/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include "main/imports.h" #include "ir.h" #include "ir_visitor.h" #include "glsl_types.h" ir_rvalue::ir_rvalue() { this->type = glsl_type::error_type; } ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition) { this->ir_type = ir_type_assignment; this->lhs = lhs; this->rhs = rhs; this->condition = condition; } ir_expression::ir_expression(int op, const struct glsl_type *type, ir_rvalue *op0, ir_rvalue *op1) { this->ir_type = ir_type_expression; this->type = type; this->operation = ir_expression_operation(op); this->operands[0] = op0; this->operands[1] = op1; } unsigned int ir_expression::get_num_operands(ir_expression_operation op) { /* Update ir_print_visitor.cpp when updating this list. */ const int num_operands[] = { 1, /* ir_unop_bit_not */ 1, /* ir_unop_logic_not */ 1, /* ir_unop_neg */ 1, /* ir_unop_abs */ 1, /* ir_unop_sign */ 1, /* ir_unop_rcp */ 1, /* ir_unop_rsq */ 1, /* ir_unop_sqrt */ 1, /* ir_unop_exp */ 1, /* ir_unop_log */ 1, /* ir_unop_exp2 */ 1, /* ir_unop_log2 */ 1, /* ir_unop_f2i */ 1, /* ir_unop_i2f */ 1, /* ir_unop_f2b */ 1, /* ir_unop_b2f */ 1, /* ir_unop_i2b */ 1, /* ir_unop_b2i */ 1, /* ir_unop_u2f */ 1, /* ir_unop_trunc */ 1, /* ir_unop_ceil */ 1, /* ir_unop_floor */ 1, /* ir_unop_fract */ 1, /* ir_unop_sin */ 1, /* ir_unop_cos */ 1, /* ir_unop_dFdx */ 1, /* ir_unop_dFdy */ 2, /* ir_binop_add */ 2, /* ir_binop_sub */ 2, /* ir_binop_mul */ 2, /* ir_binop_div */ 2, /* ir_binop_mod */ 2, /* ir_binop_less */ 2, /* ir_binop_greater */ 2, /* ir_binop_lequal */ 2, /* ir_binop_gequal */ 2, /* ir_binop_equal */ 2, /* ir_binop_nequal */ 2, /* ir_binop_lshift */ 2, /* ir_binop_rshift */ 2, /* ir_binop_bit_and */ 2, /* ir_binop_bit_xor */ 2, /* ir_binop_bit_or */ 2, /* ir_binop_logic_and */ 2, /* ir_binop_logic_xor */ 2, /* ir_binop_logic_or */ 2, /* ir_binop_dot */ 2, /* ir_binop_cross */ 2, /* ir_binop_min */ 2, /* ir_binop_max */ 2, /* ir_binop_pow */ }; assert(sizeof(num_operands) / sizeof(num_operands[0]) == ir_binop_pow + 1); return num_operands[op]; } static const char *const operator_strs[] = { "~", "!", "neg", "abs", "sign", "rcp", "rsq", "sqrt", "exp", "log", "exp2", "log2", "f2i", "i2f", "f2b", "b2f", "i2b", "b2i", "u2f", "trunc", "ceil", "floor", "fract", "sin", "cos", "dFdx", "dFdy", "+", "-", "*", "/", "%", "<", ">", "<=", ">=", "==", "!=", "<<", ">>", "&", "^", "|", "&&", "^^", "||", "dot", "cross", "min", "max", "pow", }; const char *ir_expression::operator_string() { assert((unsigned int) operation <= sizeof(operator_strs) / sizeof(operator_strs[0])); return operator_strs[operation]; } ir_expression_operation ir_expression::get_operator(const char *str) { const int operator_count = sizeof(operator_strs) / sizeof(operator_strs[0]); for (int op = 0; op < operator_count; op++) { if (strcmp(str, operator_strs[op]) == 0) return (ir_expression_operation) op; } return (ir_expression_operation) -1; } ir_constant::ir_constant() { this->ir_type = ir_type_constant; } ir_constant::ir_constant(const struct glsl_type *type, const ir_constant_data *data) { assert((type->base_type >= GLSL_TYPE_UINT) && (type->base_type <= GLSL_TYPE_BOOL)); this->ir_type = ir_type_constant; this->type = type; memcpy(& this->value, data, sizeof(this->value)); } ir_constant::ir_constant(float f) { this->ir_type = ir_type_constant; this->type = glsl_type::float_type; this->value.f[0] = f; } ir_constant::ir_constant(unsigned int u) { this->ir_type = ir_type_constant; this->type = glsl_type::uint_type; this->value.u[0] = u; } ir_constant::ir_constant(int i) { this->ir_type = ir_type_constant; this->type = glsl_type::int_type; this->value.i[0] = i; } ir_constant::ir_constant(bool b) { this->ir_type = ir_type_constant; this->type = glsl_type::bool_type; this->value.b[0] = b; } ir_constant::ir_constant(const ir_constant *c, unsigned i) { this->ir_type = ir_type_constant; this->type = c->type->get_base_type(); switch (this->type->base_type) { case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break; case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break; case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break; case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break; default: assert(!"Should not get here."); break; } } ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list) { this->ir_type = ir_type_constant; this->type = type; assert(type->is_scalar() || type->is_vector() || type->is_matrix() || type->is_record() || type->is_array()); if (type->is_array()) { this->array_elements = talloc_array(this, ir_constant *, type->length); unsigned i = 0; foreach_list(node, value_list) { ir_constant *value = (ir_constant *) node; assert(value->as_constant() != NULL); this->array_elements[i++] = value; } return; } /* If the constant is a record, the types of each of the entries in * value_list must be a 1-for-1 match with the structure components. Each * entry must also be a constant. Just move the nodes from the value_list * to the list in the ir_constant. */ /* FINISHME: Should there be some type checking and / or assertions here? */ /* FINISHME: Should the new constant take ownership of the nodes from * FINISHME: value_list, or should it make copies? */ if (type->is_record()) { value_list->move_nodes_to(& this->components); return; } ir_constant *value = (ir_constant *) (value_list->head); /* Use each component from each entry in the value_list to initialize one * component of the constant being constructed. */ for (unsigned i = 0; i < type->components(); /* empty */) { assert(value->as_constant() != NULL); assert(!value->is_tail_sentinel()); for (unsigned j = 0; j < value->type->components(); j++) { switch (type->base_type) { case GLSL_TYPE_UINT: this->value.u[i] = value->get_uint_component(j); break; case GLSL_TYPE_INT: this->value.i[i] = value->get_int_component(j); break; case GLSL_TYPE_FLOAT: this->value.f[i] = value->get_float_component(j); break; case GLSL_TYPE_BOOL: this->value.b[i] = value->get_bool_component(j); break; default: /* FINISHME: What to do? Exceptions are not the answer. */ break; } i++; if (i >= type->components()) break; } value = (ir_constant *) value->next; } } ir_constant * ir_constant::zero(void *mem_ctx, const glsl_type *type) { assert(type->is_numeric()); ir_constant *c = new(mem_ctx) ir_constant; c->type = type; memset(&c->value, 0, sizeof(c->value)); return c; } bool ir_constant::get_bool_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return this->value.u[i] != 0; case GLSL_TYPE_INT: return this->value.i[i] != 0; case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0; case GLSL_TYPE_BOOL: return this->value.b[i]; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return false; } float ir_constant::get_float_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return (float) this->value.u[i]; case GLSL_TYPE_INT: return (float) this->value.i[i]; case GLSL_TYPE_FLOAT: return this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0.0; } int ir_constant::get_int_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return this->value.u[i]; case GLSL_TYPE_INT: return this->value.i[i]; case GLSL_TYPE_FLOAT: return (int) this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0; } unsigned ir_constant::get_uint_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return this->value.u[i]; case GLSL_TYPE_INT: return this->value.i[i]; case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0; } ir_constant * ir_constant::get_array_element(unsigned i) const { assert(this->type->is_array()); assert(i < this->type->length); return array_elements[i]; } ir_constant * ir_constant::get_record_field(const char *name) { int idx = this->type->field_index(name); if (idx < 0) return NULL; if (this->components.is_empty()) return NULL; exec_node *node = this->components.head; for (int i = 0; i < idx; i++) { node = node->next; /* If the end of the list is encountered before the element matching the * requested field is found, return NULL. */ if (node->is_tail_sentinel()) return NULL; } return (ir_constant *) node; } bool ir_constant::has_value(const ir_constant *c) const { if (this->type != c->type) return false; if (this->type->is_array()) { for (unsigned i = 0; i < this->type->length; i++) { if (this->array_elements[i]->has_value(c->array_elements[i])) return false; } return true; } if (this->type->base_type == GLSL_TYPE_STRUCT) { const exec_node *a_node = this->components.head; const exec_node *b_node = c->components.head; while (!a_node->is_tail_sentinel()) { assert(!b_node->is_tail_sentinel()); const ir_constant *const a_field = (ir_constant *) a_node; const ir_constant *const b_field = (ir_constant *) b_node; if (!a_field->has_value(b_field)) return false; a_node = a_node->next; b_node = b_node->next; } return true; } for (unsigned i = 0; i < this->type->components(); i++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: if (this->value.u[i] != c->value.u[i]) return false; break; case GLSL_TYPE_INT: if (this->value.i[i] != c->value.i[i]) return false; break; case GLSL_TYPE_FLOAT: if (this->value.f[i] != c->value.f[i]) return false; break; case GLSL_TYPE_BOOL: if (this->value.b[i] != c->value.b[i]) return false; break; default: assert(!"Should not get here."); return false; } } return true; } ir_dereference_variable::ir_dereference_variable(ir_variable *var) { this->ir_type = ir_type_dereference_variable; this->var = var; this->type = (var != NULL) ? var->type : glsl_type::error_type; } ir_dereference_array::ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index) { this->ir_type = ir_type_dereference_array; this->array_index = array_index; this->set_array(value); } ir_dereference_array::ir_dereference_array(ir_variable *var, ir_rvalue *array_index) { void *ctx = talloc_parent(var); this->ir_type = ir_type_dereference_array; this->array_index = array_index; this->set_array(new(ctx) ir_dereference_variable(var)); } void ir_dereference_array::set_array(ir_rvalue *value) { this->array = value; this->type = glsl_type::error_type; if (this->array != NULL) { const glsl_type *const vt = this->array->type; if (vt->is_array()) { type = vt->element_type(); } else if (vt->is_matrix()) { type = vt->column_type(); } else if (vt->is_vector()) { type = vt->get_base_type(); } } } ir_dereference_record::ir_dereference_record(ir_rvalue *value, const char *field) { this->ir_type = ir_type_dereference_record; this->record = value; this->field = talloc_strdup(this, field); this->type = (this->record != NULL) ? this->record->type->field_type(field) : glsl_type::error_type; } ir_dereference_record::ir_dereference_record(ir_variable *var, const char *field) { void *ctx = talloc_parent(var); this->ir_type = ir_type_dereference_record; this->record = new(ctx) ir_dereference_variable(var); this->field = talloc_strdup(this, field); this->type = (this->record != NULL) ? this->record->type->field_type(field) : glsl_type::error_type; } bool ir_dereference::is_lvalue() { ir_variable *var = this->variable_referenced(); /* Every l-value derference chain eventually ends in a variable. */ if ((var == NULL) || var->read_only) return false; if (this->type->is_array() && !var->array_lvalue) return false; return true; } const char *tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf" }; const char *ir_texture::opcode_string() { assert((unsigned int) op <= sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0])); return tex_opcode_strs[op]; } ir_texture_opcode ir_texture::get_opcode(const char *str) { const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]); for (int op = 0; op < count; op++) { if (strcmp(str, tex_opcode_strs[op]) == 0) return (ir_texture_opcode) op; } return (ir_texture_opcode) -1; } void ir_texture::set_sampler(ir_dereference *sampler) { assert(sampler != NULL); this->sampler = sampler; switch (sampler->type->sampler_type) { case GLSL_TYPE_FLOAT: this->type = glsl_type::vec4_type; break; case GLSL_TYPE_INT: this->type = glsl_type::ivec4_type; break; case GLSL_TYPE_UINT: this->type = glsl_type::uvec4_type; break; } } void ir_swizzle::init_mask(const unsigned *comp, unsigned count) { assert((count >= 1) && (count <= 4)); memset(&this->mask, 0, sizeof(this->mask)); this->mask.num_components = count; unsigned dup_mask = 0; switch (count) { case 4: assert(comp[3] <= 3); dup_mask |= (1U << comp[3]) & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2])); this->mask.w = comp[3]; case 3: assert(comp[2] <= 3); dup_mask |= (1U << comp[2]) & ((1U << comp[0]) | (1U << comp[1])); this->mask.z = comp[2]; case 2: assert(comp[1] <= 3); dup_mask |= (1U << comp[1]) & ((1U << comp[0])); this->mask.y = comp[1]; case 1: assert(comp[0] <= 3); this->mask.x = comp[0]; } this->mask.has_duplicates = dup_mask != 0; /* Based on the number of elements in the swizzle and the base type * (i.e., float, int, unsigned, or bool) of the vector being swizzled, * generate the type of the resulting value. */ type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1); } ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z, unsigned w, unsigned count) : val(val) { const unsigned components[4] = { x, y, z, w }; this->ir_type = ir_type_swizzle; this->init_mask(components, count); } ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp, unsigned count) : val(val) { this->ir_type = ir_type_swizzle; this->init_mask(comp, count); } ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask) { this->ir_type = ir_type_swizzle; this->val = val; this->mask = mask; this->type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1); } #define X 1 #define R 5 #define S 9 #define I 13 ir_swizzle * ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length) { void *ctx = talloc_parent(val); /* For each possible swizzle character, this table encodes the value in * \c idx_map that represents the 0th element of the vector. For invalid * swizzle characters (e.g., 'k'), a special value is used that will allow * detection of errors. */ static const unsigned char base_idx[26] = { /* a b c d e f g h i j k l m */ R, R, I, I, I, I, R, I, I, I, I, I, I, /* n o p q r s t u v w x y z */ I, I, S, S, R, S, S, I, I, X, X, X, X }; /* Each valid swizzle character has an entry in the previous table. This * table encodes the base index encoded in the previous table plus the actual * index of the swizzle character. When processing swizzles, the first * character in the string is indexed in the previous table. Each character * in the string is indexed in this table, and the value found there has the * value form the first table subtracted. The result must be on the range * [0,3]. * * For example, the string "wzyx" will get X from the first table. Each of * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After * subtraction, the swizzle values are { 3, 2, 1, 0 }. * * The string "wzrg" will get X from the first table. Each of the characters * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range * [0,3], the error is detected. */ static const unsigned char idx_map[26] = { /* a b c d e f g h i j k l m */ R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0, /* n o p q r s t u v w x y z */ 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2 }; int swiz_idx[4] = { 0, 0, 0, 0 }; unsigned i; /* Validate the first character in the swizzle string and look up the base * index value as described above. */ if ((str[0] < 'a') || (str[0] > 'z')) return NULL; const unsigned base = base_idx[str[0] - 'a']; for (i = 0; (i < 4) && (str[i] != '\0'); i++) { /* Validate the next character, and, as described above, convert it to a * swizzle index. */ if ((str[i] < 'a') || (str[i] > 'z')) return NULL; swiz_idx[i] = idx_map[str[i] - 'a'] - base; if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length)) return NULL; } if (str[i] != '\0') return NULL; return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2], swiz_idx[3], i); } #undef X #undef R #undef S #undef I ir_variable * ir_swizzle::variable_referenced() { return this->val->variable_referenced(); } ir_variable::ir_variable(const struct glsl_type *type, const char *name, ir_variable_mode mode) : max_array_access(0), read_only(false), centroid(false), invariant(false), shader_in(false), shader_out(false), mode(mode), interpolation(ir_var_smooth), array_lvalue(false) { this->ir_type = ir_type_variable; this->type = type; this->name = talloc_strdup(this, name); this->location = -1; this->warn_extension = NULL; this->constant_value = NULL; if (type && type->base_type == GLSL_TYPE_SAMPLER) this->read_only = true; } const char * ir_variable::interpolation_string() const { if (!this->shader_in && !this->shader_out) return ""; switch (this->interpolation) { case ir_var_smooth: return "smooth"; case ir_var_flat: return "flat"; case ir_var_noperspective: return "noperspective"; } assert(!"Should not get here."); return ""; } unsigned ir_variable::component_slots() const { /* FINISHME: Sparsely accessed arrays require fewer slots. */ return this->type->component_slots(); } ir_function_signature::ir_function_signature(const glsl_type *return_type) : return_type(return_type), is_defined(false), _function(NULL) { this->ir_type = ir_type_function_signature; this->is_built_in = false; } const char * ir_function_signature::qualifiers_match(exec_list *params) { exec_list_iterator iter_a = parameters.iterator(); exec_list_iterator iter_b = params->iterator(); /* check that the qualifiers match. */ while (iter_a.has_next()) { ir_variable *a = (ir_variable *)iter_a.get(); ir_variable *b = (ir_variable *)iter_b.get(); if (a->read_only != b->read_only || a->mode != b->mode || a->interpolation != b->interpolation || a->centroid != b->centroid) { /* parameter a's qualifiers don't match */ return a->name; } iter_a.next(); iter_b.next(); } return NULL; } void ir_function_signature::replace_parameters(exec_list *new_params) { /* Destroy all of the previous parameter information. If the previous * parameter information comes from the function prototype, it may either * specify incorrect parameter names or not have names at all. */ foreach_iter(exec_list_iterator, iter, parameters) { assert(((ir_instruction *) iter.get())->as_variable() != NULL); iter.remove(); } new_params->move_nodes_to(¶meters); } ir_function::ir_function(const char *name) { this->ir_type = ir_type_function; this->name = talloc_strdup(this, name); } ir_call * ir_call::get_error_instruction(void *ctx) { ir_call *call = new(ctx) ir_call; call->type = glsl_type::error_type; return call; } void ir_call::set_callee(ir_function_signature *sig) { assert((this->type == NULL) || (this->type == sig->return_type)); this->callee = sig; } void visit_exec_list(exec_list *list, ir_visitor *visitor) { foreach_iter(exec_list_iterator, iter, *list) { ((ir_instruction *)iter.get())->accept(visitor); } } static void steal_memory(ir_instruction *ir, void *new_ctx) { ir_variable *var = ir->as_variable(); ir_constant *constant = ir->as_constant(); if (var != NULL && var->constant_value != NULL) steal_memory(var->constant_value, ir); /* The components of aggregate constants are not visited by the normal * visitor, so steal their values by hand. */ if (constant != NULL) { if (constant->type->is_record()) { foreach_iter(exec_list_iterator, iter, constant->components) { ir_constant *field = (ir_constant *)iter.get(); steal_memory(field, ir); } } else if (constant->type->is_array()) { for (unsigned int i = 0; i < constant->type->length; i++) { steal_memory(constant->array_elements[i], ir); } } } talloc_steal(new_ctx, ir); } void reparent_ir(exec_list *list, void *mem_ctx) { foreach_list(node, list) { visit_tree((ir_instruction *) node, steal_memory, mem_ctx); } }