/* * Copyright © 2008, 2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include extern "C" { #include "main/core.h" /* for struct gl_context */ #include "main/context.h" #include "main/shaderobj.h" } #include "ralloc.h" #include "ast.h" #include "glsl_parser_extras.h" #include "glsl_parser.h" #include "ir_optimization.h" #include "loop_analysis.h" /** * Format a short human-readable description of the given GLSL version. */ const char * glsl_compute_version_string(void *mem_ctx, bool is_es, unsigned version) { return ralloc_asprintf(mem_ctx, "GLSL%s %d.%02d", is_es ? " ES" : "", version / 100, version % 100); } static unsigned known_desktop_glsl_versions[] = { 110, 120, 130, 140, 150, 330, 400, 410, 420, 430, 440 }; _mesa_glsl_parse_state::_mesa_glsl_parse_state(struct gl_context *_ctx, gl_shader_stage stage, void *mem_ctx) : ctx(_ctx), cs_input_local_size_specified(false), cs_input_local_size(), switch_state() { assert(stage < MESA_SHADER_STAGES); this->stage = stage; this->scanner = NULL; this->translation_unit.make_empty(); this->symbols = new(mem_ctx) glsl_symbol_table; this->num_uniform_blocks = 0; this->uniform_block_array_size = 0; this->uniform_blocks = NULL; this->info_log = ralloc_strdup(mem_ctx, ""); this->error = false; this->loop_nesting_ast = NULL; this->struct_specifier_depth = 0; this->uses_builtin_functions = false; /* Set default language version and extensions */ this->language_version = ctx->Const.ForceGLSLVersion ? ctx->Const.ForceGLSLVersion : 110; this->es_shader = false; this->ARB_texture_rectangle_enable = true; /* OpenGL ES 2.0 has different defaults from desktop GL. */ if (ctx->API == API_OPENGLES2) { this->language_version = 100; this->es_shader = true; this->ARB_texture_rectangle_enable = false; } this->extensions = &ctx->Extensions; this->Const.MaxLights = ctx->Const.MaxLights; this->Const.MaxClipPlanes = ctx->Const.MaxClipPlanes; this->Const.MaxTextureUnits = ctx->Const.MaxTextureUnits; this->Const.MaxTextureCoords = ctx->Const.MaxTextureCoordUnits; this->Const.MaxVertexAttribs = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs; this->Const.MaxVertexUniformComponents = ctx->Const.Program[MESA_SHADER_VERTEX].MaxUniformComponents; this->Const.MaxVertexTextureImageUnits = ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits; this->Const.MaxCombinedTextureImageUnits = ctx->Const.MaxCombinedTextureImageUnits; this->Const.MaxTextureImageUnits = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; this->Const.MaxFragmentUniformComponents = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxUniformComponents; this->Const.MinProgramTexelOffset = ctx->Const.MinProgramTexelOffset; this->Const.MaxProgramTexelOffset = ctx->Const.MaxProgramTexelOffset; this->Const.MaxDrawBuffers = ctx->Const.MaxDrawBuffers; /* 1.50 constants */ this->Const.MaxVertexOutputComponents = ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents; this->Const.MaxGeometryInputComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents; this->Const.MaxGeometryOutputComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents; this->Const.MaxFragmentInputComponents = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents; this->Const.MaxGeometryTextureImageUnits = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits; this->Const.MaxGeometryOutputVertices = ctx->Const.MaxGeometryOutputVertices; this->Const.MaxGeometryTotalOutputComponents = ctx->Const.MaxGeometryTotalOutputComponents; this->Const.MaxGeometryUniformComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxUniformComponents; this->Const.MaxVertexAtomicCounters = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters; this->Const.MaxGeometryAtomicCounters = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters; this->Const.MaxFragmentAtomicCounters = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters; this->Const.MaxCombinedAtomicCounters = ctx->Const.MaxCombinedAtomicCounters; this->Const.MaxAtomicBufferBindings = ctx->Const.MaxAtomicBufferBindings; /* Compute shader constants */ for (unsigned i = 0; i < Elements(this->Const.MaxComputeWorkGroupCount); i++) this->Const.MaxComputeWorkGroupCount[i] = ctx->Const.MaxComputeWorkGroupCount[i]; for (unsigned i = 0; i < Elements(this->Const.MaxComputeWorkGroupSize); i++) this->Const.MaxComputeWorkGroupSize[i] = ctx->Const.MaxComputeWorkGroupSize[i]; this->Const.MaxImageUnits = ctx->Const.MaxImageUnits; this->Const.MaxCombinedImageUnitsAndFragmentOutputs = ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs; this->Const.MaxImageSamples = ctx->Const.MaxImageSamples; this->Const.MaxVertexImageUniforms = ctx->Const.Program[MESA_SHADER_VERTEX].MaxImageUniforms; this->Const.MaxGeometryImageUniforms = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxImageUniforms; this->Const.MaxFragmentImageUniforms = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxImageUniforms; this->Const.MaxCombinedImageUniforms = ctx->Const.MaxCombinedImageUniforms; this->current_function = NULL; this->toplevel_ir = NULL; this->found_return = false; this->all_invariant = false; this->user_structures = NULL; this->num_user_structures = 0; /* Populate the list of supported GLSL versions */ /* FINISHME: Once the OpenGL 3.0 'forward compatible' context or * the OpenGL 3.2 Core context is supported, this logic will need * change. Older versions of GLSL are no longer supported * outside the compatibility contexts of 3.x. */ this->num_supported_versions = 0; if (_mesa_is_desktop_gl(ctx)) { for (unsigned i = 0; i < ARRAY_SIZE(known_desktop_glsl_versions); i++) { if (known_desktop_glsl_versions[i] <= ctx->Const.GLSLVersion) { this->supported_versions[this->num_supported_versions].ver = known_desktop_glsl_versions[i]; this->supported_versions[this->num_supported_versions].es = false; this->num_supported_versions++; } } } if (ctx->API == API_OPENGLES2 || ctx->Extensions.ARB_ES2_compatibility) { this->supported_versions[this->num_supported_versions].ver = 100; this->supported_versions[this->num_supported_versions].es = true; this->num_supported_versions++; } if (_mesa_is_gles3(ctx) || ctx->Extensions.ARB_ES3_compatibility) { this->supported_versions[this->num_supported_versions].ver = 300; this->supported_versions[this->num_supported_versions].es = true; this->num_supported_versions++; } assert(this->num_supported_versions <= ARRAY_SIZE(this->supported_versions)); /* Create a string for use in error messages to tell the user which GLSL * versions are supported. */ char *supported = ralloc_strdup(this, ""); for (unsigned i = 0; i < this->num_supported_versions; i++) { unsigned ver = this->supported_versions[i].ver; const char *const prefix = (i == 0) ? "" : ((i == this->num_supported_versions - 1) ? ", and " : ", "); const char *const suffix = (this->supported_versions[i].es) ? " ES" : ""; ralloc_asprintf_append(& supported, "%s%u.%02u%s", prefix, ver / 100, ver % 100, suffix); } this->supported_version_string = supported; if (ctx->Const.ForceGLSLExtensionsWarn) _mesa_glsl_process_extension("all", NULL, "warn", NULL, this); this->default_uniform_qualifier = new(this) ast_type_qualifier(); this->default_uniform_qualifier->flags.q.shared = 1; this->default_uniform_qualifier->flags.q.column_major = 1; this->gs_input_prim_type_specified = false; this->gs_input_size = 0; this->in_qualifier = new(this) ast_type_qualifier(); this->out_qualifier = new(this) ast_type_qualifier(); this->early_fragment_tests = false; memset(this->atomic_counter_offsets, 0, sizeof(this->atomic_counter_offsets)); } /** * Determine whether the current GLSL version is sufficiently high to support * a certain feature, and generate an error message if it isn't. * * \param required_glsl_version and \c required_glsl_es_version are * interpreted as they are in _mesa_glsl_parse_state::is_version(). * * \param locp is the parser location where the error should be reported. * * \param fmt (and additional arguments) constitute a printf-style error * message to report if the version check fails. Information about the * current and required GLSL versions will be appended. So, for example, if * the GLSL version being compiled is 1.20, and check_version(130, 300, locp, * "foo unsupported") is called, the error message will be "foo unsupported in * GLSL 1.20 (GLSL 1.30 or GLSL 3.00 ES required)". */ bool _mesa_glsl_parse_state::check_version(unsigned required_glsl_version, unsigned required_glsl_es_version, YYLTYPE *locp, const char *fmt, ...) { if (this->is_version(required_glsl_version, required_glsl_es_version)) return true; va_list args; va_start(args, fmt); char *problem = ralloc_vasprintf(this, fmt, args); va_end(args); const char *glsl_version_string = glsl_compute_version_string(this, false, required_glsl_version); const char *glsl_es_version_string = glsl_compute_version_string(this, true, required_glsl_es_version); const char *requirement_string = ""; if (required_glsl_version && required_glsl_es_version) { requirement_string = ralloc_asprintf(this, " (%s or %s required)", glsl_version_string, glsl_es_version_string); } else if (required_glsl_version) { requirement_string = ralloc_asprintf(this, " (%s required)", glsl_version_string); } else if (required_glsl_es_version) { requirement_string = ralloc_asprintf(this, " (%s required)", glsl_es_version_string); } _mesa_glsl_error(locp, this, "%s in %s%s", problem, this->get_version_string(), requirement_string); return false; } /** * Process a GLSL #version directive. * * \param version is the integer that follows the #version token. * * \param ident is a string identifier that follows the integer, if any is * present. Otherwise NULL. */ void _mesa_glsl_parse_state::process_version_directive(YYLTYPE *locp, int version, const char *ident) { bool es_token_present = false; if (ident) { if (strcmp(ident, "es") == 0) { es_token_present = true; } else if (version >= 150) { if (strcmp(ident, "core") == 0) { /* Accept the token. There's no need to record that this is * a core profile shader since that's the only profile we support. */ } else if (strcmp(ident, "compatibility") == 0) { _mesa_glsl_error(locp, this, "the compatibility profile is not supported"); } else { _mesa_glsl_error(locp, this, "\"%s\" is not a valid shading language profile; " "if present, it must be \"core\"", ident); } } else { _mesa_glsl_error(locp, this, "illegal text following version number"); } } this->es_shader = es_token_present; if (version == 100) { if (es_token_present) { _mesa_glsl_error(locp, this, "GLSL 1.00 ES should be selected using " "`#version 100'"); } else { this->es_shader = true; } } if (this->es_shader) { this->ARB_texture_rectangle_enable = false; } this->language_version = version; bool supported = false; for (unsigned i = 0; i < this->num_supported_versions; i++) { if (this->supported_versions[i].ver == (unsigned) version && this->supported_versions[i].es == this->es_shader) { supported = true; break; } } if (!supported) { _mesa_glsl_error(locp, this, "%s is not supported. " "Supported versions are: %s", this->get_version_string(), this->supported_version_string); /* On exit, the language_version must be set to a valid value. * Later calls to _mesa_glsl_initialize_types will misbehave if * the version is invalid. */ switch (this->ctx->API) { case API_OPENGL_COMPAT: case API_OPENGL_CORE: this->language_version = this->ctx->Const.GLSLVersion; break; case API_OPENGLES: assert(!"Should not get here."); /* FALLTHROUGH */ case API_OPENGLES2: this->language_version = 100; break; } } } /** * Translate a gl_shader_stage to a short shader stage name for debug * printouts and error messages. */ const char * _mesa_shader_stage_to_string(unsigned stage) { switch (stage) { case MESA_SHADER_VERTEX: return "vertex"; case MESA_SHADER_FRAGMENT: return "fragment"; case MESA_SHADER_GEOMETRY: return "geometry"; } assert(!"Should not get here."); return "unknown"; } /* This helper function will append the given message to the shader's info log and report it via GL_ARB_debug_output. Per that extension, 'type' is one of the enum values classifying the message, and 'id' is the implementation-defined ID of the given message. */ static void _mesa_glsl_msg(const YYLTYPE *locp, _mesa_glsl_parse_state *state, GLenum type, const char *fmt, va_list ap) { bool error = (type == MESA_DEBUG_TYPE_ERROR); GLuint msg_id = 0; assert(state->info_log != NULL); /* Get the offset that the new message will be written to. */ int msg_offset = strlen(state->info_log); ralloc_asprintf_append(&state->info_log, "%u:%u(%u): %s: ", locp->source, locp->first_line, locp->first_column, error ? "error" : "warning"); ralloc_vasprintf_append(&state->info_log, fmt, ap); const char *const msg = &state->info_log[msg_offset]; struct gl_context *ctx = state->ctx; /* Report the error via GL_ARB_debug_output. */ _mesa_shader_debug(ctx, type, &msg_id, msg, strlen(msg)); ralloc_strcat(&state->info_log, "\n"); } void _mesa_glsl_error(YYLTYPE *locp, _mesa_glsl_parse_state *state, const char *fmt, ...) { va_list ap; state->error = true; va_start(ap, fmt); _mesa_glsl_msg(locp, state, MESA_DEBUG_TYPE_ERROR, fmt, ap); va_end(ap); } void _mesa_glsl_warning(const YYLTYPE *locp, _mesa_glsl_parse_state *state, const char *fmt, ...) { va_list ap; va_start(ap, fmt); _mesa_glsl_msg(locp, state, MESA_DEBUG_TYPE_OTHER, fmt, ap); va_end(ap); } /** * Enum representing the possible behaviors that can be specified in * an #extension directive. */ enum ext_behavior { extension_disable, extension_enable, extension_require, extension_warn }; /** * Element type for _mesa_glsl_supported_extensions */ struct _mesa_glsl_extension { /** * Name of the extension when referred to in a GLSL extension * statement */ const char *name; /** True if this extension is available to desktop GL shaders */ bool avail_in_GL; /** True if this extension is available to GLES shaders */ bool avail_in_ES; /** * Flag in the gl_extensions struct indicating whether this * extension is supported by the driver, or * &gl_extensions::dummy_true if supported by all drivers. * * Note: the type (GLboolean gl_extensions::*) is a "pointer to * member" type, the type-safe alternative to the "offsetof" macro. * In a nutshell: * * - foo bar::* p declares p to be an "offset" to a field of type * foo that exists within struct bar * - &bar::baz computes the "offset" of field baz within struct bar * - x.*p accesses the field of x that exists at "offset" p * - x->*p is equivalent to (*x).*p */ const GLboolean gl_extensions::* supported_flag; /** * Flag in the _mesa_glsl_parse_state struct that should be set * when this extension is enabled. * * See note in _mesa_glsl_extension::supported_flag about "pointer * to member" types. */ bool _mesa_glsl_parse_state::* enable_flag; /** * Flag in the _mesa_glsl_parse_state struct that should be set * when the shader requests "warn" behavior for this extension. * * See note in _mesa_glsl_extension::supported_flag about "pointer * to member" types. */ bool _mesa_glsl_parse_state::* warn_flag; bool compatible_with_state(const _mesa_glsl_parse_state *state) const; void set_flags(_mesa_glsl_parse_state *state, ext_behavior behavior) const; }; #define EXT(NAME, GL, ES, SUPPORTED_FLAG) \ { "GL_" #NAME, GL, ES, &gl_extensions::SUPPORTED_FLAG, \ &_mesa_glsl_parse_state::NAME##_enable, \ &_mesa_glsl_parse_state::NAME##_warn } /** * Table of extensions that can be enabled/disabled within a shader, * and the conditions under which they are supported. */ static const _mesa_glsl_extension _mesa_glsl_supported_extensions[] = { /* API availability */ /* name GL ES supported flag */ EXT(ARB_arrays_of_arrays, true, false, ARB_arrays_of_arrays), EXT(ARB_conservative_depth, true, false, ARB_conservative_depth), EXT(ARB_draw_buffers, true, false, dummy_true), EXT(ARB_draw_instanced, true, false, ARB_draw_instanced), EXT(ARB_explicit_attrib_location, true, false, ARB_explicit_attrib_location), EXT(ARB_fragment_coord_conventions, true, false, ARB_fragment_coord_conventions), EXT(ARB_texture_rectangle, true, false, dummy_true), EXT(EXT_texture_array, true, false, EXT_texture_array), EXT(ARB_shader_texture_lod, true, false, ARB_shader_texture_lod), EXT(ARB_shader_stencil_export, true, false, ARB_shader_stencil_export), EXT(AMD_conservative_depth, true, false, ARB_conservative_depth), EXT(AMD_shader_stencil_export, true, false, ARB_shader_stencil_export), EXT(OES_texture_3D, false, true, EXT_texture3D), EXT(OES_EGL_image_external, false, true, OES_EGL_image_external), EXT(ARB_shader_bit_encoding, true, false, ARB_shader_bit_encoding), EXT(ARB_uniform_buffer_object, true, false, ARB_uniform_buffer_object), EXT(OES_standard_derivatives, false, true, OES_standard_derivatives), EXT(ARB_texture_cube_map_array, true, false, ARB_texture_cube_map_array), EXT(ARB_shading_language_packing, true, false, ARB_shading_language_packing), EXT(ARB_shading_language_420pack, true, false, ARB_shading_language_420pack), EXT(ARB_texture_multisample, true, false, ARB_texture_multisample), EXT(ARB_texture_query_levels, true, false, ARB_texture_query_levels), EXT(ARB_texture_query_lod, true, false, ARB_texture_query_lod), EXT(ARB_gpu_shader5, true, false, ARB_gpu_shader5), EXT(AMD_vertex_shader_layer, true, false, AMD_vertex_shader_layer), EXT(EXT_shader_integer_mix, true, true, EXT_shader_integer_mix), EXT(ARB_texture_gather, true, false, ARB_texture_gather), EXT(ARB_shader_atomic_counters, true, false, ARB_shader_atomic_counters), EXT(ARB_sample_shading, true, false, ARB_sample_shading), EXT(AMD_shader_trinary_minmax, true, false, dummy_true), EXT(ARB_viewport_array, true, false, ARB_viewport_array), EXT(ARB_compute_shader, true, false, ARB_compute_shader), EXT(ARB_shader_image_load_store, true, false, ARB_shader_image_load_store), }; #undef EXT /** * Determine whether a given extension is compatible with the target, * API, and extension information in the current parser state. */ bool _mesa_glsl_extension::compatible_with_state(const _mesa_glsl_parse_state * state) const { /* Check that this extension matches whether we are compiling * for desktop GL or GLES. */ if (state->es_shader) { if (!this->avail_in_ES) return false; } else { if (!this->avail_in_GL) return false; } /* Check that this extension is supported by the OpenGL * implementation. * * Note: the ->* operator indexes into state->extensions by the * offset this->supported_flag. See * _mesa_glsl_extension::supported_flag for more info. */ return state->extensions->*(this->supported_flag); } /** * Set the appropriate flags in the parser state to establish the * given behavior for this extension. */ void _mesa_glsl_extension::set_flags(_mesa_glsl_parse_state *state, ext_behavior behavior) const { /* Note: the ->* operator indexes into state by the * offsets this->enable_flag and this->warn_flag. See * _mesa_glsl_extension::supported_flag for more info. */ state->*(this->enable_flag) = (behavior != extension_disable); state->*(this->warn_flag) = (behavior == extension_warn); } /** * Find an extension by name in _mesa_glsl_supported_extensions. If * the name is not found, return NULL. */ static const _mesa_glsl_extension *find_extension(const char *name) { for (unsigned i = 0; i < Elements(_mesa_glsl_supported_extensions); ++i) { if (strcmp(name, _mesa_glsl_supported_extensions[i].name) == 0) { return &_mesa_glsl_supported_extensions[i]; } } return NULL; } bool _mesa_glsl_process_extension(const char *name, YYLTYPE *name_locp, const char *behavior_string, YYLTYPE *behavior_locp, _mesa_glsl_parse_state *state) { ext_behavior behavior; if (strcmp(behavior_string, "warn") == 0) { behavior = extension_warn; } else if (strcmp(behavior_string, "require") == 0) { behavior = extension_require; } else if (strcmp(behavior_string, "enable") == 0) { behavior = extension_enable; } else if (strcmp(behavior_string, "disable") == 0) { behavior = extension_disable; } else { _mesa_glsl_error(behavior_locp, state, "unknown extension behavior `%s'", behavior_string); return false; } if (strcmp(name, "all") == 0) { if ((behavior == extension_enable) || (behavior == extension_require)) { _mesa_glsl_error(name_locp, state, "cannot %s all extensions", (behavior == extension_enable) ? "enable" : "require"); return false; } else { for (unsigned i = 0; i < Elements(_mesa_glsl_supported_extensions); ++i) { const _mesa_glsl_extension *extension = &_mesa_glsl_supported_extensions[i]; if (extension->compatible_with_state(state)) { _mesa_glsl_supported_extensions[i].set_flags(state, behavior); } } } } else { const _mesa_glsl_extension *extension = find_extension(name); if (extension && extension->compatible_with_state(state)) { extension->set_flags(state, behavior); } else { static const char *const fmt = "extension `%s' unsupported in %s shader"; if (behavior == extension_require) { _mesa_glsl_error(name_locp, state, fmt, name, _mesa_shader_stage_to_string(state->stage)); return false; } else { _mesa_glsl_warning(name_locp, state, fmt, name, _mesa_shader_stage_to_string(state->stage)); } } } return true; } /** * Recurses through and if is an aggregate initializer * and sets 's field to . Gives later functions * (process_array_constructor, et al) sufficient information to do type * checking. * * Operates on assignments involving an aggregate initializer. E.g., * * vec4 pos = {1.0, -1.0, 0.0, 1.0}; * * or more ridiculously, * * struct S { * vec4 v[2]; * }; * * struct { * S a[2], b; * int c; * } aggregate = { * { * { * { * {1.0, 2.0, 3.0, 4.0}, // a[0].v[0] * {5.0, 6.0, 7.0, 8.0} // a[0].v[1] * } // a[0].v * }, // a[0] * { * { * {1.0, 2.0, 3.0, 4.0}, // a[1].v[0] * {5.0, 6.0, 7.0, 8.0} // a[1].v[1] * } // a[1].v * } // a[1] * }, // a * { * { * {1.0, 2.0, 3.0, 4.0}, // b.v[0] * {5.0, 6.0, 7.0, 8.0} // b.v[1] * } // b.v * }, // b * 4 // c * }; * * This pass is necessary because the right-hand side of e = { ... } * doesn't contain sufficient information to determine if the types match. */ void _mesa_ast_set_aggregate_type(const glsl_type *type, ast_expression *expr) { ast_aggregate_initializer *ai = (ast_aggregate_initializer *)expr; ai->constructor_type = type; /* If the aggregate is an array, recursively set its elements' types. */ if (type->is_array()) { /* Each array element has the type type->element_type(). * * E.g., if if struct S[2] we want to set each element's type to * struct S. */ for (exec_node *expr_node = ai->expressions.head; !expr_node->is_tail_sentinel(); expr_node = expr_node->next) { ast_expression *expr = exec_node_data(ast_expression, expr_node, link); if (expr->oper == ast_aggregate) _mesa_ast_set_aggregate_type(type->element_type(), expr); } /* If the aggregate is a struct, recursively set its fields' types. */ } else if (type->is_record()) { exec_node *expr_node = ai->expressions.head; /* Iterate through the struct's fields. */ for (unsigned i = 0; !expr_node->is_tail_sentinel() && i < type->length; i++, expr_node = expr_node->next) { ast_expression *expr = exec_node_data(ast_expression, expr_node, link); if (expr->oper == ast_aggregate) { _mesa_ast_set_aggregate_type(type->fields.structure[i].type, expr); } } /* If the aggregate is a matrix, set its columns' types. */ } else if (type->is_matrix()) { for (exec_node *expr_node = ai->expressions.head; !expr_node->is_tail_sentinel(); expr_node = expr_node->next) { ast_expression *expr = exec_node_data(ast_expression, expr_node, link); if (expr->oper == ast_aggregate) _mesa_ast_set_aggregate_type(type->column_type(), expr); } } } void _mesa_ast_type_qualifier_print(const struct ast_type_qualifier *q) { if (q->flags.q.constant) printf("const "); if (q->flags.q.invariant) printf("invariant "); if (q->flags.q.attribute) printf("attribute "); if (q->flags.q.varying) printf("varying "); if (q->flags.q.in && q->flags.q.out) printf("inout "); else { if (q->flags.q.in) printf("in "); if (q->flags.q.out) printf("out "); } if (q->flags.q.centroid) printf("centroid "); if (q->flags.q.sample) printf("sample "); if (q->flags.q.uniform) printf("uniform "); if (q->flags.q.smooth) printf("smooth "); if (q->flags.q.flat) printf("flat "); if (q->flags.q.noperspective) printf("noperspective "); } void ast_node::print(void) const { printf("unhandled node "); } ast_node::ast_node(void) { this->location.source = 0; this->location.line = 0; this->location.column = 0; } static void ast_opt_array_dimensions_print(const ast_array_specifier *array_specifier) { if (array_specifier) array_specifier->print(); } void ast_compound_statement::print(void) const { printf("{\n"); foreach_list_const(n, &this->statements) { ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } printf("}\n"); } ast_compound_statement::ast_compound_statement(int new_scope, ast_node *statements) { this->new_scope = new_scope; if (statements != NULL) { this->statements.push_degenerate_list_at_head(&statements->link); } } void ast_expression::print(void) const { switch (oper) { case ast_assign: case ast_mul_assign: case ast_div_assign: case ast_mod_assign: case ast_add_assign: case ast_sub_assign: case ast_ls_assign: case ast_rs_assign: case ast_and_assign: case ast_xor_assign: case ast_or_assign: subexpressions[0]->print(); printf("%s ", operator_string(oper)); subexpressions[1]->print(); break; case ast_field_selection: subexpressions[0]->print(); printf(". %s ", primary_expression.identifier); break; case ast_plus: case ast_neg: case ast_bit_not: case ast_logic_not: case ast_pre_inc: case ast_pre_dec: printf("%s ", operator_string(oper)); subexpressions[0]->print(); break; case ast_post_inc: case ast_post_dec: subexpressions[0]->print(); printf("%s ", operator_string(oper)); break; case ast_conditional: subexpressions[0]->print(); printf("? "); subexpressions[1]->print(); printf(": "); subexpressions[2]->print(); break; case ast_array_index: subexpressions[0]->print(); printf("[ "); subexpressions[1]->print(); printf("] "); break; case ast_function_call: { subexpressions[0]->print(); printf("( "); foreach_list_const (n, &this->expressions) { if (n != this->expressions.get_head()) printf(", "); ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } printf(") "); break; } case ast_identifier: printf("%s ", primary_expression.identifier); break; case ast_int_constant: printf("%d ", primary_expression.int_constant); break; case ast_uint_constant: printf("%u ", primary_expression.uint_constant); break; case ast_float_constant: printf("%f ", primary_expression.float_constant); break; case ast_bool_constant: printf("%s ", primary_expression.bool_constant ? "true" : "false"); break; case ast_sequence: { printf("( "); foreach_list_const(n, & this->expressions) { if (n != this->expressions.get_head()) printf(", "); ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } printf(") "); break; } case ast_aggregate: { printf("{ "); foreach_list_const(n, & this->expressions) { if (n != this->expressions.get_head()) printf(", "); ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } printf("} "); break; } default: assert(0); break; } } ast_expression::ast_expression(int oper, ast_expression *ex0, ast_expression *ex1, ast_expression *ex2) : primary_expression() { this->oper = ast_operators(oper); this->subexpressions[0] = ex0; this->subexpressions[1] = ex1; this->subexpressions[2] = ex2; this->non_lvalue_description = NULL; } void ast_expression_statement::print(void) const { if (expression) expression->print(); printf("; "); } ast_expression_statement::ast_expression_statement(ast_expression *ex) : expression(ex) { /* empty */ } void ast_function::print(void) const { return_type->print(); printf(" %s (", identifier); foreach_list_const(n, & this->parameters) { ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } printf(")"); } ast_function::ast_function(void) : return_type(NULL), identifier(NULL), is_definition(false), signature(NULL) { /* empty */ } void ast_fully_specified_type::print(void) const { _mesa_ast_type_qualifier_print(& qualifier); specifier->print(); } void ast_parameter_declarator::print(void) const { type->print(); if (identifier) printf("%s ", identifier); ast_opt_array_dimensions_print(array_specifier); } void ast_function_definition::print(void) const { prototype->print(); body->print(); } void ast_declaration::print(void) const { printf("%s ", identifier); ast_opt_array_dimensions_print(array_specifier); if (initializer) { printf("= "); initializer->print(); } } ast_declaration::ast_declaration(const char *identifier, ast_array_specifier *array_specifier, ast_expression *initializer) { this->identifier = identifier; this->array_specifier = array_specifier; this->initializer = initializer; } void ast_declarator_list::print(void) const { assert(type || invariant); if (type) type->print(); else printf("invariant "); foreach_list_const (ptr, & this->declarations) { if (ptr != this->declarations.get_head()) printf(", "); ast_node *ast = exec_node_data(ast_node, ptr, link); ast->print(); } printf("; "); } ast_declarator_list::ast_declarator_list(ast_fully_specified_type *type) { this->type = type; this->invariant = false; } void ast_jump_statement::print(void) const { switch (mode) { case ast_continue: printf("continue; "); break; case ast_break: printf("break; "); break; case ast_return: printf("return "); if (opt_return_value) opt_return_value->print(); printf("; "); break; case ast_discard: printf("discard; "); break; } } ast_jump_statement::ast_jump_statement(int mode, ast_expression *return_value) : opt_return_value(NULL) { this->mode = ast_jump_modes(mode); if (mode == ast_return) opt_return_value = return_value; } void ast_selection_statement::print(void) const { printf("if ( "); condition->print(); printf(") "); then_statement->print(); if (else_statement) { printf("else "); else_statement->print(); } } ast_selection_statement::ast_selection_statement(ast_expression *condition, ast_node *then_statement, ast_node *else_statement) { this->condition = condition; this->then_statement = then_statement; this->else_statement = else_statement; } void ast_switch_statement::print(void) const { printf("switch ( "); test_expression->print(); printf(") "); body->print(); } ast_switch_statement::ast_switch_statement(ast_expression *test_expression, ast_node *body) { this->test_expression = test_expression; this->body = body; } void ast_switch_body::print(void) const { printf("{\n"); if (stmts != NULL) { stmts->print(); } printf("}\n"); } ast_switch_body::ast_switch_body(ast_case_statement_list *stmts) { this->stmts = stmts; } void ast_case_label::print(void) const { if (test_value != NULL) { printf("case "); test_value->print(); printf(": "); } else { printf("default: "); } } ast_case_label::ast_case_label(ast_expression *test_value) { this->test_value = test_value; } void ast_case_label_list::print(void) const { foreach_list_const(n, & this->labels) { ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } printf("\n"); } ast_case_label_list::ast_case_label_list(void) { } void ast_case_statement::print(void) const { labels->print(); foreach_list_const(n, & this->stmts) { ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); printf("\n"); } } ast_case_statement::ast_case_statement(ast_case_label_list *labels) { this->labels = labels; } void ast_case_statement_list::print(void) const { foreach_list_const(n, & this->cases) { ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } } ast_case_statement_list::ast_case_statement_list(void) { } void ast_iteration_statement::print(void) const { switch (mode) { case ast_for: printf("for( "); if (init_statement) init_statement->print(); printf("; "); if (condition) condition->print(); printf("; "); if (rest_expression) rest_expression->print(); printf(") "); body->print(); break; case ast_while: printf("while ( "); if (condition) condition->print(); printf(") "); body->print(); break; case ast_do_while: printf("do "); body->print(); printf("while ( "); if (condition) condition->print(); printf("); "); break; } } ast_iteration_statement::ast_iteration_statement(int mode, ast_node *init, ast_node *condition, ast_expression *rest_expression, ast_node *body) { this->mode = ast_iteration_modes(mode); this->init_statement = init; this->condition = condition; this->rest_expression = rest_expression; this->body = body; } void ast_struct_specifier::print(void) const { printf("struct %s { ", name); foreach_list_const(n, &this->declarations) { ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } printf("} "); } ast_struct_specifier::ast_struct_specifier(const char *identifier, ast_declarator_list *declarator_list) { if (identifier == NULL) { static unsigned anon_count = 1; identifier = ralloc_asprintf(this, "#anon_struct_%04x", anon_count); anon_count++; } name = identifier; this->declarations.push_degenerate_list_at_head(&declarator_list->link); is_declaration = true; } static void set_shader_inout_layout(struct gl_shader *shader, struct _mesa_glsl_parse_state *state) { if (shader->Stage != MESA_SHADER_GEOMETRY) { /* Should have been prevented by the parser. */ assert(!state->in_qualifier->flags.i); assert(!state->out_qualifier->flags.i); } if (shader->Stage != MESA_SHADER_COMPUTE) { /* Should have been prevented by the parser. */ assert(!state->cs_input_local_size_specified); } switch (shader->Stage) { case MESA_SHADER_GEOMETRY: shader->Geom.VerticesOut = 0; if (state->out_qualifier->flags.q.max_vertices) shader->Geom.VerticesOut = state->out_qualifier->max_vertices; if (state->gs_input_prim_type_specified) { shader->Geom.InputType = state->in_qualifier->prim_type; } else { shader->Geom.InputType = PRIM_UNKNOWN; } if (state->out_qualifier->flags.q.prim_type) { shader->Geom.OutputType = state->out_qualifier->prim_type; } else { shader->Geom.OutputType = PRIM_UNKNOWN; } break; case MESA_SHADER_COMPUTE: if (state->cs_input_local_size_specified) { for (int i = 0; i < 3; i++) shader->Comp.LocalSize[i] = state->cs_input_local_size[i]; } else { for (int i = 0; i < 3; i++) shader->Comp.LocalSize[i] = 0; } break; default: /* Nothing to do. */ break; } } extern "C" { void _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader, bool dump_ast, bool dump_hir) { struct _mesa_glsl_parse_state *state = new(shader) _mesa_glsl_parse_state(ctx, shader->Stage, shader); const char *source = shader->Source; state->error = glcpp_preprocess(state, &source, &state->info_log, &ctx->Extensions, ctx); if (!state->error) { _mesa_glsl_lexer_ctor(state, source); _mesa_glsl_parse(state); _mesa_glsl_lexer_dtor(state); } if (dump_ast) { foreach_list_const(n, &state->translation_unit) { ast_node *ast = exec_node_data(ast_node, n, link); ast->print(); } printf("\n\n"); } ralloc_free(shader->ir); shader->ir = new(shader) exec_list; if (!state->error && !state->translation_unit.is_empty()) _mesa_ast_to_hir(shader->ir, state); if (!state->error) { validate_ir_tree(shader->ir); /* Print out the unoptimized IR. */ if (dump_hir) { _mesa_print_ir(shader->ir, state); } } if (!state->error && !shader->ir->is_empty()) { struct gl_shader_compiler_options *options = &ctx->ShaderCompilerOptions[shader->Stage]; /* Do some optimization at compile time to reduce shader IR size * and reduce later work if the same shader is linked multiple times */ while (do_common_optimization(shader->ir, false, false, 32, options)) ; validate_ir_tree(shader->ir); } if (shader->InfoLog) ralloc_free(shader->InfoLog); shader->symbols = state->symbols; shader->CompileStatus = !state->error; shader->InfoLog = state->info_log; shader->Version = state->language_version; shader->IsES = state->es_shader; shader->uses_builtin_functions = state->uses_builtin_functions; if (shader->UniformBlocks) ralloc_free(shader->UniformBlocks); shader->NumUniformBlocks = state->num_uniform_blocks; shader->UniformBlocks = state->uniform_blocks; ralloc_steal(shader, shader->UniformBlocks); if (!state->error) set_shader_inout_layout(shader, state); /* Retain any live IR, but trash the rest. */ reparent_ir(shader->ir, shader->ir); ralloc_free(state); } } /* extern "C" */ /** * Do the set of common optimizations passes * * \param ir List of instructions to be optimized * \param linked Is the shader linked? This enables * optimizations passes that remove code at * global scope and could cause linking to * fail. * \param uniform_locations_assigned Have locations already been assigned for * uniforms? This prevents the declarations * of unused uniforms from being removed. * The setting of this flag only matters if * \c linked is \c true. * \param max_unroll_iterations Maximum number of loop iterations to be * unrolled. Setting to 0 disables loop * unrolling. * \param options The driver's preferred shader options. */ bool do_common_optimization(exec_list *ir, bool linked, bool uniform_locations_assigned, unsigned max_unroll_iterations, const struct gl_shader_compiler_options *options) { GLboolean progress = GL_FALSE; progress = lower_instructions(ir, SUB_TO_ADD_NEG) || progress; if (linked) { progress = do_function_inlining(ir) || progress; progress = do_dead_functions(ir) || progress; progress = do_structure_splitting(ir) || progress; } progress = do_if_simplification(ir) || progress; progress = opt_flatten_nested_if_blocks(ir) || progress; progress = do_copy_propagation(ir) || progress; progress = do_copy_propagation_elements(ir) || progress; if (options->OptimizeForAOS && !linked) progress = opt_flip_matrices(ir) || progress; if (linked && options->OptimizeForAOS) { progress = do_vectorize(ir) || progress; } if (linked) progress = do_dead_code(ir, uniform_locations_assigned) || progress; else progress = do_dead_code_unlinked(ir) || progress; progress = do_dead_code_local(ir) || progress; progress = do_tree_grafting(ir) || progress; progress = do_constant_propagation(ir) || progress; if (linked) progress = do_constant_variable(ir) || progress; else progress = do_constant_variable_unlinked(ir) || progress; progress = do_constant_folding(ir) || progress; progress = do_cse(ir) || progress; progress = do_algebraic(ir) || progress; progress = do_lower_jumps(ir) || progress; progress = do_vec_index_to_swizzle(ir) || progress; progress = lower_vector_insert(ir, false) || progress; progress = do_swizzle_swizzle(ir) || progress; progress = do_noop_swizzle(ir) || progress; progress = optimize_split_arrays(ir, linked) || progress; progress = optimize_redundant_jumps(ir) || progress; loop_state *ls = analyze_loop_variables(ir); if (ls->loop_found) { progress = set_loop_controls(ir, ls) || progress; progress = unroll_loops(ir, ls, max_unroll_iterations) || progress; } delete ls; return progress; } extern "C" { /** * To be called at GL teardown time, this frees compiler datastructures. * * After calling this, any previously compiled shaders and shader * programs would be invalid. So this should happen at approximately * program exit. */ void _mesa_destroy_shader_compiler(void) { _mesa_destroy_shader_compiler_caches(); _mesa_glsl_release_types(); } /** * Releases compiler caches to trade off performance for memory. * * Intended to be used with glReleaseShaderCompiler(). */ void _mesa_destroy_shader_compiler_caches(void) { _mesa_glsl_release_builtin_functions(); } }