/* * Copyright © 2008 Jérôme Glisse * Copyright © 2010 Marek Olšák * Copyright © 2015 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. */ /* * Authors: * Marek Olšák */ #include "amdgpu_cs.h" #include "os/os_time.h" #include #include /* FENCES */ static struct pipe_fence_handle * amdgpu_fence_create(struct amdgpu_ctx *ctx, unsigned ip_type, unsigned ip_instance, unsigned ring) { struct amdgpu_fence *fence = CALLOC_STRUCT(amdgpu_fence); fence->reference.count = 1; fence->ctx = ctx; fence->fence.context = ctx->ctx; fence->fence.ip_type = ip_type; fence->fence.ip_instance = ip_instance; fence->fence.ring = ring; p_atomic_inc(&ctx->refcount); return (struct pipe_fence_handle *)fence; } static void amdgpu_fence_submitted(struct pipe_fence_handle *fence, struct amdgpu_cs_request* request, uint64_t *user_fence_cpu_address) { struct amdgpu_fence *rfence = (struct amdgpu_fence*)fence; rfence->fence.fence = request->seq_no; rfence->user_fence_cpu_address = user_fence_cpu_address; } static void amdgpu_fence_signalled(struct pipe_fence_handle *fence) { struct amdgpu_fence *rfence = (struct amdgpu_fence*)fence; rfence->signalled = true; } bool amdgpu_fence_wait(struct pipe_fence_handle *fence, uint64_t timeout, bool absolute) { struct amdgpu_fence *rfence = (struct amdgpu_fence*)fence; uint32_t expired; int64_t abs_timeout; uint64_t *user_fence_cpu; int r; if (rfence->signalled) return true; if (absolute) abs_timeout = timeout; else abs_timeout = os_time_get_absolute_timeout(timeout); user_fence_cpu = rfence->user_fence_cpu_address; if (user_fence_cpu && *user_fence_cpu >= rfence->fence.fence) { rfence->signalled = true; return true; } /* Now use the libdrm query. */ r = amdgpu_cs_query_fence_status(&rfence->fence, abs_timeout, AMDGPU_QUERY_FENCE_TIMEOUT_IS_ABSOLUTE, &expired); if (r) { fprintf(stderr, "amdgpu: amdgpu_cs_query_fence_status failed.\n"); return FALSE; } if (expired) { /* This variable can only transition from false to true, so it doesn't * matter if threads race for it. */ rfence->signalled = true; return true; } return false; } static bool amdgpu_fence_wait_rel_timeout(struct radeon_winsys *rws, struct pipe_fence_handle *fence, uint64_t timeout) { return amdgpu_fence_wait(fence, timeout, false); } /* CONTEXTS */ static struct radeon_winsys_ctx *amdgpu_ctx_create(struct radeon_winsys *ws) { struct amdgpu_ctx *ctx = CALLOC_STRUCT(amdgpu_ctx); int r; struct amdgpu_bo_alloc_request alloc_buffer = {}; amdgpu_bo_handle buf_handle; ctx->ws = amdgpu_winsys(ws); ctx->refcount = 1; r = amdgpu_cs_ctx_create(ctx->ws->dev, &ctx->ctx); if (r) { fprintf(stderr, "amdgpu: amdgpu_cs_ctx_create failed. (%i)\n", r); FREE(ctx); return NULL; } alloc_buffer.alloc_size = 4 * 1024; alloc_buffer.phys_alignment = 4 *1024; alloc_buffer.preferred_heap = AMDGPU_GEM_DOMAIN_GTT; r = amdgpu_bo_alloc(ctx->ws->dev, &alloc_buffer, &buf_handle); if (r) { fprintf(stderr, "amdgpu: amdgpu_bo_alloc failed. (%i)\n", r); amdgpu_cs_ctx_free(ctx->ctx); FREE(ctx); return NULL; } r = amdgpu_bo_cpu_map(buf_handle, (void**)&ctx->user_fence_cpu_address_base); if (r) { fprintf(stderr, "amdgpu: amdgpu_bo_cpu_map failed. (%i)\n", r); amdgpu_bo_free(buf_handle); amdgpu_cs_ctx_free(ctx->ctx); FREE(ctx); return NULL; } memset(ctx->user_fence_cpu_address_base, 0, alloc_buffer.alloc_size); ctx->user_fence_bo = buf_handle; return (struct radeon_winsys_ctx*)ctx; } static void amdgpu_ctx_destroy(struct radeon_winsys_ctx *rwctx) { amdgpu_ctx_unref((struct amdgpu_ctx*)rwctx); } static enum pipe_reset_status amdgpu_ctx_query_reset_status(struct radeon_winsys_ctx *rwctx) { struct amdgpu_ctx *ctx = (struct amdgpu_ctx*)rwctx; uint32_t result, hangs; int r; r = amdgpu_cs_query_reset_state(ctx->ctx, &result, &hangs); if (r) { fprintf(stderr, "amdgpu: amdgpu_cs_query_reset_state failed. (%i)\n", r); return PIPE_NO_RESET; } switch (result) { case AMDGPU_CTX_GUILTY_RESET: return PIPE_GUILTY_CONTEXT_RESET; case AMDGPU_CTX_INNOCENT_RESET: return PIPE_INNOCENT_CONTEXT_RESET; case AMDGPU_CTX_UNKNOWN_RESET: return PIPE_UNKNOWN_CONTEXT_RESET; case AMDGPU_CTX_NO_RESET: default: return PIPE_NO_RESET; } } /* COMMAND SUBMISSION */ static bool amdgpu_get_new_ib(struct amdgpu_cs *cs) { /* Small IBs are better than big IBs, because the GPU goes idle quicker * and there is less waiting for buffers and fences. Proof: * http://www.phoronix.com/scan.php?page=article&item=mesa-111-si&num=1 */ const unsigned buffer_size = 128 * 1024 * 4; const unsigned ib_size = 20 * 1024 * 4; cs->base.cdw = 0; cs->base.buf = NULL; /* Allocate a new buffer for IBs if the current buffer is all used. */ if (!cs->big_ib_buffer || cs->used_ib_space + ib_size > cs->big_ib_buffer->size) { struct radeon_winsys *ws = &cs->ctx->ws->base; struct radeon_winsys_cs_handle *winsys_bo; pb_reference(&cs->big_ib_buffer, NULL); cs->big_ib_winsys_buffer = NULL; cs->ib_mapped = NULL; cs->used_ib_space = 0; cs->big_ib_buffer = ws->buffer_create(ws, buffer_size, 4096, true, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS); if (!cs->big_ib_buffer) return false; winsys_bo = ws->buffer_get_cs_handle(cs->big_ib_buffer); cs->ib_mapped = ws->buffer_map(winsys_bo, NULL, PIPE_TRANSFER_WRITE); if (!cs->ib_mapped) { pb_reference(&cs->big_ib_buffer, NULL); return false; } cs->big_ib_winsys_buffer = (struct amdgpu_winsys_bo*)winsys_bo; } cs->ib.ib_mc_address = cs->big_ib_winsys_buffer->va + cs->used_ib_space; cs->base.buf = (uint32_t*)(cs->ib_mapped + cs->used_ib_space); cs->base.max_dw = ib_size / 4; return true; } static boolean amdgpu_init_cs_context(struct amdgpu_cs *cs, enum ring_type ring_type) { int i; switch (ring_type) { case RING_DMA: cs->request.ip_type = AMDGPU_HW_IP_DMA; break; case RING_UVD: cs->request.ip_type = AMDGPU_HW_IP_UVD; break; case RING_VCE: cs->request.ip_type = AMDGPU_HW_IP_VCE; break; case RING_COMPUTE: cs->request.ip_type = AMDGPU_HW_IP_COMPUTE; break; default: case RING_GFX: cs->request.ip_type = AMDGPU_HW_IP_GFX; break; } cs->request.number_of_ibs = 1; cs->request.ibs = &cs->ib; cs->max_num_buffers = 512; cs->buffers = (struct amdgpu_cs_buffer*) CALLOC(1, cs->max_num_buffers * sizeof(struct amdgpu_cs_buffer)); if (!cs->buffers) { return FALSE; } cs->handles = CALLOC(1, cs->max_num_buffers * sizeof(amdgpu_bo_handle)); if (!cs->handles) { FREE(cs->buffers); return FALSE; } cs->flags = CALLOC(1, cs->max_num_buffers); if (!cs->flags) { FREE(cs->handles); FREE(cs->buffers); return FALSE; } for (i = 0; i < Elements(cs->buffer_indices_hashlist); i++) { cs->buffer_indices_hashlist[i] = -1; } return TRUE; } static void amdgpu_cs_context_cleanup(struct amdgpu_cs *cs) { unsigned i; for (i = 0; i < cs->num_buffers; i++) { p_atomic_dec(&cs->buffers[i].bo->num_cs_references); amdgpu_winsys_bo_reference(&cs->buffers[i].bo, NULL); cs->handles[i] = NULL; cs->flags[i] = 0; } cs->num_buffers = 0; cs->used_gart = 0; cs->used_vram = 0; for (i = 0; i < Elements(cs->buffer_indices_hashlist); i++) { cs->buffer_indices_hashlist[i] = -1; } } static void amdgpu_destroy_cs_context(struct amdgpu_cs *cs) { amdgpu_cs_context_cleanup(cs); FREE(cs->flags); FREE(cs->buffers); FREE(cs->handles); FREE(cs->request.dependencies); } static struct radeon_winsys_cs * amdgpu_cs_create(struct radeon_winsys_ctx *rwctx, enum ring_type ring_type, void (*flush)(void *ctx, unsigned flags, struct pipe_fence_handle **fence), void *flush_ctx, struct radeon_winsys_cs_handle *trace_buf) { struct amdgpu_ctx *ctx = (struct amdgpu_ctx*)rwctx; struct amdgpu_cs *cs; cs = CALLOC_STRUCT(amdgpu_cs); if (!cs) { return NULL; } cs->ctx = ctx; cs->flush_cs = flush; cs->flush_data = flush_ctx; cs->base.ring_type = ring_type; if (!amdgpu_init_cs_context(cs, ring_type)) { FREE(cs); return NULL; } if (!amdgpu_get_new_ib(cs)) { amdgpu_destroy_cs_context(cs); FREE(cs); return NULL; } p_atomic_inc(&ctx->ws->num_cs); return &cs->base; } #define OUT_CS(cs, value) (cs)->buf[(cs)->cdw++] = (value) int amdgpu_get_reloc(struct amdgpu_cs *cs, struct amdgpu_winsys_bo *bo) { unsigned hash = bo->unique_id & (Elements(cs->buffer_indices_hashlist)-1); int i = cs->buffer_indices_hashlist[hash]; /* not found or found */ if (i == -1 || cs->buffers[i].bo == bo) return i; /* Hash collision, look for the BO in the list of relocs linearly. */ for (i = cs->num_buffers - 1; i >= 0; i--) { if (cs->buffers[i].bo == bo) { /* Put this reloc in the hash list. * This will prevent additional hash collisions if there are * several consecutive get_reloc calls for the same buffer. * * Example: Assuming buffers A,B,C collide in the hash list, * the following sequence of relocs: * AAAAAAAAAAABBBBBBBBBBBBBBCCCCCCCC * will collide here: ^ and here: ^, * meaning that we should get very few collisions in the end. */ cs->buffer_indices_hashlist[hash] = i; return i; } } return -1; } static unsigned amdgpu_add_reloc(struct amdgpu_cs *cs, struct amdgpu_winsys_bo *bo, enum radeon_bo_usage usage, enum radeon_bo_domain domains, unsigned priority, enum radeon_bo_domain *added_domains) { struct amdgpu_cs_buffer *reloc; unsigned hash = bo->unique_id & (Elements(cs->buffer_indices_hashlist)-1); int i = -1; priority = MIN2(priority, 15); *added_domains = 0; i = amdgpu_get_reloc(cs, bo); if (i >= 0) { reloc = &cs->buffers[i]; reloc->usage |= usage; *added_domains = domains & ~reloc->domains; reloc->domains |= domains; cs->flags[i] = MAX2(cs->flags[i], priority); return i; } /* New relocation, check if the backing array is large enough. */ if (cs->num_buffers >= cs->max_num_buffers) { uint32_t size; cs->max_num_buffers += 10; size = cs->max_num_buffers * sizeof(struct amdgpu_cs_buffer); cs->buffers = realloc(cs->buffers, size); size = cs->max_num_buffers * sizeof(amdgpu_bo_handle); cs->handles = realloc(cs->handles, size); cs->flags = realloc(cs->flags, cs->max_num_buffers); } /* Initialize the new relocation. */ cs->buffers[cs->num_buffers].bo = NULL; amdgpu_winsys_bo_reference(&cs->buffers[cs->num_buffers].bo, bo); cs->handles[cs->num_buffers] = bo->bo; cs->flags[cs->num_buffers] = priority; p_atomic_inc(&bo->num_cs_references); reloc = &cs->buffers[cs->num_buffers]; reloc->bo = bo; reloc->usage = usage; reloc->domains = domains; cs->buffer_indices_hashlist[hash] = cs->num_buffers; *added_domains = domains; return cs->num_buffers++; } static unsigned amdgpu_cs_add_reloc(struct radeon_winsys_cs *rcs, struct radeon_winsys_cs_handle *buf, enum radeon_bo_usage usage, enum radeon_bo_domain domains, enum radeon_bo_priority priority) { /* Don't use the "domains" parameter. Amdgpu doesn't support changing * the buffer placement during command submission. */ struct amdgpu_cs *cs = amdgpu_cs(rcs); struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf; enum radeon_bo_domain added_domains; unsigned index = amdgpu_add_reloc(cs, bo, usage, bo->initial_domain, priority, &added_domains); if (added_domains & RADEON_DOMAIN_GTT) cs->used_gart += bo->base.size; if (added_domains & RADEON_DOMAIN_VRAM) cs->used_vram += bo->base.size; return index; } static int amdgpu_cs_get_reloc(struct radeon_winsys_cs *rcs, struct radeon_winsys_cs_handle *buf) { struct amdgpu_cs *cs = amdgpu_cs(rcs); return amdgpu_get_reloc(cs, (struct amdgpu_winsys_bo*)buf); } static boolean amdgpu_cs_validate(struct radeon_winsys_cs *rcs) { return TRUE; } static boolean amdgpu_cs_memory_below_limit(struct radeon_winsys_cs *rcs, uint64_t vram, uint64_t gtt) { struct amdgpu_cs *cs = amdgpu_cs(rcs); boolean status = (cs->used_gart + gtt) < cs->ctx->ws->info.gart_size * 0.7 && (cs->used_vram + vram) < cs->ctx->ws->info.vram_size * 0.7; return status; } static void amdgpu_cs_do_submission(struct amdgpu_cs *cs, struct pipe_fence_handle **out_fence) { struct amdgpu_winsys *ws = cs->ctx->ws; struct pipe_fence_handle *fence; int i, j, r; /* Create a fence. */ fence = amdgpu_fence_create(cs->ctx, cs->request.ip_type, cs->request.ip_instance, cs->request.ring); if (out_fence) amdgpu_fence_reference(out_fence, fence); cs->request.number_of_dependencies = 0; /* Since the kernel driver doesn't synchronize execution between different * rings automatically, we have to add fence dependencies manually. */ pipe_mutex_lock(ws->bo_fence_lock); for (i = 0; i < cs->num_buffers; i++) { for (j = 0; j < RING_LAST; j++) { struct amdgpu_cs_fence *dep; unsigned idx; struct amdgpu_fence *bo_fence = (void *)cs->buffers[i].bo->fence[j]; if (!bo_fence) continue; if (bo_fence->ctx == cs->ctx && bo_fence->fence.ip_type == cs->request.ip_type && bo_fence->fence.ip_instance == cs->request.ip_instance && bo_fence->fence.ring == cs->request.ring) continue; if (amdgpu_fence_wait((void *)bo_fence, 0, false)) continue; idx = cs->request.number_of_dependencies++; if (idx >= cs->max_dependencies) { unsigned size; cs->max_dependencies = idx + 8; size = cs->max_dependencies * sizeof(struct amdgpu_cs_fence); cs->request.dependencies = realloc(cs->request.dependencies, size); } dep = &cs->request.dependencies[idx]; memcpy(dep, &bo_fence->fence, sizeof(*dep)); } } cs->request.fence_info.handle = NULL; if (cs->request.ip_type != AMDGPU_HW_IP_UVD && cs->request.ip_type != AMDGPU_HW_IP_VCE) { cs->request.fence_info.handle = cs->ctx->user_fence_bo; cs->request.fence_info.offset = cs->base.ring_type; } r = amdgpu_cs_submit(cs->ctx->ctx, 0, &cs->request, 1); if (r) { if (r == -ENOMEM) fprintf(stderr, "amdgpu: Not enough memory for command submission.\n"); else fprintf(stderr, "amdgpu: The CS has been rejected, " "see dmesg for more information.\n"); amdgpu_fence_signalled(fence); } else { /* Success. */ uint64_t *user_fence = NULL; if (cs->request.ip_type != AMDGPU_HW_IP_UVD && cs->request.ip_type != AMDGPU_HW_IP_VCE) user_fence = cs->ctx->user_fence_cpu_address_base + cs->request.fence_info.offset; amdgpu_fence_submitted(fence, &cs->request, user_fence); for (i = 0; i < cs->num_buffers; i++) amdgpu_fence_reference(&cs->buffers[i].bo->fence[cs->base.ring_type], fence); } pipe_mutex_unlock(ws->bo_fence_lock); amdgpu_fence_reference(&fence, NULL); } static void amdgpu_cs_sync_flush(struct radeon_winsys_cs *rcs) { /* no-op */ } DEBUG_GET_ONCE_BOOL_OPTION(noop, "RADEON_NOOP", FALSE) static void amdgpu_cs_flush(struct radeon_winsys_cs *rcs, unsigned flags, struct pipe_fence_handle **fence, uint32_t cs_trace_id) { struct amdgpu_cs *cs = amdgpu_cs(rcs); struct amdgpu_winsys *ws = cs->ctx->ws; switch (cs->base.ring_type) { case RING_DMA: /* pad DMA ring to 8 DWs */ while (rcs->cdw & 7) OUT_CS(&cs->base, 0x00000000); /* NOP packet */ break; case RING_GFX: /* pad GFX ring to 8 DWs to meet CP fetch alignment requirements */ while (rcs->cdw & 7) OUT_CS(&cs->base, 0xffff1000); /* type3 nop packet */ break; case RING_UVD: while (rcs->cdw & 15) OUT_CS(&cs->base, 0x80000000); /* type2 nop packet */ break; default: break; } if (rcs->cdw > rcs->max_dw) { fprintf(stderr, "amdgpu: command stream overflowed\n"); } amdgpu_cs_add_reloc(rcs, (void*)cs->big_ib_winsys_buffer, RADEON_USAGE_READ, 0, RADEON_PRIO_MIN); /* If the CS is not empty or overflowed.... */ if (cs->base.cdw && cs->base.cdw <= cs->base.max_dw && !debug_get_option_noop()) { int r; r = amdgpu_bo_list_create(ws->dev, cs->num_buffers, cs->handles, cs->flags, &cs->request.resources); if (r) { fprintf(stderr, "amdgpu: resource list creation failed (%d)\n", r); cs->request.resources = NULL; goto cleanup; } cs->ib.size = cs->base.cdw; cs->used_ib_space += cs->base.cdw * 4; amdgpu_cs_do_submission(cs, fence); /* Cleanup. */ if (cs->request.resources) amdgpu_bo_list_destroy(cs->request.resources); } cleanup: amdgpu_cs_context_cleanup(cs); amdgpu_get_new_ib(cs); ws->num_cs_flushes++; } static void amdgpu_cs_destroy(struct radeon_winsys_cs *rcs) { struct amdgpu_cs *cs = amdgpu_cs(rcs); amdgpu_destroy_cs_context(cs); p_atomic_dec(&cs->ctx->ws->num_cs); pb_reference(&cs->big_ib_buffer, NULL); FREE(cs); } static boolean amdgpu_bo_is_referenced(struct radeon_winsys_cs *rcs, struct radeon_winsys_cs_handle *_buf, enum radeon_bo_usage usage) { struct amdgpu_cs *cs = amdgpu_cs(rcs); struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)_buf; return amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo, usage); } void amdgpu_cs_init_functions(struct amdgpu_winsys *ws) { ws->base.ctx_create = amdgpu_ctx_create; ws->base.ctx_destroy = amdgpu_ctx_destroy; ws->base.ctx_query_reset_status = amdgpu_ctx_query_reset_status; ws->base.cs_create = amdgpu_cs_create; ws->base.cs_destroy = amdgpu_cs_destroy; ws->base.cs_add_reloc = amdgpu_cs_add_reloc; ws->base.cs_get_reloc = amdgpu_cs_get_reloc; ws->base.cs_validate = amdgpu_cs_validate; ws->base.cs_memory_below_limit = amdgpu_cs_memory_below_limit; ws->base.cs_flush = amdgpu_cs_flush; ws->base.cs_is_buffer_referenced = amdgpu_bo_is_referenced; ws->base.cs_sync_flush = amdgpu_cs_sync_flush; ws->base.fence_wait = amdgpu_fence_wait_rel_timeout; ws->base.fence_reference = amdgpu_fence_reference; }