/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "glsl_symbol_table.h" #include "ast.h" #include "glsl_types.h" #include "ir.h" #include "main/core.h" /* for MIN2 */ static ir_rvalue * convert_component(ir_rvalue *src, const glsl_type *desired_type); bool apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, struct _mesa_glsl_parse_state *state); static unsigned process_parameters(exec_list *instructions, exec_list *actual_parameters, exec_list *parameters, struct _mesa_glsl_parse_state *state) { unsigned count = 0; foreach_list (n, parameters) { ast_node *const ast = exec_node_data(ast_node, n, link); ir_rvalue *result = ast->hir(instructions, state); ir_constant *const constant = result->constant_expression_value(); if (constant != NULL) result = constant; actual_parameters->push_tail(result); count++; } return count; } /** * Generate a source prototype for a function signature * * \param return_type Return type of the function. May be \c NULL. * \param name Name of the function. * \param parameters List of \c ir_instruction nodes representing the * parameter list for the function. This may be either a * formal (\c ir_variable) or actual (\c ir_rvalue) * parameter list. Only the type is used. * * \return * A ralloced string representing the prototype of the function. */ char * prototype_string(const glsl_type *return_type, const char *name, exec_list *parameters) { char *str = NULL; if (return_type != NULL) str = ralloc_asprintf(NULL, "%s ", return_type->name); ralloc_asprintf_append(&str, "%s(", name); const char *comma = ""; foreach_list(node, parameters) { const ir_instruction *const param = (ir_instruction *) node; ralloc_asprintf_append(&str, "%s%s", comma, param->type->name); comma = ", "; } ralloc_strcat(&str, ")"); return str; } /** * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify * that 'const_in' formal parameters (an extension in our IR) correspond to * ir_constant actual parameters. */ static bool verify_parameter_modes(_mesa_glsl_parse_state *state, ir_function_signature *sig, exec_list &actual_ir_parameters, exec_list &actual_ast_parameters) { exec_node *actual_ir_node = actual_ir_parameters.head; exec_node *actual_ast_node = actual_ast_parameters.head; foreach_list(formal_node, &sig->parameters) { /* The lists must be the same length. */ assert(!actual_ir_node->is_tail_sentinel()); assert(!actual_ast_node->is_tail_sentinel()); const ir_variable *const formal = (ir_variable *) formal_node; const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node; const ast_expression *const actual_ast = exec_node_data(ast_expression, actual_ast_node, link); /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always * FIXME: 0:0(0). */ YYLTYPE loc = actual_ast->get_location(); /* Verify that 'const_in' parameters are ir_constants. */ if (formal->mode == ir_var_const_in && actual->ir_type != ir_type_constant) { _mesa_glsl_error(&loc, state, "parameter `in %s' must be a constant expression", formal->name); return false; } /* Verify that 'out' and 'inout' actual parameters are lvalues. */ if (formal->mode == ir_var_out || formal->mode == ir_var_inout) { const char *mode = NULL; switch (formal->mode) { case ir_var_out: mode = "out"; break; case ir_var_inout: mode = "inout"; break; default: assert(false); break; } /* This AST-based check catches errors like f(i++). The IR-based * is_lvalue() is insufficient because the actual parameter at the * IR-level is just a temporary value, which is an l-value. */ if (actual_ast->non_lvalue_description != NULL) { _mesa_glsl_error(&loc, state, "function parameter '%s %s' references a %s", mode, formal->name, actual_ast->non_lvalue_description); return false; } if (actual->variable_referenced() && actual->variable_referenced()->read_only) { _mesa_glsl_error(&loc, state, "function parameter '%s %s' references the " "read-only variable '%s'", mode, formal->name, actual->variable_referenced()->name); return false; } else if (!actual->is_lvalue()) { _mesa_glsl_error(&loc, state, "function parameter '%s %s' is not an lvalue", mode, formal->name); return false; } } actual_ir_node = actual_ir_node->next; actual_ast_node = actual_ast_node->next; } return true; } /** * If a function call is generated, \c call_ir will point to it on exit. * Otherwise \c call_ir will be set to \c NULL. */ static ir_rvalue * generate_call(exec_list *instructions, ir_function_signature *sig, YYLTYPE *loc, exec_list *actual_parameters, ir_call **call_ir, struct _mesa_glsl_parse_state *state) { void *ctx = state; exec_list post_call_conversions; *call_ir = NULL; /* Perform implicit conversion of arguments. For out parameters, we need * to place them in a temporary variable and do the conversion after the * call takes place. Since we haven't emitted the call yet, we'll place * the post-call conversions in a temporary exec_list, and emit them later. */ exec_list_iterator actual_iter = actual_parameters->iterator(); exec_list_iterator formal_iter = sig->parameters.iterator(); while (actual_iter.has_next()) { ir_rvalue *actual = (ir_rvalue *) actual_iter.get(); ir_variable *formal = (ir_variable *) formal_iter.get(); assert(actual != NULL); assert(formal != NULL); if (formal->type->is_numeric() || formal->type->is_boolean()) { switch (formal->mode) { case ir_var_const_in: case ir_var_in: { ir_rvalue *converted = convert_component(actual, formal->type); actual->replace_with(converted); break; } case ir_var_out: if (actual->type != formal->type) { /* To convert an out parameter, we need to create a * temporary variable to hold the value before conversion, * and then perform the conversion after the function call * returns. * * This has the effect of transforming code like this: * * void f(out int x); * float value; * f(value); * * Into IR that's equivalent to this: * * void f(out int x); * float value; * int out_parameter_conversion; * f(out_parameter_conversion); * value = float(out_parameter_conversion); */ ir_variable *tmp = new(ctx) ir_variable(formal->type, "out_parameter_conversion", ir_var_temporary); instructions->push_tail(tmp); ir_dereference_variable *deref_tmp_1 = new(ctx) ir_dereference_variable(tmp); ir_dereference_variable *deref_tmp_2 = new(ctx) ir_dereference_variable(tmp); ir_rvalue *converted_tmp = convert_component(deref_tmp_1, actual->type); ir_assignment *assignment = new(ctx) ir_assignment(actual, converted_tmp); post_call_conversions.push_tail(assignment); actual->replace_with(deref_tmp_2); } break; case ir_var_inout: /* Inout parameters should never require conversion, since that * would require an implicit conversion to exist both to and * from the formal parameter type, and there are no * bidirectional implicit conversions. */ assert (actual->type == formal->type); break; default: assert (!"Illegal formal parameter mode"); break; } } actual_iter.next(); formal_iter.next(); } /* If the function call is a constant expression, don't generate any * instructions; just generate an ir_constant. * * Function calls were first allowed to be constant expressions in GLSL 1.20. */ if (state->language_version >= 120) { ir_constant *value = sig->constant_expression_value(actual_parameters); if (value != NULL) { return value; } } ir_dereference_variable *deref = NULL; if (!sig->return_type->is_void()) { /* Create a new temporary to hold the return value. */ ir_variable *var; var = new(ctx) ir_variable(sig->return_type, ralloc_asprintf(ctx, "%s_retval", sig->function_name()), ir_var_temporary); instructions->push_tail(var); deref = new(ctx) ir_dereference_variable(var); } ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters); instructions->push_tail(call); /* Also emit any necessary out-parameter conversions. */ instructions->append_list(&post_call_conversions); return deref ? deref->clone(ctx, NULL) : NULL; } /** * Given a function name and parameter list, find the matching signature. */ static ir_function_signature * match_function_by_name(const char *name, exec_list *actual_parameters, struct _mesa_glsl_parse_state *state) { void *ctx = state; ir_function *f = state->symbols->get_function(name); ir_function_signature *local_sig = NULL; ir_function_signature *sig = NULL; /* Is the function hidden by a record type constructor? */ if (state->symbols->get_type(name)) goto done; /* no match */ /* Is the function hidden by a variable (impossible in 1.10)? */ if (state->language_version != 110 && state->symbols->get_variable(name)) goto done; /* no match */ if (f != NULL) { /* Look for a match in the local shader. If exact, we're done. */ bool is_exact = false; sig = local_sig = f->matching_signature(actual_parameters, &is_exact); if (is_exact) goto done; if (!state->es_shader && f->has_user_signature()) { /* In desktop GL, the presence of a user-defined signature hides any * built-in signatures, so we must ignore them. In contrast, in ES2 * user-defined signatures add new overloads, so we must proceed. */ goto done; } } /* Local shader has no exact candidates; check the built-ins. */ _mesa_glsl_initialize_functions(state); for (unsigned i = 0; i < state->num_builtins_to_link; i++) { ir_function *builtin = state->builtins_to_link[i]->symbols->get_function(name); if (builtin == NULL) continue; bool is_exact = false; ir_function_signature *builtin_sig = builtin->matching_signature(actual_parameters, &is_exact); if (builtin_sig == NULL) continue; /* If the built-in signature is exact, we can stop. */ if (is_exact) { sig = builtin_sig; goto done; } if (sig == NULL) { /* We found an inexact match, which is better than nothing. However, * we should keep searching for an exact match. */ sig = builtin_sig; } } done: if (sig != NULL) { /* If the match is from a linked built-in shader, import the prototype. */ if (sig != local_sig) { if (f == NULL) { f = new(ctx) ir_function(name); state->symbols->add_global_function(f); emit_function(state, f); } f->add_signature(sig->clone_prototype(f, NULL)); } } return sig; } /** * Raise a "no matching function" error, listing all possible overloads the * compiler considered so developers can figure out what went wrong. */ static void no_matching_function_error(const char *name, YYLTYPE *loc, exec_list *actual_parameters, _mesa_glsl_parse_state *state) { char *str = prototype_string(NULL, name, actual_parameters); _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str); ralloc_free(str); const char *prefix = "candidates are: "; for (int i = -1; i < (int) state->num_builtins_to_link; i++) { glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols : state->symbols; ir_function *f = syms->get_function(name); if (f == NULL) continue; foreach_list (node, &f->signatures) { ir_function_signature *sig = (ir_function_signature *) node; str = prototype_string(sig->return_type, f->name, &sig->parameters); _mesa_glsl_error(loc, state, "%s%s", prefix, str); ralloc_free(str); prefix = " "; } } } /** * Perform automatic type conversion of constructor parameters * * This implements the rules in the "Conversion and Scalar Constructors" * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules. */ static ir_rvalue * convert_component(ir_rvalue *src, const glsl_type *desired_type) { void *ctx = ralloc_parent(src); const unsigned a = desired_type->base_type; const unsigned b = src->type->base_type; ir_expression *result = NULL; if (src->type->is_error()) return src; assert(a <= GLSL_TYPE_BOOL); assert(b <= GLSL_TYPE_BOOL); if (a == b) return src; switch (a) { case GLSL_TYPE_UINT: switch (b) { case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2u, src); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_i2u, new(ctx) ir_expression(ir_unop_f2i, src)); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_i2u, new(ctx) ir_expression(ir_unop_b2i, src)); break; } break; case GLSL_TYPE_INT: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_u2i, src); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2i, src); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_b2i, src); break; } break; case GLSL_TYPE_FLOAT: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL); break; case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL); break; } break; case GLSL_TYPE_BOOL: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_i2b, new(ctx) ir_expression(ir_unop_u2i, src)); break; case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL); break; } break; } assert(result != NULL); assert(result->type == desired_type); /* Try constant folding; it may fold in the conversion we just added. */ ir_constant *const constant = result->constant_expression_value(); return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result; } /** * Dereference a specific component from a scalar, vector, or matrix */ static ir_rvalue * dereference_component(ir_rvalue *src, unsigned component) { void *ctx = ralloc_parent(src); assert(component < src->type->components()); /* If the source is a constant, just create a new constant instead of a * dereference of the existing constant. */ ir_constant *constant = src->as_constant(); if (constant) return new(ctx) ir_constant(constant, component); if (src->type->is_scalar()) { return src; } else if (src->type->is_vector()) { return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1); } else { assert(src->type->is_matrix()); /* Dereference a row of the matrix, then call this function again to get * a specific element from that row. */ const int c = component / src->type->column_type()->vector_elements; const int r = component % src->type->column_type()->vector_elements; ir_constant *const col_index = new(ctx) ir_constant(c); ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index); col->type = src->type->column_type(); return dereference_component(col, r); } assert(!"Should not get here."); return NULL; } static ir_rvalue * process_array_constructor(exec_list *instructions, const glsl_type *constructor_type, YYLTYPE *loc, exec_list *parameters, struct _mesa_glsl_parse_state *state) { void *ctx = state; /* Array constructors come in two forms: sized and unsized. Sized array * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4 * variables. In this case the number of parameters must exactly match the * specified size of the array. * * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b' * are vec4 variables. In this case the size of the array being constructed * is determined by the number of parameters. * * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec: * * "There must be exactly the same number of arguments as the size of * the array being constructed. If no size is present in the * constructor, then the array is explicitly sized to the number of * arguments provided. The arguments are assigned in order, starting at * element 0, to the elements of the constructed array. Each argument * must be the same type as the element type of the array, or be a type * that can be converted to the element type of the array according to * Section 4.1.10 "Implicit Conversions."" */ exec_list actual_parameters; const unsigned parameter_count = process_parameters(instructions, &actual_parameters, parameters, state); if ((parameter_count == 0) || ((constructor_type->length != 0) && (constructor_type->length != parameter_count))) { const unsigned min_param = (constructor_type->length == 0) ? 1 : constructor_type->length; _mesa_glsl_error(loc, state, "array constructor must have %s %u " "parameter%s", (constructor_type->length != 0) ? "at least" : "exactly", min_param, (min_param <= 1) ? "" : "s"); return ir_rvalue::error_value(ctx); } if (constructor_type->length == 0) { constructor_type = glsl_type::get_array_instance(constructor_type->element_type(), parameter_count); assert(constructor_type != NULL); assert(constructor_type->length == parameter_count); } bool all_parameters_are_constant = true; /* Type cast each parameter and, if possible, fold constants. */ foreach_list_safe(n, &actual_parameters) { ir_rvalue *ir = (ir_rvalue *) n; ir_rvalue *result = ir; /* Apply implicit conversions (not the scalar constructor rules!). See * the spec quote above. */ if (constructor_type->element_type()->is_float()) { const glsl_type *desired_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, ir->type->vector_elements, ir->type->matrix_columns); if (result->type->can_implicitly_convert_to(desired_type)) { /* Even though convert_component() implements the constructor * conversion rules (not the implicit conversion rules), its safe * to use it here because we already checked that the implicit * conversion is legal. */ result = convert_component(ir, desired_type); } } if (result->type != constructor_type->element_type()) { _mesa_glsl_error(loc, state, "type error in array constructor: " "expected: %s, found %s", constructor_type->element_type()->name, result->type->name); } /* Attempt to convert the parameter to a constant valued expression. * After doing so, track whether or not all the parameters to the * constructor are trivially constant valued expressions. */ ir_rvalue *const constant = result->constant_expression_value(); if (constant != NULL) result = constant; else all_parameters_are_constant = false; ir->replace_with(result); } if (all_parameters_are_constant) return new(ctx) ir_constant(constructor_type, &actual_parameters); ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor", ir_var_temporary); instructions->push_tail(var); int i = 0; foreach_list(node, &actual_parameters) { ir_rvalue *rhs = (ir_rvalue *) node; ir_rvalue *lhs = new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL); instructions->push_tail(assignment); i++; } return new(ctx) ir_dereference_variable(var); } /** * Try to convert a record constructor to a constant expression */ static ir_constant * constant_record_constructor(const glsl_type *constructor_type, exec_list *parameters, void *mem_ctx) { foreach_list(node, parameters) { ir_constant *constant = ((ir_instruction *) node)->as_constant(); if (constant == NULL) return NULL; node->replace_with(constant); } return new(mem_ctx) ir_constant(constructor_type, parameters); } /** * Determine if a list consists of a single scalar r-value */ bool single_scalar_parameter(exec_list *parameters) { const ir_rvalue *const p = (ir_rvalue *) parameters->head; assert(((ir_rvalue *)p)->as_rvalue() != NULL); return (p->type->is_scalar() && p->next->is_tail_sentinel()); } /** * Generate inline code for a vector constructor * * The generated constructor code will consist of a temporary variable * declaration of the same type as the constructor. A sequence of assignments * from constructor parameters to the temporary will follow. * * \return * An \c ir_dereference_variable of the temprorary generated in the constructor * body. */ ir_rvalue * emit_inline_vector_constructor(const glsl_type *type, exec_list *instructions, exec_list *parameters, void *ctx) { assert(!parameters->is_empty()); ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary); instructions->push_tail(var); /* There are two kinds of vector constructors. * * - Construct a vector from a single scalar by replicating that scalar to * all components of the vector. * * - Construct a vector from an arbirary combination of vectors and * scalars. The components of the constructor parameters are assigned * to the vector in order until the vector is full. */ const unsigned lhs_components = type->components(); if (single_scalar_parameter(parameters)) { ir_rvalue *first_param = (ir_rvalue *)parameters->head; ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, lhs_components); ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var); const unsigned mask = (1U << lhs_components) - 1; assert(rhs->type == lhs->type); ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask); instructions->push_tail(inst); } else { unsigned base_component = 0; unsigned base_lhs_component = 0; ir_constant_data data; unsigned constant_mask = 0, constant_components = 0; memset(&data, 0, sizeof(data)); foreach_list(node, parameters) { ir_rvalue *param = (ir_rvalue *) node; unsigned rhs_components = param->type->components(); /* Do not try to assign more components to the vector than it has! */ if ((rhs_components + base_lhs_component) > lhs_components) { rhs_components = lhs_components - base_lhs_component; } const ir_constant *const c = param->as_constant(); if (c != NULL) { for (unsigned i = 0; i < rhs_components; i++) { switch (c->type->base_type) { case GLSL_TYPE_UINT: data.u[i + base_component] = c->get_uint_component(i); break; case GLSL_TYPE_INT: data.i[i + base_component] = c->get_int_component(i); break; case GLSL_TYPE_FLOAT: data.f[i + base_component] = c->get_float_component(i); break; case GLSL_TYPE_BOOL: data.b[i + base_component] = c->get_bool_component(i); break; default: assert(!"Should not get here."); break; } } /* Mask of fields to be written in the assignment. */ constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component; constant_components += rhs_components; base_component += rhs_components; } /* Advance the component index by the number of components * that were just assigned. */ base_lhs_component += rhs_components; } if (constant_mask != 0) { ir_dereference *lhs = new(ctx) ir_dereference_variable(var); const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type, constant_components, 1); ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data); ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask); instructions->push_tail(inst); } base_component = 0; foreach_list(node, parameters) { ir_rvalue *param = (ir_rvalue *) node; unsigned rhs_components = param->type->components(); /* Do not try to assign more components to the vector than it has! */ if ((rhs_components + base_component) > lhs_components) { rhs_components = lhs_components - base_component; } const ir_constant *const c = param->as_constant(); if (c == NULL) { /* Mask of fields to be written in the assignment. */ const unsigned write_mask = ((1U << rhs_components) - 1) << base_component; ir_dereference *lhs = new(ctx) ir_dereference_variable(var); /* Generate a swizzle so that LHS and RHS sizes match. */ ir_rvalue *rhs = new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components); ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); instructions->push_tail(inst); } /* Advance the component index by the number of components that were * just assigned. */ base_component += rhs_components; } } return new(ctx) ir_dereference_variable(var); } /** * Generate assignment of a portion of a vector to a portion of a matrix column * * \param src_base First component of the source to be used in assignment * \param column Column of destination to be assiged * \param row_base First component of the destination column to be assigned * \param count Number of components to be assigned * * \note * \c src_base + \c count must be less than or equal to the number of components * in the source vector. */ ir_instruction * assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base, ir_rvalue *src, unsigned src_base, unsigned count, void *mem_ctx) { ir_constant *col_idx = new(mem_ctx) ir_constant(column); ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx); assert(column_ref->type->components() >= (row_base + count)); assert(src->type->components() >= (src_base + count)); /* Generate a swizzle that extracts the number of components from the source * that are to be assigned to the column of the matrix. */ if (count < src->type->vector_elements) { src = new(mem_ctx) ir_swizzle(src, src_base + 0, src_base + 1, src_base + 2, src_base + 3, count); } /* Mask of fields to be written in the assignment. */ const unsigned write_mask = ((1U << count) - 1) << row_base; return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask); } /** * Generate inline code for a matrix constructor * * The generated constructor code will consist of a temporary variable * declaration of the same type as the constructor. A sequence of assignments * from constructor parameters to the temporary will follow. * * \return * An \c ir_dereference_variable of the temprorary generated in the constructor * body. */ ir_rvalue * emit_inline_matrix_constructor(const glsl_type *type, exec_list *instructions, exec_list *parameters, void *ctx) { assert(!parameters->is_empty()); ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary); instructions->push_tail(var); /* There are three kinds of matrix constructors. * * - Construct a matrix from a single scalar by replicating that scalar to * along the diagonal of the matrix and setting all other components to * zero. * * - Construct a matrix from an arbirary combination of vectors and * scalars. The components of the constructor parameters are assigned * to the matrix in colum-major order until the matrix is full. * * - Construct a matrix from a single matrix. The source matrix is copied * to the upper left portion of the constructed matrix, and the remaining * elements take values from the identity matrix. */ ir_rvalue *const first_param = (ir_rvalue *) parameters->head; if (single_scalar_parameter(parameters)) { /* Assign the scalar to the X component of a vec4, and fill the remaining * components with zero. */ ir_variable *rhs_var = new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec", ir_var_temporary); instructions->push_tail(rhs_var); ir_constant_data zero; zero.f[0] = 0.0; zero.f[1] = 0.0; zero.f[2] = 0.0; zero.f[3] = 0.0; ir_instruction *inst = new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var), new(ctx) ir_constant(rhs_var->type, &zero), NULL); instructions->push_tail(inst); ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01); instructions->push_tail(inst); /* Assign the temporary vector to each column of the destination matrix * with a swizzle that puts the X component on the diagonal of the * matrix. In some cases this may mean that the X component does not * get assigned into the column at all (i.e., when the matrix has more * columns than rows). */ static const unsigned rhs_swiz[4][4] = { { 0, 1, 1, 1 }, { 1, 0, 1, 1 }, { 1, 1, 0, 1 }, { 1, 1, 1, 0 } }; const unsigned cols_to_init = MIN2(type->matrix_columns, type->vector_elements); for (unsigned i = 0; i < cols_to_init; i++) { ir_constant *const col_idx = new(ctx) ir_constant(i); ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i], type->vector_elements); inst = new(ctx) ir_assignment(col_ref, rhs, NULL); instructions->push_tail(inst); } for (unsigned i = cols_to_init; i < type->matrix_columns; i++) { ir_constant *const col_idx = new(ctx) ir_constant(i); ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1, type->vector_elements); inst = new(ctx) ir_assignment(col_ref, rhs, NULL); instructions->push_tail(inst); } } else if (first_param->type->is_matrix()) { /* From page 50 (56 of the PDF) of the GLSL 1.50 spec: * * "If a matrix is constructed from a matrix, then each component * (column i, row j) in the result that has a corresponding * component (column i, row j) in the argument will be initialized * from there. All other components will be initialized to the * identity matrix. If a matrix argument is given to a matrix * constructor, it is an error to have any other arguments." */ assert(first_param->next->is_tail_sentinel()); ir_rvalue *const src_matrix = first_param; /* If the source matrix is smaller, pre-initialize the relavent parts of * the destination matrix to the identity matrix. */ if ((src_matrix->type->matrix_columns < var->type->matrix_columns) || (src_matrix->type->vector_elements < var->type->vector_elements)) { /* If the source matrix has fewer rows, every column of the destination * must be initialized. Otherwise only the columns in the destination * that do not exist in the source must be initialized. */ unsigned col = (src_matrix->type->vector_elements < var->type->vector_elements) ? 0 : src_matrix->type->matrix_columns; const glsl_type *const col_type = var->type->column_type(); for (/* empty */; col < var->type->matrix_columns; col++) { ir_constant_data ident; ident.f[0] = 0.0; ident.f[1] = 0.0; ident.f[2] = 0.0; ident.f[3] = 0.0; ident.f[col] = 1.0; ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident); ir_rvalue *const lhs = new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col)); ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL); instructions->push_tail(inst); } } /* Assign columns from the source matrix to the destination matrix. * * Since the parameter will be used in the RHS of multiple assignments, * generate a temporary and copy the paramter there. */ ir_variable *const rhs_var = new(ctx) ir_variable(first_param->type, "mat_ctor_mat", ir_var_temporary); instructions->push_tail(rhs_var); ir_dereference *const rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); ir_instruction *const inst = new(ctx) ir_assignment(rhs_var_ref, first_param, NULL); instructions->push_tail(inst); const unsigned last_row = MIN2(src_matrix->type->vector_elements, var->type->vector_elements); const unsigned last_col = MIN2(src_matrix->type->matrix_columns, var->type->matrix_columns); unsigned swiz[4] = { 0, 0, 0, 0 }; for (unsigned i = 1; i < last_row; i++) swiz[i] = i; const unsigned write_mask = (1U << last_row) - 1; for (unsigned i = 0; i < last_col; i++) { ir_dereference *const lhs = new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); ir_rvalue *const rhs_col = new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i)); /* If one matrix has columns that are smaller than the columns of the * other matrix, wrap the column access of the larger with a swizzle * so that the LHS and RHS of the assignment have the same size (and * therefore have the same type). * * It would be perfectly valid to unconditionally generate the * swizzles, this this will typically result in a more compact IR tree. */ ir_rvalue *rhs; if (lhs->type->vector_elements != rhs_col->type->vector_elements) { rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row); } else { rhs = rhs_col; } ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); instructions->push_tail(inst); } } else { const unsigned cols = type->matrix_columns; const unsigned rows = type->vector_elements; unsigned col_idx = 0; unsigned row_idx = 0; foreach_list (node, parameters) { ir_rvalue *const rhs = (ir_rvalue *) node; const unsigned components_remaining_this_column = rows - row_idx; unsigned rhs_components = rhs->type->components(); unsigned rhs_base = 0; /* Since the parameter might be used in the RHS of two assignments, * generate a temporary and copy the paramter there. */ ir_variable *rhs_var = new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); instructions->push_tail(rhs_var); ir_dereference *rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL); instructions->push_tail(inst); /* Assign the current parameter to as many components of the matrix * as it will fill. * * NOTE: A single vector parameter can span two matrix columns. A * single vec4, for example, can completely fill a mat2. */ if (rhs_components >= components_remaining_this_column) { const unsigned count = MIN2(rhs_components, components_remaining_this_column); rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); ir_instruction *inst = assign_to_matrix_column(var, col_idx, row_idx, rhs_var_ref, 0, count, ctx); instructions->push_tail(inst); rhs_base = count; col_idx++; row_idx = 0; } /* If there is data left in the parameter and components left to be * set in the destination, emit another assignment. It is possible * that the assignment could be of a vec4 to the last element of the * matrix. In this case col_idx==cols, but there is still data * left in the source parameter. Obviously, don't emit an assignment * to data outside the destination matrix. */ if ((col_idx < cols) && (rhs_base < rhs_components)) { const unsigned count = rhs_components - rhs_base; rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); ir_instruction *inst = assign_to_matrix_column(var, col_idx, row_idx, rhs_var_ref, rhs_base, count, ctx); instructions->push_tail(inst); row_idx += count; } } } return new(ctx) ir_dereference_variable(var); } ir_rvalue * emit_inline_record_constructor(const glsl_type *type, exec_list *instructions, exec_list *parameters, void *mem_ctx) { ir_variable *const var = new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary); ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var); instructions->push_tail(var); exec_node *node = parameters->head; for (unsigned i = 0; i < type->length; i++) { assert(!node->is_tail_sentinel()); ir_dereference *const lhs = new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL), type->fields.structure[i].name); ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue(); assert(rhs != NULL); ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL); instructions->push_tail(assign); node = node->next; } return d; } ir_rvalue * ast_function_expression::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) { void *ctx = state; /* There are three sorts of function calls. * * 1. constructors - The first subexpression is an ast_type_specifier. * 2. methods - Only the .length() method of array types. * 3. functions - Calls to regular old functions. * * Method calls are actually detected when the ast_field_selection * expression is handled. */ if (is_constructor()) { const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0]; YYLTYPE loc = type->get_location(); const char *name; const glsl_type *const constructor_type = type->glsl_type(& name, state); /* constructor_type can be NULL if a variable with the same name as the * structure has come into scope. */ if (constructor_type == NULL) { _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name " "may be shadowed by a variable with the same name)", type->type_name); return ir_rvalue::error_value(ctx); } /* Constructors for samplers are illegal. */ if (constructor_type->is_sampler()) { _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'", constructor_type->name); return ir_rvalue::error_value(ctx); } if (constructor_type->is_array()) { if (state->language_version <= 110) { _mesa_glsl_error(& loc, state, "array constructors forbidden in GLSL 1.10"); return ir_rvalue::error_value(ctx); } return process_array_constructor(instructions, constructor_type, & loc, &this->expressions, state); } /* There are two kinds of constructor call. Constructors for built-in * language types, such as mat4 and vec2, are free form. The only * requirement is that the parameters must provide enough values of the * correct scalar type. Constructors for arrays and structures must * have the exact number of parameters with matching types in the * correct order. These constructors follow essentially the same type * matching rules as functions. */ if (constructor_type->is_record()) { exec_list actual_parameters; process_parameters(instructions, &actual_parameters, &this->expressions, state); exec_node *node = actual_parameters.head; for (unsigned i = 0; i < constructor_type->length; i++) { ir_rvalue *ir = (ir_rvalue *) node; if (node->is_tail_sentinel()) { _mesa_glsl_error(&loc, state, "insufficient parameters to constructor " "for `%s'", constructor_type->name); return ir_rvalue::error_value(ctx); } if (apply_implicit_conversion(constructor_type->fields.structure[i].type, ir, state)) { node->replace_with(ir); } else { _mesa_glsl_error(&loc, state, "parameter type mismatch in constructor " "for `%s.%s' (%s vs %s)", constructor_type->name, constructor_type->fields.structure[i].name, ir->type->name, constructor_type->fields.structure[i].type->name); return ir_rvalue::error_value(ctx);; } node = node->next; } if (!node->is_tail_sentinel()) { _mesa_glsl_error(&loc, state, "too many parameters in constructor " "for `%s'", constructor_type->name); return ir_rvalue::error_value(ctx); } ir_rvalue *const constant = constant_record_constructor(constructor_type, &actual_parameters, state); return (constant != NULL) ? constant : emit_inline_record_constructor(constructor_type, instructions, &actual_parameters, state); } if (!constructor_type->is_numeric() && !constructor_type->is_boolean()) return ir_rvalue::error_value(ctx); /* Total number of components of the type being constructed. */ const unsigned type_components = constructor_type->components(); /* Number of components from parameters that have actually been * consumed. This is used to perform several kinds of error checking. */ unsigned components_used = 0; unsigned matrix_parameters = 0; unsigned nonmatrix_parameters = 0; exec_list actual_parameters; foreach_list (n, &this->expressions) { ast_node *ast = exec_node_data(ast_node, n, link); ir_rvalue *result = ast->hir(instructions, state)->as_rvalue(); /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * * "It is an error to provide extra arguments beyond this * last used argument." */ if (components_used >= type_components) { _mesa_glsl_error(& loc, state, "too many parameters to `%s' " "constructor", constructor_type->name); return ir_rvalue::error_value(ctx); } if (!result->type->is_numeric() && !result->type->is_boolean()) { _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " "non-numeric data type", constructor_type->name); return ir_rvalue::error_value(ctx); } /* Count the number of matrix and nonmatrix parameters. This * is used below to enforce some of the constructor rules. */ if (result->type->is_matrix()) matrix_parameters++; else nonmatrix_parameters++; actual_parameters.push_tail(result); components_used += result->type->components(); } /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: * * "It is an error to construct matrices from other matrices. This * is reserved for future use." */ if (state->language_version == 110 && matrix_parameters > 0 && constructor_type->is_matrix()) { _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " "matrix in GLSL 1.10", constructor_type->name); return ir_rvalue::error_value(ctx); } /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * * "If a matrix argument is given to a matrix constructor, it is * an error to have any other arguments." */ if ((matrix_parameters > 0) && ((matrix_parameters + nonmatrix_parameters) > 1) && constructor_type->is_matrix()) { _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " "matrix must be only parameter", constructor_type->name); return ir_rvalue::error_value(ctx); } /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: * * "In these cases, there must be enough components provided in the * arguments to provide an initializer for every component in the * constructed value." */ if (components_used < type_components && components_used != 1 && matrix_parameters == 0) { _mesa_glsl_error(& loc, state, "too few components to construct " "`%s'", constructor_type->name); return ir_rvalue::error_value(ctx); } /* Later, we cast each parameter to the same base type as the * constructor. Since there are no non-floating point matrices, we * need to break them up into a series of column vectors. */ if (constructor_type->base_type != GLSL_TYPE_FLOAT) { foreach_list_safe(n, &actual_parameters) { ir_rvalue *matrix = (ir_rvalue *) n; if (!matrix->type->is_matrix()) continue; /* Create a temporary containing the matrix. */ ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp", ir_var_temporary); instructions->push_tail(var); instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), matrix, NULL)); var->constant_value = matrix->constant_expression_value(); /* Replace the matrix with dereferences of its columns. */ for (int i = 0; i < matrix->type->matrix_columns; i++) { matrix->insert_before(new (ctx) ir_dereference_array(var, new(ctx) ir_constant(i))); } matrix->remove(); } } bool all_parameters_are_constant = true; /* Type cast each parameter and, if possible, fold constants.*/ foreach_list_safe(n, &actual_parameters) { ir_rvalue *ir = (ir_rvalue *) n; const glsl_type *desired_type = glsl_type::get_instance(constructor_type->base_type, ir->type->vector_elements, ir->type->matrix_columns); ir_rvalue *result = convert_component(ir, desired_type); /* Attempt to convert the parameter to a constant valued expression. * After doing so, track whether or not all the parameters to the * constructor are trivially constant valued expressions. */ ir_rvalue *const constant = result->constant_expression_value(); if (constant != NULL) result = constant; else all_parameters_are_constant = false; if (result != ir) { ir->replace_with(result); } } /* If all of the parameters are trivially constant, create a * constant representing the complete collection of parameters. */ if (all_parameters_are_constant) { return new(ctx) ir_constant(constructor_type, &actual_parameters); } else if (constructor_type->is_scalar()) { return dereference_component((ir_rvalue *) actual_parameters.head, 0); } else if (constructor_type->is_vector()) { return emit_inline_vector_constructor(constructor_type, instructions, &actual_parameters, ctx); } else { assert(constructor_type->is_matrix()); return emit_inline_matrix_constructor(constructor_type, instructions, &actual_parameters, ctx); } } else { const ast_expression *id = subexpressions[0]; const char *func_name = id->primary_expression.identifier; YYLTYPE loc = id->get_location(); exec_list actual_parameters; process_parameters(instructions, &actual_parameters, &this->expressions, state); ir_function_signature *sig = match_function_by_name(func_name, &actual_parameters, state); ir_call *call = NULL; ir_rvalue *value = NULL; if (sig == NULL) { no_matching_function_error(func_name, &loc, &actual_parameters, state); value = ir_rvalue::error_value(ctx); } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) { /* an error has already been emitted */ value = ir_rvalue::error_value(ctx); } else { value = generate_call(instructions, sig, &loc, &actual_parameters, &call, state); } return value; } return ir_rvalue::error_value(ctx); }