_unop_f2i, /**< Float-to-integer conversion. */ ir_unop_i2f, /**< Integer-to-float conversion. */ ir_unop_f2b, /**< Float-to-boolean conversion */ ir_unop_b2f, /**< Boolean-to-float conversion */ ir_unop_i2b, /**< int-to-boolean conversion */ ir_unop_b2i, /**< Boolean-to-int conversion */ ir_unop_u2f, /**< Unsigned-to-float conversion. */ /** * \name Unary floating-point rounding operations. */ /*@{*/ ir_unop_trunc, ir_unop_ceil, ir_unop_floor, ir_unop_fract, /*@}*/ /** * \name Trigonometric operations. */ /*@{*/ ir_unop_sin, ir_unop_cos, /*@}*/ /** * \name Partial derivatives. */ /*@{*/ ir_unop_dFdx, ir_unop_dFdy, /*@}*/ ir_binop_add, ir_binop_sub, ir_binop_mul, ir_binop_div, /** * Takes one of two combinations of arguments: * * - mod(vecN, vecN) * - mod(vecN, float) * * Does not take integer types. */ ir_binop_mod, /** * \name Binary comparison operators */ /*@{*/ ir_binop_less, ir_binop_greater, ir_binop_lequal, ir_binop_gequal, /** * Returns single boolean for whether all components of operands[0] * equal the components of operands[1]. */ ir_binop_equal, /** * Returns single boolean for whether any component of operands[0] * is not equal to the corresponding component of operands[1]. */ ir_binop_nequal, /*@}*/ /** * \name Bit-wise binary operations. */ /*@{*/ ir_binop_lshift, ir_binop_rshift, ir_binop_bit_and, ir_binop_bit_xor, ir_binop_bit_or, /*@}*/ ir_binop_logic_and, ir_binop_logic_xor, ir_binop_logic_or, ir_binop_dot, ir_binop_cross, ir_binop_min, ir_binop_max, ir_binop_pow }; class ir_expression : public ir_rvalue { public: ir_expression(int op, const struct glsl_type *type, ir_rvalue *, ir_rvalue *); virtual ir_expression *as_expression() { return this; } virtual ir_expression *clone(struct hash_table *ht) const; virtual ir_constant *constant_expression_value(); static unsigned int get_num_operands(ir_expression_operation); unsigned int get_num_operands() const { return get_num_operands(operation); } /** * Return a string representing this expression's operator. */ const char *operator_string(); /** * Do a reverse-lookup to translate the given string into an operator. */ static ir_expression_operation get_operator(const char *); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_expression_operation operation; ir_rvalue *operands[2]; }; /** * IR instruction representing a function call */ class ir_call : public ir_rvalue { public: ir_call(ir_function_signature *callee, exec_list *actual_parameters) : callee(callee) { ir_type = ir_type_call; assert(callee->return_type != NULL); type = callee->return_type; actual_parameters->move_nodes_to(& this->actual_parameters); } virtual ir_call *clone(struct hash_table *ht) const; virtual ir_constant *constant_expression_value(); virtual ir_call *as_call() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Get a generic ir_call object when an error occurs * * Any allocation will be performed with 'ctx' as talloc owner. */ static ir_call *get_error_instruction(void *ctx); /** * Get an iterator for the set of acutal parameters */ exec_list_iterator iterator() { return actual_parameters.iterator(); } /** * Get the name of the function being called. */ const char *callee_name() const { return callee->function_name(); } ir_function_signature *get_callee() { return callee; } /** * Set the function call target */ void set_callee(ir_function_signature *sig); /** * Generates an inline version of the function before @ir, * returning the return value of the function. */ ir_rvalue *generate_inline(ir_instruction *ir); /* List of ir_rvalue of paramaters passed in this call. */ exec_list actual_parameters; private: ir_call() : callee(NULL) { this->ir_type = ir_type_call; } ir_function_signature *callee; }; /** * \name Jump-like IR instructions. * * These include \c break, \c continue, \c return, and \c discard. */ /*@{*/ class ir_jump : public ir_instruction { protected: ir_jump() { ir_type = ir_type_unset; } }; class ir_return : public ir_jump { public: ir_return() : value(NULL) { this->ir_type = ir_type_return; } ir_return(ir_rvalue *value) : value(value) { this->ir_type = ir_type_return; } virtual ir_return *clone(struct hash_table *) const; virtual ir_return *as_return() { return this; } ir_rvalue *get_value() const { return value; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *value; }; /** * Jump instructions used inside loops * * These include \c break and \c continue. The \c break within a loop is * different from the \c break within a switch-statement. * * \sa ir_switch_jump */ class ir_loop_jump : public ir_jump { public: enum jump_mode { jump_break, jump_continue }; ir_loop_jump(jump_mode mode) { this->ir_type = ir_type_loop_jump; this->mode = mode; this->loop = loop; } virtual ir_loop_jump *clone(struct hash_table *) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); bool is_break() const { return mode == jump_break; } bool is_continue() const { return mode == jump_continue; } /** Mode selector for the jump instruction. */ enum jump_mode mode; private: /** Loop containing this break instruction. */ ir_loop *loop; }; /** * IR instruction representing discard statements. */ class ir_discard : public ir_jump { public: ir_discard() { this->ir_type = ir_type_discard; this->condition = NULL; } ir_discard(ir_rvalue *cond) { this->condition = cond; } virtual ir_discard *clone(struct hash_table *ht) const; virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *condition; }; /*@}*/ /** * Texture sampling opcodes used in ir_texture */ enum ir_texture_opcode { ir_tex, /* Regular texture look-up */ ir_txb, /* Texture look-up with LOD bias */ ir_txl, /* Texture look-up with explicit LOD */ ir_txd, /* Texture look-up with partial derivatvies */ ir_txf /* Texel fetch with explicit LOD */ }; /** * IR instruction to sample a texture * * The specific form of the IR instruction depends on the \c mode value * selected from \c ir_texture_opcodes. In the printed IR, these will * appear as: * * Texel offset * | Projection divisor * | | Shadow comparitor * | | | * v v v * (tex (sampler) (coordinate) (0 0 0) (1) ( )) * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias)) * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod)) * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy)) * (txf (sampler) (coordinate) (0 0 0) (lod)) */ class ir_texture : public ir_rvalue { public: ir_texture(enum ir_texture_opcode op) : op(op), projector(NULL), shadow_comparitor(NULL) { this->ir_type = ir_type_texture; } virtual ir_texture *clone(struct hash_table *) const; virtual ir_constant *constant_expression_value(); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Return a string representing the ir_texture_opcode. */ const char *opcode_string(); /** Set the sampler and infer the type. */ void set_sampler(ir_dereference *sampler); /** * Do a reverse-lookup to translate a string into an ir_texture_opcode. */ static ir_texture_opcode get_opcode(const char *); enum ir_texture_opcode op; /** Sampler to use for the texture access. */ ir_dereference *sampler; /** Texture coordinate to sample */ ir_rvalue *coordinate; /** * Value used for projective divide. * * If there is no projective divide (the common case), this will be * \c NULL. Optimization passes should check for this to point to a constant * of 1.0 and replace that with \c NULL. */ ir_rvalue *projector; /** * Coordinate used for comparison on shadow look-ups. * * If there is no shadow comparison, this will be \c NULL. For the * \c ir_txf opcode, this *must* be \c NULL. */ ir_rvalue *shadow_comparitor; /** Explicit texel offsets. */ signed char offsets[3]; union { ir_rvalue *lod; /**< Floating point LOD */ ir_rvalue *bias; /**< Floating point LOD bias */ struct { ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */ ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */ } grad; } lod_info; }; struct ir_swizzle_mask { unsigned x:2; unsigned y:2; unsigned z:2; unsigned w:2; /** * Number of components in the swizzle. */ unsigned num_components:3; /** * Does the swizzle contain duplicate components? * * L-value swizzles cannot contain duplicate components. */ unsigned has_duplicates:1; }; class ir_swizzle : public ir_rvalue { public: ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w, unsigned count); ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count); ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask); virtual ir_swizzle *clone(struct hash_table *) const; virtual ir_constant *constant_expression_value(); virtual ir_swizzle *as_swizzle() { return this; } /** * Construct an ir_swizzle from the textual representation. Can fail. */ static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); bool is_lvalue() { return val->is_lvalue() && !mask.has_duplicates; } /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced(); ir_rvalue *val; ir_swizzle_mask mask; private: /** * Initialize the mask component of a swizzle * * This is used by the \c ir_swizzle constructors. */ void init_mask(const unsigned *components, unsigned count); }; class ir_dereference : public ir_rvalue { public: virtual ir_dereference *clone(struct hash_table *) const = 0; virtual ir_dereference *as_dereference() { return this; } bool is_lvalue(); /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() = 0; }; class ir_dereference_variable : public ir_dereference { public: ir_dereference_variable(ir_variable *var); virtual ir_dereference_variable *clone(struct hash_table *) const; virtual ir_constant *constant_expression_value(); virtual ir_dereference_variable *as_dereference_variable() { return this; } /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() { return this->var; } virtual ir_variable *whole_variable_referenced() { /* ir_dereference_variable objects always dereference the entire * variable. However, if this dereference is dereferenced by anything * else, the complete deferefernce chain is not a whole-variable * dereference. This method should only be called on the top most * ir_rvalue in a dereference chain. */ return this->var; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Object being dereferenced. */ ir_variable *var; }; class ir_dereference_array : public ir_dereference { public: ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index); ir_dereference_array(ir_variable *var, ir_rvalue *array_index); virtual ir_dereference_array *clone(struct hash_table *) const; virtual ir_constant *constant_expression_value(); virtual ir_dereference_array *as_dereference_array() { return this; } /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() { return this->array->variable_referenced(); } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *array; ir_rvalue *array_index; private: void set_array(ir_rvalue *value); }; class ir_dereference_record : public ir_dereference { public: ir_dereference_record(ir_rvalue *value, const char *field); ir_dereference_record(ir_variable *var, const char *field); virtual ir_dereference_record *clone(struct hash_table *) const; virtual ir_constant *constant_expression_value(); /** * Get the variable that is ultimately referenced by an r-value */ virtual ir_variable *variable_referenced() { return this->record->variable_referenced(); } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); ir_rvalue *record; const char *field; }; /** * Data stored in an ir_constant */ union ir_constant_data { unsigned u[16]; int i[16]; float f[16]; bool b[16]; }; class ir_constant : public ir_rvalue { public: ir_constant(const struct glsl_type *type, const ir_constant_data *data); ir_constant(bool b); ir_constant(unsigned int u); ir_constant(int i); ir_constant(float f); /** * Construct an ir_constant from a list of ir_constant values */ ir_constant(const struct glsl_type *type, exec_list *values); /** * Construct an ir_constant from a scalar component of another ir_constant * * The new \c ir_constant inherits the type of the component from the * source constant. * * \note * In the case of a matrix constant, the new constant is a scalar, \b not * a vector. */ ir_constant(const ir_constant *c, unsigned i); virtual ir_constant *clone(struct hash_table *) const; virtual ir_constant *constant_expression_value(); virtual ir_constant *as_constant() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_visitor_status accept(ir_hierarchical_visitor *); /** * Get a particular component of a constant as a specific type * * This is useful, for example, to get a value from an integer constant * as a float or bool. This appears frequently when constructors are * called with all constant parameters. */ /*@{*/ bool get_bool_component(unsigned i) const; float get_float_component(unsigned i) const; int get_int_component(unsigned i) const; unsigned get_uint_component(unsigned i) const; /*@}*/ ir_constant *get_array_element(unsigned i) const; ir_constant *get_record_field(const char *name); /** * Determine whether a constant has the same value as another constant */ bool has_value(const ir_constant *) const; /** * Value of the constant. * * The field used to back the values supplied by the constant is determined * by the type associated with the \c ir_instruction. Constants may be * scalars, vectors, or matrices. */ union ir_constant_data value; /* Array elements */ ir_constant **array_elements; /* Structure fields */ exec_list components; private: /** * Parameterless constructor only used by the clone method */ ir_constant(void); }; void visit_exec_list(exec_list *list, ir_visitor *visitor); void validate_ir_tree(exec_list *instructions); /** * Make a clone of each IR instruction in a list * * \param in List of IR instructions that are to be cloned * \param out List to hold the cloned instructions */ void clone_ir_list(exec_list *out, const exec_list *in); extern void _mesa_glsl_initialize_variables(exec_list *instructions, struct _mesa_glsl_parse_state *state); extern void _mesa_glsl_initialize_functions(exec_list *instructions, struct _mesa_glsl_parse_state *state); extern void _mesa_glsl_release_functions(void); extern void reparent_ir(exec_list *list, void *mem_ctx); class glsl_symbol_table; extern void import_prototypes(const exec_list *source, exec_list *dest, class glsl_symbol_table *symbols, void *mem_ctx); #endif /* IR_H */