/************************************************************************** * * Copyright 2007 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #ifndef PIPE_CONTEXT_H #define PIPE_CONTEXT_H #include "p_compiler.h" #include "p_format.h" #include "p_video_enums.h" #include "p_defines.h" #include #ifdef __cplusplus extern "C" { #endif struct pipe_blend_color; struct pipe_blend_state; struct pipe_blit_info; struct pipe_box; struct pipe_clip_state; struct pipe_constant_buffer; struct pipe_depth_stencil_alpha_state; struct pipe_draw_info; struct pipe_fence_handle; struct pipe_framebuffer_state; struct pipe_image_view; struct pipe_index_buffer; struct pipe_query; struct pipe_poly_stipple; struct pipe_rasterizer_state; struct pipe_resolve_info; struct pipe_resource; struct pipe_sampler_state; struct pipe_sampler_view; struct pipe_scissor_state; struct pipe_shader_buffer; struct pipe_shader_state; struct pipe_stencil_ref; struct pipe_stream_output_target; struct pipe_surface; struct pipe_transfer; struct pipe_vertex_buffer; struct pipe_vertex_element; struct pipe_video_buffer; struct pipe_video_codec; struct pipe_viewport_state; struct pipe_compute_state; union pipe_color_union; union pipe_query_result; /** * Gallium rendering context. Basically: * - state setting functions * - VBO drawing functions * - surface functions */ struct pipe_context { struct pipe_screen *screen; void *priv; /**< context private data (for DRI for example) */ void *draw; /**< private, for draw module (temporary?) */ void (*destroy)( struct pipe_context * ); /** * VBO drawing */ /*@{*/ void (*draw_vbo)( struct pipe_context *pipe, const struct pipe_draw_info *info ); /*@}*/ /** * Predicate subsequent rendering on occlusion query result * \param query the query predicate, or NULL if no predicate * \param condition whether to skip on FALSE or TRUE query results * \param mode one of PIPE_RENDER_COND_x */ void (*render_condition)( struct pipe_context *pipe, struct pipe_query *query, boolean condition, uint mode ); /** * Query objects */ /*@{*/ struct pipe_query *(*create_query)( struct pipe_context *pipe, unsigned query_type, unsigned index ); void (*destroy_query)(struct pipe_context *pipe, struct pipe_query *q); boolean (*begin_query)(struct pipe_context *pipe, struct pipe_query *q); void (*end_query)(struct pipe_context *pipe, struct pipe_query *q); /** * Get results of a query. * \param wait if true, this query will block until the result is ready * \return TRUE if results are ready, FALSE otherwise */ boolean (*get_query_result)(struct pipe_context *pipe, struct pipe_query *q, boolean wait, union pipe_query_result *result); /*@}*/ /** * State functions (create/bind/destroy state objects) */ /*@{*/ void * (*create_blend_state)(struct pipe_context *, const struct pipe_blend_state *); void (*bind_blend_state)(struct pipe_context *, void *); void (*delete_blend_state)(struct pipe_context *, void *); void * (*create_sampler_state)(struct pipe_context *, const struct pipe_sampler_state *); void (*bind_sampler_states)(struct pipe_context *, unsigned shader, unsigned start_slot, unsigned num_samplers, void **samplers); void (*delete_sampler_state)(struct pipe_context *, void *); void * (*create_rasterizer_state)(struct pipe_context *, const struct pipe_rasterizer_state *); void (*bind_rasterizer_state)(struct pipe_context *, void *); void (*delete_rasterizer_state)(struct pipe_context *, void *); void * (*create_depth_stencil_alpha_state)(struct pipe_context *, const struct pipe_depth_stencil_alpha_state *); void (*bind_depth_stencil_alpha_state)(struct pipe_context *, void *); void (*delete_depth_stencil_alpha_state)(struct pipe_context *, void *); void * (*create_fs_state)(struct pipe_context *, const struct pipe_shader_state *); void (*bind_fs_state)(struct pipe_context *, void *); void (*delete_fs_state)(struct pipe_context *, void *); void * (*create_vs_state)(struct pipe_context *, const struct pipe_shader_state *); void (*bind_vs_state)(struct pipe_context *, void *); void (*delete_vs_state)(struct pipe_context *, void *); void * (*create_gs_state)(struct pipe_context *, const struct pipe_shader_state *); void (*bind_gs_state)(struct pipe_context *, void *); void (*delete_gs_state)(struct pipe_context *, void *); void * (*create_tcs_state)(struct pipe_context *, const struct pipe_shader_state *); void (*bind_tcs_state)(struct pipe_context *, void *); void (*delete_tcs_state)(struct pipe_context *, void *); void * (*create_tes_state)(struct pipe_context *, const struct pipe_shader_state *); void (*bind_tes_state)(struct pipe_context *, void *); void (*delete_tes_state)(struct pipe_context *, void *); void * (*create_vertex_elements_state)(struct pipe_context *, unsigned num_elements, const struct pipe_vertex_element *); void (*bind_vertex_elements_state)(struct pipe_context *, void *); void (*delete_vertex_elements_state)(struct pipe_context *, void *); /*@}*/ /** * Parameter-like state (or properties) */ /*@{*/ void (*set_blend_color)( struct pipe_context *, const struct pipe_blend_color * ); void (*set_stencil_ref)( struct pipe_context *, const struct pipe_stencil_ref * ); void (*set_sample_mask)( struct pipe_context *, unsigned sample_mask ); void (*set_min_samples)( struct pipe_context *, unsigned min_samples ); void (*set_clip_state)( struct pipe_context *, const struct pipe_clip_state * ); void (*set_constant_buffer)( struct pipe_context *, uint shader, uint index, struct pipe_constant_buffer *buf ); void (*set_framebuffer_state)( struct pipe_context *, const struct pipe_framebuffer_state * ); void (*set_polygon_stipple)( struct pipe_context *, const struct pipe_poly_stipple * ); void (*set_scissor_states)( struct pipe_context *, unsigned start_slot, unsigned num_scissors, const struct pipe_scissor_state * ); void (*set_viewport_states)( struct pipe_context *, unsigned start_slot, unsigned num_viewports, const struct pipe_viewport_state *); void (*set_sampler_views)(struct pipe_context *, unsigned shader, unsigned start_slot, unsigned num_views, struct pipe_sampler_view **); void (*set_tess_state)(struct pipe_context *, const float default_outer_level[4], const float default_inner_level[2]); /** * Bind an array of shader buffers that will be used by a shader. * Any buffers that were previously bound to the specified range * will be unbound. * * \param shader selects shader stage * \param start_slot first buffer slot to bind. * \param count number of consecutive buffers to bind. * \param buffers array of pointers to the buffers to bind, it * should contain at least \a count elements * unless it's NULL, in which case no buffers will * be bound. */ void (*set_shader_buffers)(struct pipe_context *, unsigned shader, unsigned start_slot, unsigned count, struct pipe_shader_buffer *buffers); /** * Bind an array of images that will be used by a shader. * Any images that were previously bound to the specified range * will be unbound. * * \param shader selects shader stage * \param start_slot first image slot to bind. * \param count number of consecutive images to bind. * \param buffers array of pointers to the images to bind, it * should contain at least \a count elements * unless it's NULL, in which case no images will * be bound. */ void (*set_shader_images)(struct pipe_context *, unsigned shader, unsigned start_slot, unsigned count, struct pipe_image_view **images); void (*set_vertex_buffers)( struct pipe_context *, unsigned start_slot, unsigned num_buffers, const struct pipe_vertex_buffer * ); void (*set_index_buffer)( struct pipe_context *pipe, const struct pipe_index_buffer * ); /*@}*/ /** * Stream output functions. */ /*@{*/ struct pipe_stream_output_target *(*create_stream_output_target)( struct pipe_context *, struct pipe_resource *, unsigned buffer_offset, unsigned buffer_size); void (*stream_output_target_destroy)(struct pipe_context *, struct pipe_stream_output_target *); void (*set_stream_output_targets)(struct pipe_context *, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets); /*@}*/ /** * Resource functions for blit-like functionality * * If a driver supports multisampling, blit must implement color resolve. */ /*@{*/ /** * Copy a block of pixels from one resource to another. * The resource must be of the same format. * Resources with nr_samples > 1 are not allowed. */ void (*resource_copy_region)(struct pipe_context *pipe, struct pipe_resource *dst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct pipe_resource *src, unsigned src_level, const struct pipe_box *src_box); /* Optimal hardware path for blitting pixels. * Scaling, format conversion, up- and downsampling (resolve) are allowed. */ void (*blit)(struct pipe_context *pipe, const struct pipe_blit_info *info); /*@}*/ /** * Clear the specified set of currently bound buffers to specified values. * The entire buffers are cleared (no scissor, no colormask, etc). * * \param buffers bitfield of PIPE_CLEAR_* values. * \param color pointer to a union of fiu array for each of r, g, b, a. * \param depth depth clear value in [0,1]. * \param stencil stencil clear value */ void (*clear)(struct pipe_context *pipe, unsigned buffers, const union pipe_color_union *color, double depth, unsigned stencil); /** * Clear a color rendertarget surface. * \param color pointer to an union of fiu array for each of r, g, b, a. */ void (*clear_render_target)(struct pipe_context *pipe, struct pipe_surface *dst, const union pipe_color_union *color, unsigned dstx, unsigned dsty, unsigned width, unsigned height); /** * Clear a depth-stencil surface. * \param clear_flags bitfield of PIPE_CLEAR_DEPTH/STENCIL values. * \param depth depth clear value in [0,1]. * \param stencil stencil clear value */ void (*clear_depth_stencil)(struct pipe_context *pipe, struct pipe_surface *dst, unsigned clear_flags, double depth, unsigned stencil, unsigned dstx, unsigned dsty, unsigned width, unsigned height); /** * Clear a buffer. Runs a memset over the specified region with the element * value passed in through clear_value of size clear_value_size. */ void (*clear_buffer)(struct pipe_context *pipe, struct pipe_resource *res, unsigned offset, unsigned size, const void *clear_value, int clear_value_size); /** * Flush draw commands * * NOTE: use screen->fence_reference() (or equivalent) to transfer * new fence ref to **fence, to ensure that previous fence is unref'd * * \param fence if not NULL, an old fence to unref and transfer a * new fence reference to * \param flags bitfield of enum pipe_flush_flags values. */ void (*flush)(struct pipe_context *pipe, struct pipe_fence_handle **fence, unsigned flags); /** * Create a view on a texture to be used by a shader stage. */ struct pipe_sampler_view * (*create_sampler_view)(struct pipe_context *ctx, struct pipe_resource *texture, const struct pipe_sampler_view *templat); void (*sampler_view_destroy)(struct pipe_context *ctx, struct pipe_sampler_view *view); /** * Get a surface which is a "view" into a resource, used by * render target / depth stencil stages. */ struct pipe_surface *(*create_surface)(struct pipe_context *ctx, struct pipe_resource *resource, const struct pipe_surface *templat); void (*surface_destroy)(struct pipe_context *ctx, struct pipe_surface *); /** * Create an image view into a buffer or texture to be used with load, * store, and atomic instructions by a shader stage. */ struct pipe_image_view * (*create_image_view)(struct pipe_context *ctx, struct pipe_resource *texture, const struct pipe_image_view *templat); void (*image_view_destroy)(struct pipe_context *ctx, struct pipe_image_view *view); /** * Map a resource. * * Transfers are (by default) context-private and allow uploads to be * interleaved with rendering. * * out_transfer will contain the transfer object that must be passed * to all the other transfer functions. It also contains useful * information (like texture strides). */ void *(*transfer_map)(struct pipe_context *, struct pipe_resource *resource, unsigned level, unsigned usage, /* a combination of PIPE_TRANSFER_x */ const struct pipe_box *, struct pipe_transfer **out_transfer); /* If transfer was created with WRITE|FLUSH_EXPLICIT, only the * regions specified with this call are guaranteed to be written to * the resource. */ void (*transfer_flush_region)( struct pipe_context *, struct pipe_transfer *transfer, const struct pipe_box *); void (*transfer_unmap)(struct pipe_context *, struct pipe_transfer *transfer); /* One-shot transfer operation with data supplied in a user * pointer. XXX: strides?? */ void (*transfer_inline_write)( struct pipe_context *, struct pipe_resource *, unsigned level, unsigned usage, /* a combination of PIPE_TRANSFER_x */ const struct pipe_box *, const void *data, unsigned stride, unsigned layer_stride); /** * Flush any pending framebuffer writes and invalidate texture caches. */ void (*texture_barrier)(struct pipe_context *); /** * Flush caches according to flags. */ void (*memory_barrier)(struct pipe_context *, unsigned flags); /** * Creates a video codec for a specific video format/profile */ struct pipe_video_codec *(*create_video_codec)( struct pipe_context *context, const struct pipe_video_codec *templat ); /** * Creates a video buffer as decoding target */ struct pipe_video_buffer *(*create_video_buffer)( struct pipe_context *context, const struct pipe_video_buffer *templat ); /** * Compute kernel execution */ /*@{*/ /** * Define the compute program and parameters to be used by * pipe_context::launch_grid. */ void *(*create_compute_state)(struct pipe_context *context, const struct pipe_compute_state *); void (*bind_compute_state)(struct pipe_context *, void *); void (*delete_compute_state)(struct pipe_context *, void *); /** * Bind an array of shader resources that will be used by the * compute program. Any resources that were previously bound to * the specified range will be unbound after this call. * * \param start first resource to bind. * \param count number of consecutive resources to bind. * \param resources array of pointers to the resources to bind, it * should contain at least \a count elements * unless it's NULL, in which case no new * resources will be bound. */ void (*set_compute_resources)(struct pipe_context *, unsigned start, unsigned count, struct pipe_surface **resources); /** * Bind an array of buffers to be mapped into the address space of * the GLOBAL resource. Any buffers that were previously bound * between [first, first + count - 1] are unbound after this call. * * \param first first buffer to map. * \param count number of consecutive buffers to map. * \param resources array of pointers to the buffers to map, it * should contain at least \a count elements * unless it's NULL, in which case no new * resources will be bound. * \param handles array of pointers to the memory locations that * will be updated with the address each buffer * will be mapped to. The base memory address of * each of the buffers will be added to the value * pointed to by its corresponding handle to form * the final address argument. It should contain * at least \a count elements, unless \a * resources is NULL in which case \a handles * should be NULL as well. * * Note that the driver isn't required to make any guarantees about * the contents of the \a handles array being valid anytime except * during the subsequent calls to pipe_context::launch_grid. This * means that the only sensible location handles[i] may point to is * somewhere within the INPUT buffer itself. This is so to * accommodate implementations that lack virtual memory but * nevertheless migrate buffers on the fly, leading to resource * base addresses that change on each kernel invocation or are * unknown to the pipe driver. */ void (*set_global_binding)(struct pipe_context *context, unsigned first, unsigned count, struct pipe_resource **resources, uint32_t **handles); /** * Launch the compute kernel starting from instruction \a pc of the * currently bound compute program. * * \a grid_layout and \a block_layout are arrays of size \a * PIPE_COMPUTE_CAP_GRID_DIMENSION that determine the layout of the * grid (in block units) and working block (in thread units) to be * used, respectively. * * \a pc For drivers that use PIPE_SHADER_IR_LLVM as their prefered IR, * this value will be the index of the kernel in the opencl.kernels * metadata list. * * \a input will be used to initialize the INPUT resource, and it * should point to a buffer of at least * pipe_compute_state::req_input_mem bytes. */ void (*launch_grid)(struct pipe_context *context, const uint *block_layout, const uint *grid_layout, uint32_t pc, const void *input); /*@}*/ /** * Get sample position for an individual sample point. * * \param sample_count - total number of samples * \param sample_index - sample to get the position values for * \param out_value - return value of 2 floats for x and y position for * requested sample. */ void (*get_sample_position)(struct pipe_context *context, unsigned sample_count, unsigned sample_index, float *out_value); /** * Query a timestamp in nanoseconds. This is completely equivalent to * pipe_screen::get_timestamp() but takes a context handle for drivers * that require a context. */ uint64_t (*get_timestamp)(struct pipe_context *); /** * Flush the resource cache, so that the resource can be used * by an external client. Possible usage: * - flushing a resource before presenting it on the screen * - flushing a resource if some other process or device wants to use it * This shouldn't be used to flush caches if the resource is only managed * by a single pipe_screen and is not shared with another process. * (i.e. you shouldn't use it to flush caches explicitly if you want to e.g. * use the resource for texturing) */ void (*flush_resource)(struct pipe_context *ctx, struct pipe_resource *resource); /** * Invalidate the contents of the resource. * * This is used to implement EGL's semantic of undefined depth/stencil * contenst after a swapbuffers. This allows a tiled renderer (for * example) to not store the depth buffer. */ void (*invalidate_resource)(struct pipe_context *ctx, struct pipe_resource *resource); /** * Return information about unexpected device resets. */ enum pipe_reset_status (*get_device_reset_status)(struct pipe_context *ctx); /** * Dump driver-specific debug information into a stream. This is * used by debugging tools. * * \param ctx pipe context * \param stream where the output should be written to * \param flags a mask of PIPE_DEBUG_* flags */ void (*dump_debug_state)(struct pipe_context *ctx, FILE *stream, unsigned flags); }; #ifdef __cplusplus } #endif #endif /* PIPE_CONTEXT_H */