#include "vl_data.h" /* * Represents 8 triangles (4 quads, 1 per block) in noormalized coords * that render a macroblock. * Need to be scaled to cover mbW*mbH macroblock pixels and translated into * position on target surface. */ const struct vlVertex2f macroblock_verts[24] = { {0.0f, 0.0f}, {0.0f, 0.5f}, {0.5f, 0.0f}, {0.5f, 0.0f}, {0.0f, 0.5f}, {0.5f, 0.5f}, {0.5f, 0.0f}, {0.5f, 0.5f}, {1.0f, 0.0f}, {1.0f, 0.0f}, {0.5f, 0.5f}, {1.0f, 0.5f}, {0.0f, 0.5f}, {0.0f, 1.0f}, {0.5f, 0.5f}, {0.5f, 0.5f}, {0.0f, 1.0f}, {0.5f, 1.0f}, {0.5f, 0.5f}, {0.5f, 1.0f}, {1.0f, 0.5f}, {1.0f, 0.5f}, {0.5f, 1.0f}, {1.0f, 1.0f} }; /* * Represents texcoords for the above for rendering 4 luma blocks arranged * in a bW*(bH*4) texture. First luma block located at 0,0->bW,bH; second at * 0,bH->bW,2bH; third at 0,2bH->bW,3bH; fourth at 0,3bH->bW,4bH. */ const struct vlVertex2f macroblock_luma_texcoords[24] = { {0.0f, 0.0f}, {0.0f, 0.25f}, {1.0f, 0.0f}, {1.0f, 0.0f}, {0.0f, 0.25f}, {1.0f, 0.25f}, {0.0f, 0.25f}, {0.0f, 0.5f}, {1.0f, 0.25f}, {1.0f, 0.25f}, {0.0f, 0.5f}, {1.0f, 0.5f}, {0.0f, 0.5f}, {0.0f, 0.75f}, {1.0f, 0.5f}, {1.0f, 0.5f}, {0.0f, 0.75f}, {1.0f, 0.75f}, {0.0f, 0.75f}, {0.0f, 1.0f}, {1.0f, 0.75f}, {1.0f, 0.75f}, {0.0f, 1.0f}, {1.0f, 1.0f} }; /* * Represents texcoords for the above for rendering 1 chroma block. * Straight forward 0,0->1,1 mapping so we can reuse the MB pos vectors. */ const struct vlVertex2f *macroblock_chroma_420_texcoords = macroblock_verts; /* * Represents texcoords for the above for rendering 2 chroma blocks arranged * in a bW*(bH*2) texture. First chroma block located at 0,0->bW,bH; second at * 0,bH->bW,2bH. We can render this with 0,0->1,1 mapping. * Straight forward 0,0->1,1 mapping so we can reuse MB pos vectors. */ const struct vlVertex2f *macroblock_chroma_422_texcoords = macroblock_verts; /* * Represents texcoords for the above for rendering 4 chroma blocks. * Same case as 4 luma blocks. */ const struct vlVertex2f *macroblock_chroma_444_texcoords = macroblock_luma_texcoords; /* * Used when rendering P and B macroblocks, multiplier is applied to the A channel, * which is then added to the L channel, then the bias is subtracted from that to * get back the differential. The differential is then added to the samples from the * reference surface(s). */ #if 0 const struct VL_MC_FS_CONSTS vl_mc_fs_consts = { {32767.0f / 255.0f, 32767.0f / 255.0f, 32767.0f / 255.0f, 0.0f}, {0.5f, 2.0f, 0.0f, 0.0f} }; #endif