/* * Copyright (c) 2014 Scott Mansell * Copyright © 2014 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "util/u_format.h" #include "util/crc32.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/ralloc.h" #include "util/hash_table.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_parse.h" #include "compiler/nir/nir.h" #include "compiler/nir/nir_builder.h" #include "compiler/nir_types.h" #include "nir/tgsi_to_nir.h" #include "vc4_context.h" #include "vc4_qpu.h" #include "vc4_qir.h" static struct qreg ntq_get_src(struct vc4_compile *c, nir_src src, int i); static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list); static int type_size(const struct glsl_type *type, bool bindless) { return glsl_count_attribute_slots(type, false); } static void resize_qreg_array(struct vc4_compile *c, struct qreg **regs, uint32_t *size, uint32_t decl_size) { if (*size >= decl_size) return; uint32_t old_size = *size; *size = MAX2(*size * 2, decl_size); *regs = reralloc(c, *regs, struct qreg, *size); if (!*regs) { fprintf(stderr, "Malloc failure\n"); abort(); } for (uint32_t i = old_size; i < *size; i++) (*regs)[i] = c->undef; } static void ntq_emit_thrsw(struct vc4_compile *c) { if (!c->fs_threaded) return; /* Always thread switch after each texture operation for now. * * We could do better by batching a bunch of texture fetches up and * then doing one thread switch and collecting all their results * afterward. */ qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef, c->undef, c->undef)); c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL); } static struct qreg indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr) { struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0); /* Clamp to [0, array size). Note that MIN/MAX are signed. */ uint32_t range = nir_intrinsic_range(intr); indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0)); indirect_offset = qir_MIN_NOIMM(c, indirect_offset, qir_uniform_ui(c, range - 4)); qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0), indirect_offset, qir_uniform(c, QUNIFORM_UBO0_ADDR, nir_intrinsic_base(intr))); c->num_texture_samples++; ntq_emit_thrsw(c); return qir_TEX_RESULT(c); } static struct qreg vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr) { int buffer_index = nir_src_as_uint(intr->src[0]); assert(buffer_index == 1); assert(c->stage == QSTAGE_FRAG); struct qreg offset = ntq_get_src(c, intr->src[1], 0); /* Clamp to [0, array size). Note that MIN/MAX are signed. */ offset = qir_MAX(c, offset, qir_uniform_ui(c, 0)); offset = qir_MIN_NOIMM(c, offset, qir_uniform_ui(c, c->fs_key->ubo_1_size - 4)); qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0), offset, qir_uniform(c, QUNIFORM_UBO1_ADDR, 0)); c->num_texture_samples++; ntq_emit_thrsw(c); return qir_TEX_RESULT(c); } nir_ssa_def * vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz) { switch (swiz) { default: case PIPE_SWIZZLE_NONE: fprintf(stderr, "warning: unknown swizzle\n"); /* FALLTHROUGH */ case PIPE_SWIZZLE_0: return nir_imm_float(b, 0.0); case PIPE_SWIZZLE_1: return nir_imm_float(b, 1.0); case PIPE_SWIZZLE_X: case PIPE_SWIZZLE_Y: case PIPE_SWIZZLE_Z: case PIPE_SWIZZLE_W: return srcs[swiz]; } } static struct qreg * ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def) { struct qreg *qregs = ralloc_array(c->def_ht, struct qreg, def->num_components); _mesa_hash_table_insert(c->def_ht, def, qregs); return qregs; } /** * This function is responsible for getting QIR results into the associated * storage for a NIR instruction. * * If it's a NIR SSA def, then we just set the associated hash table entry to * the new result. * * If it's a NIR reg, then we need to update the existing qreg assigned to the * NIR destination with the incoming value. To do that without introducing * new MOVs, we require that the incoming qreg either be a uniform, or be * SSA-defined by the previous QIR instruction in the block and rewritable by * this function. That lets us sneak ahead and insert the SF flag beforehand * (knowing that the previous instruction doesn't depend on flags) and rewrite * its destination to be the NIR reg's destination */ static void ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan, struct qreg result) { struct qinst *last_inst = NULL; if (!list_empty(&c->cur_block->instructions)) last_inst = (struct qinst *)c->cur_block->instructions.prev; assert(result.file == QFILE_UNIF || (result.file == QFILE_TEMP && last_inst && last_inst == c->defs[result.index])); if (dest->is_ssa) { assert(chan < dest->ssa.num_components); struct qreg *qregs; struct hash_entry *entry = _mesa_hash_table_search(c->def_ht, &dest->ssa); if (entry) qregs = entry->data; else qregs = ntq_init_ssa_def(c, &dest->ssa); qregs[chan] = result; } else { nir_register *reg = dest->reg.reg; assert(dest->reg.base_offset == 0); assert(reg->num_array_elems == 0); struct hash_entry *entry = _mesa_hash_table_search(c->def_ht, reg); struct qreg *qregs = entry->data; /* Insert a MOV if the source wasn't an SSA def in the * previous instruction. */ if (result.file == QFILE_UNIF) { result = qir_MOV(c, result); last_inst = c->defs[result.index]; } /* We know they're both temps, so just rewrite index. */ c->defs[last_inst->dst.index] = NULL; last_inst->dst.index = qregs[chan].index; /* If we're in control flow, then make this update of the reg * conditional on the execution mask. */ if (c->execute.file != QFILE_NULL) { last_inst->dst.index = qregs[chan].index; /* Set the flags to the current exec mask. To insert * the SF, we temporarily remove our SSA instruction. */ list_del(&last_inst->link); qir_SF(c, c->execute); list_addtail(&last_inst->link, &c->cur_block->instructions); last_inst->cond = QPU_COND_ZS; last_inst->cond_is_exec_mask = true; } } } static struct qreg * ntq_get_dest(struct vc4_compile *c, nir_dest *dest) { if (dest->is_ssa) { struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa); for (int i = 0; i < dest->ssa.num_components; i++) qregs[i] = c->undef; return qregs; } else { nir_register *reg = dest->reg.reg; assert(dest->reg.base_offset == 0); assert(reg->num_array_elems == 0); struct hash_entry *entry = _mesa_hash_table_search(c->def_ht, reg); return entry->data; } } static struct qreg ntq_get_src(struct vc4_compile *c, nir_src src, int i) { struct hash_entry *entry; if (src.is_ssa) { entry = _mesa_hash_table_search(c->def_ht, src.ssa); assert(i < src.ssa->num_components); } else { nir_register *reg = src.reg.reg; entry = _mesa_hash_table_search(c->def_ht, reg); assert(reg->num_array_elems == 0); assert(src.reg.base_offset == 0); assert(i < reg->num_components); } struct qreg *qregs = entry->data; return qregs[i]; } static struct qreg ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr, unsigned src) { assert(util_is_power_of_two_or_zero(instr->dest.write_mask)); unsigned chan = ffs(instr->dest.write_mask) - 1; struct qreg r = ntq_get_src(c, instr->src[src].src, instr->src[src].swizzle[chan]); assert(!instr->src[src].abs); assert(!instr->src[src].negate); return r; }; static inline struct qreg qir_SAT(struct vc4_compile *c, struct qreg val) { return qir_FMAX(c, qir_FMIN(c, val, qir_uniform_f(c, 1.0)), qir_uniform_f(c, 0.0)); } static struct qreg ntq_rcp(struct vc4_compile *c, struct qreg x) { struct qreg r = qir_RCP(c, x); /* Apply a Newton-Raphson step to improve the accuracy. */ r = qir_FMUL(c, r, qir_FSUB(c, qir_uniform_f(c, 2.0), qir_FMUL(c, x, r))); return r; } static struct qreg ntq_rsq(struct vc4_compile *c, struct qreg x) { struct qreg r = qir_RSQ(c, x); /* Apply a Newton-Raphson step to improve the accuracy. */ r = qir_FMUL(c, r, qir_FSUB(c, qir_uniform_f(c, 1.5), qir_FMUL(c, qir_uniform_f(c, 0.5), qir_FMUL(c, x, qir_FMUL(c, r, r))))); return r; } static struct qreg ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1) { struct qreg src0_hi = qir_SHR(c, src0, qir_uniform_ui(c, 24)); struct qreg src1_hi = qir_SHR(c, src1, qir_uniform_ui(c, 24)); struct qreg hilo = qir_MUL24(c, src0_hi, src1); struct qreg lohi = qir_MUL24(c, src0, src1_hi); struct qreg lolo = qir_MUL24(c, src0, src1); return qir_ADD(c, lolo, qir_SHL(c, qir_ADD(c, hilo, lohi), qir_uniform_ui(c, 24))); } static struct qreg ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src) { struct qreg depthf = qir_ITOF(c, qir_SHR(c, src, qir_uniform_ui(c, 8))); return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff)); } /** * Emits a lowered TXF_MS from an MSAA texture. * * The addressing math has been lowered in NIR, and now we just need to read * it like a UBO. */ static void ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr) { uint32_t tile_width = 32; uint32_t tile_height = 32; uint32_t tile_size = (tile_height * tile_width * VC4_MAX_SAMPLES * sizeof(uint32_t)); unsigned unit = instr->texture_index; uint32_t w = align(c->key->tex[unit].msaa_width, tile_width); uint32_t w_tiles = w / tile_width; uint32_t h = align(c->key->tex[unit].msaa_height, tile_height); uint32_t h_tiles = h / tile_height; uint32_t size = w_tiles * h_tiles * tile_size; struct qreg addr; assert(instr->num_srcs == 1); assert(instr->src[0].src_type == nir_tex_src_coord); addr = ntq_get_src(c, instr->src[0].src, 0); /* Perform the clamping required by kernel validation. */ addr = qir_MAX(c, addr, qir_uniform_ui(c, 0)); addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4)); qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0), addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit)); ntq_emit_thrsw(c); struct qreg tex = qir_TEX_RESULT(c); c->num_texture_samples++; enum pipe_format format = c->key->tex[unit].format; if (util_format_is_depth_or_stencil(format)) { struct qreg scaled = ntq_scale_depth_texture(c, tex); for (int i = 0; i < 4; i++) ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled)); } else { for (int i = 0; i < 4; i++) ntq_store_dest(c, &instr->dest, i, qir_UNPACK_8_F(c, tex, i)); } } static void ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr) { struct qreg s, t, r, lod, compare; bool is_txb = false, is_txl = false; unsigned unit = instr->texture_index; if (instr->op == nir_texop_txf) { ntq_emit_txf(c, instr); return; } for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_coord: s = ntq_get_src(c, instr->src[i].src, 0); if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D) t = qir_uniform_f(c, 0.5); else t = ntq_get_src(c, instr->src[i].src, 1); if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) r = ntq_get_src(c, instr->src[i].src, 2); break; case nir_tex_src_bias: lod = ntq_get_src(c, instr->src[i].src, 0); is_txb = true; break; case nir_tex_src_lod: lod = ntq_get_src(c, instr->src[i].src, 0); is_txl = true; break; case nir_tex_src_comparator: compare = ntq_get_src(c, instr->src[i].src, 0); break; default: unreachable("unknown texture source"); } } if (c->stage != QSTAGE_FRAG && !is_txl) { /* From the GLSL 1.20 spec: * * "If it is mip-mapped and running on the vertex shader, * then the base texture is used." */ is_txl = true; lod = qir_uniform_ui(c, 0); } if (c->key->tex[unit].force_first_level) { lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit); is_txl = true; is_txb = false; } struct qreg texture_u[] = { qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit), qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit), qir_uniform(c, QUNIFORM_CONSTANT, 0), qir_uniform(c, QUNIFORM_CONSTANT, 0), }; uint32_t next_texture_u = 0; /* There is no native support for GL texture rectangle coordinates, so * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0, * 1]). */ if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) { s = qir_FMUL(c, s, qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit)); t = qir_FMUL(c, t, qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit)); } if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) { texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2, unit | (is_txl << 16)); } struct qinst *tmu; if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) { tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r); tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++]; } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER || c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP || c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER || c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) { tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit)); tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++]; } if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) { s = qir_SAT(c, s); } if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) { t = qir_SAT(c, t); } tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t); tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++]; if (is_txl || is_txb) { tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod); tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++]; } tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s); tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++]; c->num_texture_samples++; ntq_emit_thrsw(c); struct qreg tex = qir_TEX_RESULT(c); enum pipe_format format = c->key->tex[unit].format; struct qreg *dest = ntq_get_dest(c, &instr->dest); if (util_format_is_depth_or_stencil(format)) { struct qreg normalized = ntq_scale_depth_texture(c, tex); struct qreg depth_output; struct qreg u0 = qir_uniform_f(c, 0.0f); struct qreg u1 = qir_uniform_f(c, 1.0f); if (c->key->tex[unit].compare_mode) { /* From the GL_ARB_shadow spec: * * "Let Dt (D subscript t) be the depth texture * value, in the range [0, 1]. Let R be the * interpolated texture coordinate clamped to the * range [0, 1]." */ compare = qir_SAT(c, compare); switch (c->key->tex[unit].compare_func) { case PIPE_FUNC_NEVER: depth_output = qir_uniform_f(c, 0.0f); break; case PIPE_FUNC_ALWAYS: depth_output = u1; break; case PIPE_FUNC_EQUAL: qir_SF(c, qir_FSUB(c, compare, normalized)); depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0); break; case PIPE_FUNC_NOTEQUAL: qir_SF(c, qir_FSUB(c, compare, normalized)); depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0); break; case PIPE_FUNC_GREATER: qir_SF(c, qir_FSUB(c, compare, normalized)); depth_output = qir_SEL(c, QPU_COND_NC, u1, u0); break; case PIPE_FUNC_GEQUAL: qir_SF(c, qir_FSUB(c, normalized, compare)); depth_output = qir_SEL(c, QPU_COND_NS, u1, u0); break; case PIPE_FUNC_LESS: qir_SF(c, qir_FSUB(c, compare, normalized)); depth_output = qir_SEL(c, QPU_COND_NS, u1, u0); break; case PIPE_FUNC_LEQUAL: qir_SF(c, qir_FSUB(c, normalized, compare)); depth_output = qir_SEL(c, QPU_COND_NC, u1, u0); break; } } else { depth_output = normalized; } for (int i = 0; i < 4; i++) dest[i] = depth_output; } else { for (int i = 0; i < 4; i++) dest[i] = qir_UNPACK_8_F(c, tex, i); } } /** * Computes x - floor(x), which is tricky because our FTOI truncates (rounds * to zero). */ static struct qreg ntq_ffract(struct vc4_compile *c, struct qreg src) { struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src)); struct qreg diff = qir_FSUB(c, src, trunc); qir_SF(c, diff); qir_FADD_dest(c, diff, diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS; return qir_MOV(c, diff); } /** * Computes floor(x), which is tricky because our FTOI truncates (rounds to * zero). */ static struct qreg ntq_ffloor(struct vc4_compile *c, struct qreg src) { struct qreg result = qir_ITOF(c, qir_FTOI(c, src)); /* This will be < 0 if we truncated and the truncation was of a value * that was < 0 in the first place. */ qir_SF(c, qir_FSUB(c, src, result)); struct qinst *sub = qir_FSUB_dest(c, result, result, qir_uniform_f(c, 1.0)); sub->cond = QPU_COND_NS; return qir_MOV(c, result); } /** * Computes ceil(x), which is tricky because our FTOI truncates (rounds to * zero). */ static struct qreg ntq_fceil(struct vc4_compile *c, struct qreg src) { struct qreg result = qir_ITOF(c, qir_FTOI(c, src)); /* This will be < 0 if we truncated and the truncation was of a value * that was > 0 in the first place. */ qir_SF(c, qir_FSUB(c, result, src)); qir_FADD_dest(c, result, result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS; return qir_MOV(c, result); } static struct qreg ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x) { /* Since we're using a Taylor approximation, we want to have a small * number of coefficients and take advantage of sin/cos repeating * every 2pi. We keep our x as close to 0 as we can, since the series * will be less accurate as |x| increases. (Also, be careful of * shifting the input x value to be tricky with sin/cos relations, * because getting accurate values for x==0 is very important for SDL * rendering) */ struct qreg scaled_x = qir_FMUL(c, x, qir_uniform_f(c, 1.0f / (M_PI * 2.0f))); /* Note: FTOI truncates toward 0. */ struct qreg x_frac = qir_FSUB(c, scaled_x, qir_ITOF(c, qir_FTOI(c, scaled_x))); /* Map [0.5, 1] to [-0.5, 0] */ qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5))); qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC; /* Map [-1, -0.5] to [0, 0.5] */ qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5))); qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS; return x_frac; } static struct qreg ntq_fsin(struct vc4_compile *c, struct qreg src) { float coeff[] = { 2.0 * M_PI, -pow(2.0 * M_PI, 3) / (3 * 2 * 1), pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1), -pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1), pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), }; struct qreg x = ntq_shrink_sincos_input_range(c, src); struct qreg x2 = qir_FMUL(c, x, x); struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0])); for (int i = 1; i < ARRAY_SIZE(coeff); i++) { x = qir_FMUL(c, x, x2); sum = qir_FADD(c, sum, qir_FMUL(c, x, qir_uniform_f(c, coeff[i]))); } return sum; } static struct qreg ntq_fcos(struct vc4_compile *c, struct qreg src) { float coeff[] = { 1.0f, -pow(2.0 * M_PI, 2) / (2 * 1), pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1), -pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1), pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), -pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), }; struct qreg x_frac = ntq_shrink_sincos_input_range(c, src); struct qreg sum = qir_uniform_f(c, coeff[0]); struct qreg x2 = qir_FMUL(c, x_frac, x_frac); struct qreg x = x2; /* Current x^2, x^4, or x^6 */ for (int i = 1; i < ARRAY_SIZE(coeff); i++) { if (i != 1) x = qir_FMUL(c, x, x2); sum = qir_FADD(c, qir_FMUL(c, x, qir_uniform_f(c, coeff[i])), sum); } return sum; } static struct qreg ntq_fsign(struct vc4_compile *c, struct qreg src) { struct qreg t = qir_get_temp(c); qir_SF(c, src); qir_MOV_dest(c, t, qir_uniform_f(c, 0.0)); qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC; qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS; return qir_MOV(c, t); } static void emit_vertex_input(struct vc4_compile *c, int attr) { enum pipe_format format = c->vs_key->attr_formats[attr]; uint32_t attr_size = util_format_get_blocksize(format); c->vattr_sizes[attr] = align(attr_size, 4); for (int i = 0; i < align(attr_size, 4) / 4; i++) { c->inputs[attr * 4 + i] = qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i)); c->num_inputs++; } } static void emit_fragcoord_input(struct vc4_compile *c, int attr) { c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0)); c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0)); c->inputs[attr * 4 + 2] = qir_FMUL(c, qir_ITOF(c, qir_FRAG_Z(c)), qir_uniform_f(c, 1.0 / 0xffffff)); c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c)); } static struct qreg emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot, uint8_t swizzle) { uint32_t i = c->num_input_slots++; struct qreg vary = { QFILE_VARY, i }; if (c->num_input_slots >= c->input_slots_array_size) { c->input_slots_array_size = MAX2(4, c->input_slots_array_size * 2); c->input_slots = reralloc(c, c->input_slots, struct vc4_varying_slot, c->input_slots_array_size); } c->input_slots[i].slot = slot; c->input_slots[i].swizzle = swizzle; return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c))); } static void emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot) { for (int i = 0; i < 4; i++) { c->inputs[attr * 4 + i] = emit_fragment_varying(c, slot, i); c->num_inputs++; } } static void add_output(struct vc4_compile *c, uint32_t decl_offset, uint8_t slot, uint8_t swizzle) { uint32_t old_array_size = c->outputs_array_size; resize_qreg_array(c, &c->outputs, &c->outputs_array_size, decl_offset + 1); if (old_array_size != c->outputs_array_size) { c->output_slots = reralloc(c, c->output_slots, struct vc4_varying_slot, c->outputs_array_size); } c->output_slots[decl_offset].slot = slot; c->output_slots[decl_offset].swizzle = swizzle; } static bool ntq_src_is_only_ssa_def_user(nir_src *src) { if (!src->is_ssa) return false; if (!list_empty(&src->ssa->if_uses)) return false; return (src->ssa->uses.next == &src->use_link && src->ssa->uses.next->next == &src->ssa->uses); } /** * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack * bit set. * * However, as an optimization, it tries to find the instructions generating * the sources to be packed and just emit the pack flag there, if possible. */ static void ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr) { struct qreg result = qir_get_temp(c); struct nir_alu_instr *vec4 = NULL; /* If packing from a vec4 op (as expected), identify it so that we can * peek back at what generated its sources. */ if (instr->src[0].src.is_ssa && instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu && nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op == nir_op_vec4) { vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr); } /* If the pack is replicating the same channel 4 times, use the 8888 * pack flag. This is common for blending using the alpha * channel. */ if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] && instr->src[0].swizzle[0] == instr->src[0].swizzle[2] && instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) { struct qreg rep = ntq_get_src(c, instr->src[0].src, instr->src[0].swizzle[0]); ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep)); return; } for (int i = 0; i < 4; i++) { int swiz = instr->src[0].swizzle[i]; struct qreg src; if (vec4) { src = ntq_get_src(c, vec4->src[swiz].src, vec4->src[swiz].swizzle[0]); } else { src = ntq_get_src(c, instr->src[0].src, swiz); } if (vec4 && ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) && src.file == QFILE_TEMP && c->defs[src.index] && qir_is_mul(c->defs[src.index]) && !c->defs[src.index]->dst.pack) { struct qinst *rewrite = c->defs[src.index]; c->defs[src.index] = NULL; rewrite->dst = result; rewrite->dst.pack = QPU_PACK_MUL_8A + i; continue; } qir_PACK_8_F(c, result, src, i); } ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result)); } /** Handles sign-extended bitfield extracts for 16 bits. */ static struct qreg ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset, struct qreg bits) { assert(bits.file == QFILE_UNIF && c->uniform_contents[bits.index] == QUNIFORM_CONSTANT && c->uniform_data[bits.index] == 16); assert(offset.file == QFILE_UNIF && c->uniform_contents[offset.index] == QUNIFORM_CONSTANT); int offset_bit = c->uniform_data[offset.index]; assert(offset_bit % 16 == 0); return qir_UNPACK_16_I(c, base, offset_bit / 16); } /** Handles unsigned bitfield extracts for 8 bits. */ static struct qreg ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset, struct qreg bits) { assert(bits.file == QFILE_UNIF && c->uniform_contents[bits.index] == QUNIFORM_CONSTANT && c->uniform_data[bits.index] == 8); assert(offset.file == QFILE_UNIF && c->uniform_contents[offset.index] == QUNIFORM_CONSTANT); int offset_bit = c->uniform_data[offset.index]; assert(offset_bit % 8 == 0); return qir_UNPACK_8_I(c, base, offset_bit / 8); } /** * If compare_instr is a valid comparison instruction, emits the * compare_instr's comparison and returns the sel_instr's return value based * on the compare_instr's result. */ static bool ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest, nir_alu_instr *compare_instr, nir_alu_instr *sel_instr) { enum qpu_cond cond; switch (compare_instr->op) { case nir_op_feq32: case nir_op_ieq32: case nir_op_seq: cond = QPU_COND_ZS; break; case nir_op_fne32: case nir_op_ine32: case nir_op_sne: cond = QPU_COND_ZC; break; case nir_op_fge32: case nir_op_ige32: case nir_op_uge32: case nir_op_sge: cond = QPU_COND_NC; break; case nir_op_flt32: case nir_op_ilt32: case nir_op_slt: cond = QPU_COND_NS; break; default: return false; } struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0); struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1); unsigned unsized_type = nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]); if (unsized_type == nir_type_float) qir_SF(c, qir_FSUB(c, src0, src1)); else qir_SF(c, qir_SUB(c, src0, src1)); switch (sel_instr->op) { case nir_op_seq: case nir_op_sne: case nir_op_sge: case nir_op_slt: *dest = qir_SEL(c, cond, qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0)); break; case nir_op_b32csel: *dest = qir_SEL(c, cond, ntq_get_alu_src(c, sel_instr, 1), ntq_get_alu_src(c, sel_instr, 2)); break; default: *dest = qir_SEL(c, cond, qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0)); break; } /* Make the temporary for nir_store_dest(). */ *dest = qir_MOV(c, *dest); return true; } /** * Attempts to fold a comparison generating a boolean result into the * condition code for selecting between two values, instead of comparing the * boolean result against 0 to generate the condition code. */ static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr, struct qreg *src) { if (!instr->src[0].src.is_ssa) goto out; if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu) goto out; nir_alu_instr *compare = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr); if (!compare) goto out; struct qreg dest; if (ntq_emit_comparison(c, &dest, compare, instr)) return dest; out: qir_SF(c, src[0]); return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2])); } static struct qreg ntq_fddx(struct vc4_compile *c, struct qreg src) { /* Make sure that we have a bare temp to use for MUL rotation, so it * can be allocated to an accumulator. */ if (src.pack || src.file != QFILE_TEMP) src = qir_MOV(c, src); struct qreg from_left = qir_ROT_MUL(c, src, 1); struct qreg from_right = qir_ROT_MUL(c, src, 15); /* Distinguish left/right pixels of the quad. */ qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0), qir_uniform_ui(c, 1))); return qir_MOV(c, qir_SEL(c, QPU_COND_ZS, qir_FSUB(c, from_right, src), qir_FSUB(c, src, from_left))); } static struct qreg ntq_fddy(struct vc4_compile *c, struct qreg src) { if (src.pack || src.file != QFILE_TEMP) src = qir_MOV(c, src); struct qreg from_bottom = qir_ROT_MUL(c, src, 2); struct qreg from_top = qir_ROT_MUL(c, src, 14); /* Distinguish top/bottom pixels of the quad. */ qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0), qir_uniform_ui(c, 2))); return qir_MOV(c, qir_SEL(c, QPU_COND_ZS, qir_FSUB(c, from_top, src), qir_FSUB(c, src, from_bottom))); } static void ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr) { /* This should always be lowered to ALU operations for VC4. */ assert(!instr->dest.saturate); /* Vectors are special in that they have non-scalarized writemasks, * and just take the first swizzle channel for each argument in order * into each writemask channel. */ if (instr->op == nir_op_vec2 || instr->op == nir_op_vec3 || instr->op == nir_op_vec4) { struct qreg srcs[4]; for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) srcs[i] = ntq_get_src(c, instr->src[i].src, instr->src[i].swizzle[0]); for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) ntq_store_dest(c, &instr->dest.dest, i, qir_MOV(c, srcs[i])); return; } if (instr->op == nir_op_pack_unorm_4x8) { ntq_emit_pack_unorm_4x8(c, instr); return; } if (instr->op == nir_op_unpack_unorm_4x8) { struct qreg src = ntq_get_src(c, instr->src[0].src, instr->src[0].swizzle[0]); for (int i = 0; i < 4; i++) { if (instr->dest.write_mask & (1 << i)) ntq_store_dest(c, &instr->dest.dest, i, qir_UNPACK_8_F(c, src, i)); } return; } /* General case: We can just grab the one used channel per src. */ struct qreg src[nir_op_infos[instr->op].num_inputs]; for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { src[i] = ntq_get_alu_src(c, instr, i); } struct qreg result; switch (instr->op) { case nir_op_fmov: case nir_op_imov: result = qir_MOV(c, src[0]); break; case nir_op_fmul: result = qir_FMUL(c, src[0], src[1]); break; case nir_op_fadd: result = qir_FADD(c, src[0], src[1]); break; case nir_op_fsub: result = qir_FSUB(c, src[0], src[1]); break; case nir_op_fmin: result = qir_FMIN(c, src[0], src[1]); break; case nir_op_fmax: result = qir_FMAX(c, src[0], src[1]); break; case nir_op_f2i32: case nir_op_f2u32: result = qir_FTOI(c, src[0]); break; case nir_op_i2f32: case nir_op_u2f32: result = qir_ITOF(c, src[0]); break; case nir_op_b2f32: result = qir_AND(c, src[0], qir_uniform_f(c, 1.0)); break; case nir_op_b2i32: result = qir_AND(c, src[0], qir_uniform_ui(c, 1)); break; case nir_op_i2b32: case nir_op_f2b32: qir_SF(c, src[0]); result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0))); break; case nir_op_iadd: result = qir_ADD(c, src[0], src[1]); break; case nir_op_ushr: result = qir_SHR(c, src[0], src[1]); break; case nir_op_isub: result = qir_SUB(c, src[0], src[1]); break; case nir_op_ishr: result = qir_ASR(c, src[0], src[1]); break; case nir_op_ishl: result = qir_SHL(c, src[0], src[1]); break; case nir_op_imin: result = qir_MIN(c, src[0], src[1]); break; case nir_op_imax: result = qir_MAX(c, src[0], src[1]); break; case nir_op_iand: result = qir_AND(c, src[0], src[1]); break; case nir_op_ior: result = qir_OR(c, src[0], src[1]); break; case nir_op_ixor: result = qir_XOR(c, src[0], src[1]); break; case nir_op_inot: result = qir_NOT(c, src[0]); break; case nir_op_imul: result = ntq_umul(c, src[0], src[1]); break; case nir_op_seq: case nir_op_sne: case nir_op_sge: case nir_op_slt: case nir_op_feq32: case nir_op_fne32: case nir_op_fge32: case nir_op_flt32: case nir_op_ieq32: case nir_op_ine32: case nir_op_ige32: case nir_op_uge32: case nir_op_ilt32: if (!ntq_emit_comparison(c, &result, instr, instr)) { fprintf(stderr, "Bad comparison instruction\n"); } break; case nir_op_b32csel: result = ntq_emit_bcsel(c, instr, src); break; case nir_op_fcsel: qir_SF(c, src[0]); result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2])); break; case nir_op_frcp: result = ntq_rcp(c, src[0]); break; case nir_op_frsq: result = ntq_rsq(c, src[0]); break; case nir_op_fexp2: result = qir_EXP2(c, src[0]); break; case nir_op_flog2: result = qir_LOG2(c, src[0]); break; case nir_op_ftrunc: result = qir_ITOF(c, qir_FTOI(c, src[0])); break; case nir_op_fceil: result = ntq_fceil(c, src[0]); break; case nir_op_ffract: result = ntq_ffract(c, src[0]); break; case nir_op_ffloor: result = ntq_ffloor(c, src[0]); break; case nir_op_fsin: result = ntq_fsin(c, src[0]); break; case nir_op_fcos: result = ntq_fcos(c, src[0]); break; case nir_op_fsign: result = ntq_fsign(c, src[0]); break; case nir_op_fabs: result = qir_FMAXABS(c, src[0], src[0]); break; case nir_op_iabs: result = qir_MAX(c, src[0], qir_SUB(c, qir_uniform_ui(c, 0), src[0])); break; case nir_op_ibitfield_extract: result = ntq_emit_ibfe(c, src[0], src[1], src[2]); break; case nir_op_ubitfield_extract: result = ntq_emit_ubfe(c, src[0], src[1], src[2]); break; case nir_op_usadd_4x8: result = qir_V8ADDS(c, src[0], src[1]); break; case nir_op_ussub_4x8: result = qir_V8SUBS(c, src[0], src[1]); break; case nir_op_umin_4x8: result = qir_V8MIN(c, src[0], src[1]); break; case nir_op_umax_4x8: result = qir_V8MAX(c, src[0], src[1]); break; case nir_op_umul_unorm_4x8: result = qir_V8MULD(c, src[0], src[1]); break; case nir_op_fddx: case nir_op_fddx_coarse: case nir_op_fddx_fine: result = ntq_fddx(c, src[0]); break; case nir_op_fddy: case nir_op_fddy_coarse: case nir_op_fddy_fine: result = ntq_fddy(c, src[0]); break; default: fprintf(stderr, "unknown NIR ALU inst: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); } /* We have a scalar result, so the instruction should only have a * single channel written to. */ assert(util_is_power_of_two_or_zero(instr->dest.write_mask)); ntq_store_dest(c, &instr->dest.dest, ffs(instr->dest.write_mask) - 1, result); } static void emit_frag_end(struct vc4_compile *c) { struct qreg color; if (c->output_color_index != -1) { color = c->outputs[c->output_color_index]; } else { color = qir_uniform_ui(c, 0); } uint32_t discard_cond = QPU_COND_ALWAYS; if (c->s->info.fs.uses_discard) { qir_SF(c, c->discard); discard_cond = QPU_COND_ZS; } if (c->fs_key->stencil_enabled) { qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0), qir_uniform(c, QUNIFORM_STENCIL, 0)); if (c->fs_key->stencil_twoside) { qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0), qir_uniform(c, QUNIFORM_STENCIL, 1)); } if (c->fs_key->stencil_full_writemasks) { qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0), qir_uniform(c, QUNIFORM_STENCIL, 2)); } } if (c->output_sample_mask_index != -1) { qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]); } if (c->fs_key->depth_enabled) { if (c->output_position_index != -1) { qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0), qir_FMUL(c, c->outputs[c->output_position_index], qir_uniform_f(c, 0xffffff)))->cond = discard_cond; } else { qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0), qir_FRAG_Z(c))->cond = discard_cond; } } if (!c->msaa_per_sample_output) { qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0), color)->cond = discard_cond; } else { for (int i = 0; i < VC4_MAX_SAMPLES; i++) { qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0), c->sample_colors[i])->cond = discard_cond; } } } static void emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w) { struct qreg packed = qir_get_temp(c); for (int i = 0; i < 2; i++) { struct qreg scale = qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0); struct qreg packed_chan = packed; packed_chan.pack = QPU_PACK_A_16A + i; qir_FTOI_dest(c, packed_chan, qir_FMUL(c, qir_FMUL(c, c->outputs[c->output_position_index + i], scale), rcp_w)); } qir_VPM_WRITE(c, packed); } static void emit_zs_write(struct vc4_compile *c, struct qreg rcp_w) { struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0); struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0); qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c, c->outputs[c->output_position_index + 2], zscale), rcp_w), zoffset)); } static void emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w) { qir_VPM_WRITE(c, rcp_w); } static void emit_point_size_write(struct vc4_compile *c) { struct qreg point_size; if (c->output_point_size_index != -1) point_size = c->outputs[c->output_point_size_index]; else point_size = qir_uniform_f(c, 1.0); /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835, * BCM21553). */ point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125)); qir_VPM_WRITE(c, point_size); } /** * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c. * * The simulator insists that there be at least one vertex attribute, so * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also * insists that all vertex attributes loaded get read by the VS/CS, so we have * to consume it here. */ static void emit_stub_vpm_read(struct vc4_compile *c) { if (c->num_inputs) return; c->vattr_sizes[0] = 4; (void)qir_MOV(c, qir_reg(QFILE_VPM, 0)); c->num_inputs++; } static void emit_vert_end(struct vc4_compile *c, struct vc4_varying_slot *fs_inputs, uint32_t num_fs_inputs) { struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]); emit_stub_vpm_read(c); emit_scaled_viewport_write(c, rcp_w); emit_zs_write(c, rcp_w); emit_rcp_wc_write(c, rcp_w); if (c->vs_key->per_vertex_point_size) emit_point_size_write(c); for (int i = 0; i < num_fs_inputs; i++) { struct vc4_varying_slot *input = &fs_inputs[i]; int j; for (j = 0; j < c->num_outputs; j++) { struct vc4_varying_slot *output = &c->output_slots[j]; if (input->slot == output->slot && input->swizzle == output->swizzle) { qir_VPM_WRITE(c, c->outputs[j]); break; } } /* Emit padding if we didn't find a declared VS output for * this FS input. */ if (j == c->num_outputs) qir_VPM_WRITE(c, qir_uniform_f(c, 0.0)); } } static void emit_coord_end(struct vc4_compile *c) { struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]); emit_stub_vpm_read(c); for (int i = 0; i < 4; i++) qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]); emit_scaled_viewport_write(c, rcp_w); emit_zs_write(c, rcp_w); emit_rcp_wc_write(c, rcp_w); if (c->vs_key->per_vertex_point_size) emit_point_size_write(c); } static void vc4_optimize_nir(struct nir_shader *s) { bool progress; do { progress = false; NIR_PASS_V(s, nir_lower_vars_to_ssa); NIR_PASS(progress, s, nir_lower_alu_to_scalar); NIR_PASS(progress, s, nir_lower_phis_to_scalar); NIR_PASS(progress, s, nir_copy_prop); NIR_PASS(progress, s, nir_opt_remove_phis); NIR_PASS(progress, s, nir_opt_dce); NIR_PASS(progress, s, nir_opt_dead_cf); NIR_PASS(progress, s, nir_opt_cse); NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true); NIR_PASS(progress, s, nir_opt_algebraic); NIR_PASS(progress, s, nir_opt_constant_folding); NIR_PASS(progress, s, nir_opt_undef); NIR_PASS(progress, s, nir_opt_loop_unroll, nir_var_shader_in | nir_var_shader_out | nir_var_function_temp); } while (progress); } static int driver_location_compare(const void *in_a, const void *in_b) { const nir_variable *const *a = in_a; const nir_variable *const *b = in_b; return (*a)->data.driver_location - (*b)->data.driver_location; } static void ntq_setup_inputs(struct vc4_compile *c) { unsigned num_entries = 0; nir_foreach_variable(var, &c->s->inputs) num_entries++; nir_variable *vars[num_entries]; unsigned i = 0; nir_foreach_variable(var, &c->s->inputs) vars[i++] = var; /* Sort the variables so that we emit the input setup in * driver_location order. This is required for VPM reads, whose data * is fetched into the VPM in driver_location (TGSI register index) * order. */ qsort(&vars, num_entries, sizeof(*vars), driver_location_compare); for (unsigned i = 0; i < num_entries; i++) { nir_variable *var = vars[i]; unsigned array_len = MAX2(glsl_get_length(var->type), 1); unsigned loc = var->data.driver_location; assert(array_len == 1); (void)array_len; resize_qreg_array(c, &c->inputs, &c->inputs_array_size, (loc + 1) * 4); if (c->stage == QSTAGE_FRAG) { if (var->data.location == VARYING_SLOT_POS) { emit_fragcoord_input(c, loc); } else if (var->data.location == VARYING_SLOT_PNTC || (var->data.location >= VARYING_SLOT_VAR0 && (c->fs_key->point_sprite_mask & (1 << (var->data.location - VARYING_SLOT_VAR0))))) { c->inputs[loc * 4 + 0] = c->point_x; c->inputs[loc * 4 + 1] = c->point_y; } else { emit_fragment_input(c, loc, var->data.location); } } else { emit_vertex_input(c, loc); } } } static void ntq_setup_outputs(struct vc4_compile *c) { nir_foreach_variable(var, &c->s->outputs) { unsigned array_len = MAX2(glsl_get_length(var->type), 1); unsigned loc = var->data.driver_location * 4; assert(array_len == 1); (void)array_len; for (int i = 0; i < 4; i++) add_output(c, loc + i, var->data.location, i); if (c->stage == QSTAGE_FRAG) { switch (var->data.location) { case FRAG_RESULT_COLOR: case FRAG_RESULT_DATA0: c->output_color_index = loc; break; case FRAG_RESULT_DEPTH: c->output_position_index = loc; break; case FRAG_RESULT_SAMPLE_MASK: c->output_sample_mask_index = loc; break; } } else { switch (var->data.location) { case VARYING_SLOT_POS: c->output_position_index = loc; break; case VARYING_SLOT_PSIZ: c->output_point_size_index = loc; break; } } } } /** * Sets up the mapping from nir_register to struct qreg *. * * Each nir_register gets a struct qreg per 32-bit component being stored. */ static void ntq_setup_registers(struct vc4_compile *c, struct exec_list *list) { foreach_list_typed(nir_register, nir_reg, node, list) { unsigned array_len = MAX2(nir_reg->num_array_elems, 1); struct qreg *qregs = ralloc_array(c->def_ht, struct qreg, array_len * nir_reg->num_components); _mesa_hash_table_insert(c->def_ht, nir_reg, qregs); for (int i = 0; i < array_len * nir_reg->num_components; i++) qregs[i] = qir_get_temp(c); } } static void ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr) { struct qreg *qregs = ntq_init_ssa_def(c, &instr->def); for (int i = 0; i < instr->def.num_components; i++) qregs[i] = qir_uniform_ui(c, instr->value[i].u32); _mesa_hash_table_insert(c->def_ht, &instr->def, qregs); } static void ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr) { struct qreg *qregs = ntq_init_ssa_def(c, &instr->def); /* QIR needs there to be *some* value, so pick 0 (same as for * ntq_setup_registers(). */ for (int i = 0; i < instr->def.num_components; i++) qregs[i] = qir_uniform_ui(c, 0); } static void ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr) { assert(nir_src_as_uint(instr->src[0]) == 0); /* Reads of the per-sample color need to be done in * order. */ int sample_index = (nir_intrinsic_base(instr) - VC4_NIR_TLB_COLOR_READ_INPUT); for (int i = 0; i <= sample_index; i++) { if (c->color_reads[i].file == QFILE_NULL) { c->color_reads[i] = qir_TLB_COLOR_READ(c); } } ntq_store_dest(c, &instr->dest, 0, qir_MOV(c, c->color_reads[sample_index])); } static void ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr) { assert(instr->num_components == 1); assert(nir_src_is_const(instr->src[0]) && "vc4 doesn't support indirect inputs"); if (c->stage == QSTAGE_FRAG && nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) { ntq_emit_color_read(c, instr); return; } uint32_t offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]); int comp = nir_intrinsic_component(instr); ntq_store_dest(c, &instr->dest, 0, qir_MOV(c, c->inputs[offset * 4 + comp])); } static void ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr) { unsigned offset; switch (instr->intrinsic) { case nir_intrinsic_load_uniform: assert(instr->num_components == 1); if (nir_src_is_const(instr->src[0])) { offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]); assert(offset % 4 == 0); /* We need dwords */ offset = offset / 4; ntq_store_dest(c, &instr->dest, 0, qir_uniform(c, QUNIFORM_UNIFORM, offset)); } else { ntq_store_dest(c, &instr->dest, 0, indirect_uniform_load(c, instr)); } break; case nir_intrinsic_load_ubo: assert(instr->num_components == 1); ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr)); break; case nir_intrinsic_load_user_clip_plane: for (int i = 0; i < instr->num_components; i++) { ntq_store_dest(c, &instr->dest, i, qir_uniform(c, QUNIFORM_USER_CLIP_PLANE, nir_intrinsic_ucp_id(instr) * 4 + i)); } break; case nir_intrinsic_load_blend_const_color_r_float: case nir_intrinsic_load_blend_const_color_g_float: case nir_intrinsic_load_blend_const_color_b_float: case nir_intrinsic_load_blend_const_color_a_float: ntq_store_dest(c, &instr->dest, 0, qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X + (instr->intrinsic - nir_intrinsic_load_blend_const_color_r_float), 0)); break; case nir_intrinsic_load_blend_const_color_rgba8888_unorm: ntq_store_dest(c, &instr->dest, 0, qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA, 0)); break; case nir_intrinsic_load_blend_const_color_aaaa8888_unorm: ntq_store_dest(c, &instr->dest, 0, qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA, 0)); break; case nir_intrinsic_load_alpha_ref_float: ntq_store_dest(c, &instr->dest, 0, qir_uniform(c, QUNIFORM_ALPHA_REF, 0)); break; case nir_intrinsic_load_sample_mask_in: ntq_store_dest(c, &instr->dest, 0, qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0)); break; case nir_intrinsic_load_front_face: /* The register contains 0 (front) or 1 (back), and we need to * turn it into a NIR bool where true means front. */ ntq_store_dest(c, &instr->dest, 0, qir_ADD(c, qir_uniform_ui(c, -1), qir_reg(QFILE_FRAG_REV_FLAG, 0))); break; case nir_intrinsic_load_input: ntq_emit_load_input(c, instr); break; case nir_intrinsic_store_output: assert(nir_src_is_const(instr->src[1]) && "vc4 doesn't support indirect outputs"); offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]); /* MSAA color outputs are the only case where we have an * output that's not lowered to being a store of a single 32 * bit value. */ if (c->stage == QSTAGE_FRAG && instr->num_components == 4) { assert(offset == c->output_color_index); for (int i = 0; i < 4; i++) { c->sample_colors[i] = qir_MOV(c, ntq_get_src(c, instr->src[0], i)); } } else { offset = offset * 4 + nir_intrinsic_component(instr); assert(instr->num_components == 1); c->outputs[offset] = qir_MOV(c, ntq_get_src(c, instr->src[0], 0)); c->num_outputs = MAX2(c->num_outputs, offset + 1); } break; case nir_intrinsic_discard: if (c->execute.file != QFILE_NULL) { qir_SF(c, c->execute); qir_MOV_cond(c, QPU_COND_ZS, c->discard, qir_uniform_ui(c, ~0)); } else { qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0)); } break; case nir_intrinsic_discard_if: { /* true (~0) if we're discarding */ struct qreg cond = ntq_get_src(c, instr->src[0], 0); if (c->execute.file != QFILE_NULL) { /* execute == 0 means the channel is active. Invert * the condition so that we can use zero as "executing * and discarding." */ qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond))); qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond); } else { qir_OR_dest(c, c->discard, c->discard, ntq_get_src(c, instr->src[0], 0)); } break; } default: fprintf(stderr, "Unknown intrinsic: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); break; } } /* Clears (activates) the execute flags for any channels whose jump target * matches this block. */ static void ntq_activate_execute_for_block(struct vc4_compile *c) { qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, c->cur_block->index))); qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0)); } static void ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt) { if (!c->vc4->screen->has_control_flow) { fprintf(stderr, "IF statement support requires updated kernel.\n"); return; } nir_block *nir_else_block = nir_if_first_else_block(if_stmt); bool empty_else_block = (nir_else_block == nir_if_last_else_block(if_stmt) && exec_list_is_empty(&nir_else_block->instr_list)); struct qblock *then_block = qir_new_block(c); struct qblock *after_block = qir_new_block(c); struct qblock *else_block; if (empty_else_block) else_block = after_block; else else_block = qir_new_block(c); bool was_top_level = false; if (c->execute.file == QFILE_NULL) { c->execute = qir_MOV(c, qir_uniform_ui(c, 0)); was_top_level = true; } /* Set ZS for executing (execute == 0) and jumping (if->condition == * 0) channels, and then update execute flags for those to point to * the ELSE block. */ qir_SF(c, qir_OR(c, c->execute, ntq_get_src(c, if_stmt->condition, 0))); qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, else_block->index)); /* Jump to ELSE if nothing is active for THEN, otherwise fall * through. */ qir_SF(c, c->execute); qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC); qir_link_blocks(c->cur_block, else_block); qir_link_blocks(c->cur_block, then_block); /* Process the THEN block. */ qir_set_emit_block(c, then_block); ntq_emit_cf_list(c, &if_stmt->then_list); if (!empty_else_block) { /* Handle the end of the THEN block. First, all currently * active channels update their execute flags to point to * ENDIF */ qir_SF(c, c->execute); qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, after_block->index)); /* If everything points at ENDIF, then jump there immediately. */ qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index))); qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS); qir_link_blocks(c->cur_block, after_block); qir_link_blocks(c->cur_block, else_block); qir_set_emit_block(c, else_block); ntq_activate_execute_for_block(c); ntq_emit_cf_list(c, &if_stmt->else_list); } qir_link_blocks(c->cur_block, after_block); qir_set_emit_block(c, after_block); if (was_top_level) { c->execute = c->undef; c->last_top_block = c->cur_block; } else { ntq_activate_execute_for_block(c); } } static void ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump) { struct qblock *jump_block; switch (jump->type) { case nir_jump_break: jump_block = c->loop_break_block; break; case nir_jump_continue: jump_block = c->loop_cont_block; break; default: unreachable("Unsupported jump type\n"); } qir_SF(c, c->execute); qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, jump_block->index)); /* Jump to the destination block if everyone has taken the jump. */ qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index))); qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS); struct qblock *new_block = qir_new_block(c); qir_link_blocks(c->cur_block, jump_block); qir_link_blocks(c->cur_block, new_block); qir_set_emit_block(c, new_block); } static void ntq_emit_instr(struct vc4_compile *c, nir_instr *instr) { switch (instr->type) { case nir_instr_type_alu: ntq_emit_alu(c, nir_instr_as_alu(instr)); break; case nir_instr_type_intrinsic: ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_load_const: ntq_emit_load_const(c, nir_instr_as_load_const(instr)); break; case nir_instr_type_ssa_undef: ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr)); break; case nir_instr_type_tex: ntq_emit_tex(c, nir_instr_as_tex(instr)); break; case nir_instr_type_jump: ntq_emit_jump(c, nir_instr_as_jump(instr)); break; default: fprintf(stderr, "Unknown NIR instr type: "); nir_print_instr(instr, stderr); fprintf(stderr, "\n"); abort(); } } static void ntq_emit_block(struct vc4_compile *c, nir_block *block) { nir_foreach_instr(instr, block) { ntq_emit_instr(c, instr); } } static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list); static void ntq_emit_loop(struct vc4_compile *c, nir_loop *loop) { if (!c->vc4->screen->has_control_flow) { fprintf(stderr, "loop support requires updated kernel.\n"); ntq_emit_cf_list(c, &loop->body); return; } bool was_top_level = false; if (c->execute.file == QFILE_NULL) { c->execute = qir_MOV(c, qir_uniform_ui(c, 0)); was_top_level = true; } struct qblock *save_loop_cont_block = c->loop_cont_block; struct qblock *save_loop_break_block = c->loop_break_block; c->loop_cont_block = qir_new_block(c); c->loop_break_block = qir_new_block(c); qir_link_blocks(c->cur_block, c->loop_cont_block); qir_set_emit_block(c, c->loop_cont_block); ntq_activate_execute_for_block(c); ntq_emit_cf_list(c, &loop->body); /* If anything had explicitly continued, or is here at the end of the * loop, then we need to loop again. SF updates are masked by the * instruction's condition, so we can do the OR of the two conditions * within SF. */ qir_SF(c, c->execute); struct qinst *cont_check = qir_SUB_dest(c, c->undef, c->execute, qir_uniform_ui(c, c->loop_cont_block->index)); cont_check->cond = QPU_COND_ZC; cont_check->sf = true; qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS); qir_link_blocks(c->cur_block, c->loop_cont_block); qir_link_blocks(c->cur_block, c->loop_break_block); qir_set_emit_block(c, c->loop_break_block); if (was_top_level) { c->execute = c->undef; c->last_top_block = c->cur_block; } else { ntq_activate_execute_for_block(c); } c->loop_break_block = save_loop_break_block; c->loop_cont_block = save_loop_cont_block; } static void ntq_emit_function(struct vc4_compile *c, nir_function_impl *func) { fprintf(stderr, "FUNCTIONS not handled.\n"); abort(); } static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list) { foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_block: ntq_emit_block(c, nir_cf_node_as_block(node)); break; case nir_cf_node_if: ntq_emit_if(c, nir_cf_node_as_if(node)); break; case nir_cf_node_loop: ntq_emit_loop(c, nir_cf_node_as_loop(node)); break; case nir_cf_node_function: ntq_emit_function(c, nir_cf_node_as_function(node)); break; default: fprintf(stderr, "Unknown NIR node type\n"); abort(); } } } static void ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl) { ntq_setup_registers(c, &impl->registers); ntq_emit_cf_list(c, &impl->body); } static void nir_to_qir(struct vc4_compile *c) { if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard) c->discard = qir_MOV(c, qir_uniform_ui(c, 0)); ntq_setup_inputs(c); ntq_setup_outputs(c); /* Find the main function and emit the body. */ nir_foreach_function(function, c->s) { assert(strcmp(function->name, "main") == 0); assert(function->impl); ntq_emit_impl(c, function->impl); } } static const nir_shader_compiler_options nir_options = { .lower_all_io_to_temps = true, .lower_extract_byte = true, .lower_extract_word = true, .lower_fdiv = true, .lower_ffma = true, .lower_flrp32 = true, .lower_fpow = true, .lower_fsat = true, .lower_fsqrt = true, .lower_ldexp = true, .lower_negate = true, .max_unroll_iterations = 32, }; const void * vc4_screen_get_compiler_options(struct pipe_screen *pscreen, enum pipe_shader_ir ir, enum pipe_shader_type shader) { return &nir_options; } static int count_nir_instrs(nir_shader *nir) { int count = 0; nir_foreach_function(function, nir) { if (!function->impl) continue; nir_foreach_block(block, function->impl) { nir_foreach_instr(instr, block) count++; } } return count; } static struct vc4_compile * vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage, struct vc4_key *key, bool fs_threaded) { struct vc4_compile *c = qir_compile_init(); c->vc4 = vc4; c->stage = stage; c->shader_state = &key->shader_state->base; c->program_id = key->shader_state->program_id; c->variant_id = p_atomic_inc_return(&key->shader_state->compiled_variant_count); c->fs_threaded = fs_threaded; c->key = key; switch (stage) { case QSTAGE_FRAG: c->fs_key = (struct vc4_fs_key *)key; if (c->fs_key->is_points) { c->point_x = emit_fragment_varying(c, ~0, 0); c->point_y = emit_fragment_varying(c, ~0, 0); } else if (c->fs_key->is_lines) { c->line_x = emit_fragment_varying(c, ~0, 0); } break; case QSTAGE_VERT: c->vs_key = (struct vc4_vs_key *)key; break; case QSTAGE_COORD: c->vs_key = (struct vc4_vs_key *)key; break; } c->s = nir_shader_clone(c, key->shader_state->base.ir.nir); if (stage == QSTAGE_FRAG) { if (c->fs_key->alpha_test_func != COMPARE_FUNC_ALWAYS) { NIR_PASS_V(c->s, nir_lower_alpha_test, c->fs_key->alpha_test_func, c->fs_key->sample_alpha_to_one && c->fs_key->msaa); } NIR_PASS_V(c->s, vc4_nir_lower_blend, c); } struct nir_lower_tex_options tex_options = { /* We would need to implement txs, but we don't want the * int/float conversions */ .lower_rect = false, .lower_txp = ~0, /* Apply swizzles to all samplers. */ .swizzle_result = ~0, }; /* Lower the format swizzle and ARB_texture_swizzle-style swizzle. * The format swizzling applies before sRGB decode, and * ARB_texture_swizzle is the last thing before returning the sample. */ for (int i = 0; i < ARRAY_SIZE(key->tex); i++) { enum pipe_format format = c->key->tex[i].format; if (!format) continue; const uint8_t *format_swizzle = vc4_get_format_swizzle(format); for (int j = 0; j < 4; j++) { uint8_t arb_swiz = c->key->tex[i].swizzle[j]; if (arb_swiz <= 3) { tex_options.swizzles[i][j] = format_swizzle[arb_swiz]; } else { tex_options.swizzles[i][j] = arb_swiz; } } if (util_format_is_srgb(format)) tex_options.lower_srgb |= (1 << i); } NIR_PASS_V(c->s, nir_lower_tex, &tex_options); if (c->fs_key && c->fs_key->light_twoside) NIR_PASS_V(c->s, nir_lower_two_sided_color); if (c->vs_key && c->vs_key->clamp_color) NIR_PASS_V(c->s, nir_lower_clamp_color_outputs); if (c->key->ucp_enables) { if (stage == QSTAGE_FRAG) { NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables); } else { NIR_PASS_V(c->s, nir_lower_clip_vs, c->key->ucp_enables, false); NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out); } } /* FS input scalarizing must happen after nir_lower_two_sided_color, * which only handles a vec4 at a time. Similarly, VS output * scalarizing must happen after nir_lower_clip_vs. */ if (c->stage == QSTAGE_FRAG) NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in); else NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out); NIR_PASS_V(c->s, vc4_nir_lower_io, c); NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c); NIR_PASS_V(c->s, nir_lower_idiv); vc4_optimize_nir(c->s); NIR_PASS_V(c->s, nir_lower_bool_to_int32); NIR_PASS_V(c->s, nir_convert_from_ssa, true); if (vc4_debug & VC4_DEBUG_SHADERDB) { fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id, count_nir_instrs(c->s)); } if (vc4_debug & VC4_DEBUG_NIR) { fprintf(stderr, "%s prog %d/%d NIR:\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id); nir_print_shader(c->s, stderr); } nir_to_qir(c); switch (stage) { case QSTAGE_FRAG: /* FS threading requires that the thread execute * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating * (with no other THRSW afterwards, obviously). If we didn't * fetch a texture at a top level block, this wouldn't be * true. */ if (c->fs_threaded && !c->last_thrsw_at_top_level) { c->failed = true; return c; } emit_frag_end(c); break; case QSTAGE_VERT: emit_vert_end(c, c->vs_key->fs_inputs->input_slots, c->vs_key->fs_inputs->num_inputs); break; case QSTAGE_COORD: emit_coord_end(c); break; } if (vc4_debug & VC4_DEBUG_QIR) { fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id); qir_dump(c); fprintf(stderr, "\n"); } qir_optimize(c); qir_lower_uniforms(c); qir_schedule_instructions(c); qir_emit_uniform_stream_resets(c); if (vc4_debug & VC4_DEBUG_QIR) { fprintf(stderr, "%s prog %d/%d QIR:\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id); qir_dump(c); fprintf(stderr, "\n"); } qir_reorder_uniforms(c); vc4_generate_code(vc4, c); if (vc4_debug & VC4_DEBUG_SHADERDB) { fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id, c->qpu_inst_count); fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id, c->num_uniforms); } ralloc_free(c->s); return c; } static void * vc4_shader_state_create(struct pipe_context *pctx, const struct pipe_shader_state *cso) { struct vc4_context *vc4 = vc4_context(pctx); struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader); if (!so) return NULL; so->program_id = vc4->next_uncompiled_program_id++; nir_shader *s; if (cso->type == PIPE_SHADER_IR_NIR) { /* The backend takes ownership of the NIR shader on state * creation. */ s = cso->ir.nir; } else { assert(cso->type == PIPE_SHADER_IR_TGSI); if (vc4_debug & VC4_DEBUG_TGSI) { fprintf(stderr, "prog %d TGSI:\n", so->program_id); tgsi_dump(cso->tokens, 0); fprintf(stderr, "\n"); } s = tgsi_to_nir(cso->tokens, pctx->screen); } NIR_PASS_V(s, nir_lower_io, nir_var_all, type_size, (nir_lower_io_options)0); NIR_PASS_V(s, nir_lower_regs_to_ssa); NIR_PASS_V(s, nir_normalize_cubemap_coords); NIR_PASS_V(s, nir_lower_load_const_to_scalar); vc4_optimize_nir(s); NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp); /* Garbage collect dead instructions */ nir_sweep(s); so->base.type = PIPE_SHADER_IR_NIR; so->base.ir.nir = s; if (vc4_debug & VC4_DEBUG_NIR) { fprintf(stderr, "%s prog %d NIR:\n", gl_shader_stage_name(s->info.stage), so->program_id); nir_print_shader(s, stderr); fprintf(stderr, "\n"); } return so; } static void copy_uniform_state_to_shader(struct vc4_compiled_shader *shader, struct vc4_compile *c) { int count = c->num_uniforms; struct vc4_shader_uniform_info *uinfo = &shader->uniforms; uinfo->count = count; uinfo->data = ralloc_array(shader, uint32_t, count); memcpy(uinfo->data, c->uniform_data, count * sizeof(*uinfo->data)); uinfo->contents = ralloc_array(shader, enum quniform_contents, count); memcpy(uinfo->contents, c->uniform_contents, count * sizeof(*uinfo->contents)); uinfo->num_texture_samples = c->num_texture_samples; vc4_set_shader_uniform_dirty_flags(shader); } static void vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c, struct vc4_compiled_shader *shader) { struct vc4_fs_inputs inputs; memset(&inputs, 0, sizeof(inputs)); inputs.input_slots = ralloc_array(shader, struct vc4_varying_slot, c->num_input_slots); bool input_live[c->num_input_slots]; memset(input_live, 0, sizeof(input_live)); qir_for_each_inst_inorder(inst, c) { for (int i = 0; i < qir_get_nsrc(inst); i++) { if (inst->src[i].file == QFILE_VARY) input_live[inst->src[i].index] = true; } } for (int i = 0; i < c->num_input_slots; i++) { struct vc4_varying_slot *slot = &c->input_slots[i]; if (!input_live[i]) continue; /* Skip non-VS-output inputs. */ if (slot->slot == (uint8_t)~0) continue; if (slot->slot == VARYING_SLOT_COL0 || slot->slot == VARYING_SLOT_COL1 || slot->slot == VARYING_SLOT_BFC0 || slot->slot == VARYING_SLOT_BFC1) { shader->color_inputs |= (1 << inputs.num_inputs); } inputs.input_slots[inputs.num_inputs] = *slot; inputs.num_inputs++; } shader->num_inputs = inputs.num_inputs; /* Add our set of inputs to the set of all inputs seen. This way, we * can have a single pointer that identifies an FS inputs set, * allowing VS to avoid recompiling when the FS is recompiled (or a * new one is bound using separate shader objects) but the inputs * don't change. */ struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs); if (entry) { shader->fs_inputs = entry->key; ralloc_free(inputs.input_slots); } else { struct vc4_fs_inputs *alloc_inputs; alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs); memcpy(alloc_inputs, &inputs, sizeof(inputs)); ralloc_steal(alloc_inputs, inputs.input_slots); _mesa_set_add(vc4->fs_inputs_set, alloc_inputs); shader->fs_inputs = alloc_inputs; } } static struct vc4_compiled_shader * vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage, struct vc4_key *key) { struct hash_table *ht; uint32_t key_size; bool try_threading; if (stage == QSTAGE_FRAG) { ht = vc4->fs_cache; key_size = sizeof(struct vc4_fs_key); try_threading = vc4->screen->has_threaded_fs; } else { ht = vc4->vs_cache; key_size = sizeof(struct vc4_vs_key); try_threading = false; } struct vc4_compiled_shader *shader; struct hash_entry *entry = _mesa_hash_table_search(ht, key); if (entry) return entry->data; struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading); /* If the FS failed to compile threaded, fall back to single threaded. */ if (try_threading && c->failed) { qir_compile_destroy(c); c = vc4_shader_ntq(vc4, stage, key, false); } shader = rzalloc(NULL, struct vc4_compiled_shader); shader->program_id = vc4->next_compiled_program_id++; if (stage == QSTAGE_FRAG) { vc4_setup_compiled_fs_inputs(vc4, c, shader); /* Note: the temporary clone in c->s has been freed. */ nir_shader *orig_shader = key->shader_state->base.ir.nir; if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH)) shader->disable_early_z = true; } else { shader->num_inputs = c->num_inputs; shader->vattr_offsets[0] = 0; for (int i = 0; i < 8; i++) { shader->vattr_offsets[i + 1] = shader->vattr_offsets[i] + c->vattr_sizes[i]; if (c->vattr_sizes[i]) shader->vattrs_live |= (1 << i); } } shader->failed = c->failed; if (c->failed) { shader->failed = true; } else { copy_uniform_state_to_shader(shader, c); shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts, c->qpu_inst_count * sizeof(uint64_t)); } shader->fs_threaded = c->fs_threaded; if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) { fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id, 1 + shader->fs_threaded); } qir_compile_destroy(c); struct vc4_key *dup_key; dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */ memcpy(dup_key, key, key_size); _mesa_hash_table_insert(ht, dup_key, shader); return shader; } static void vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key, struct vc4_texture_stateobj *texstate) { for (int i = 0; i < texstate->num_textures; i++) { struct pipe_sampler_view *sampler = texstate->textures[i]; struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler); struct pipe_sampler_state *sampler_state = texstate->samplers[i]; if (!sampler) continue; key->tex[i].format = sampler->format; key->tex[i].swizzle[0] = sampler->swizzle_r; key->tex[i].swizzle[1] = sampler->swizzle_g; key->tex[i].swizzle[2] = sampler->swizzle_b; key->tex[i].swizzle[3] = sampler->swizzle_a; if (sampler->texture->nr_samples > 1) { key->tex[i].msaa_width = sampler->texture->width0; key->tex[i].msaa_height = sampler->texture->height0; } else if (sampler){ key->tex[i].compare_mode = sampler_state->compare_mode; key->tex[i].compare_func = sampler_state->compare_func; key->tex[i].wrap_s = sampler_state->wrap_s; key->tex[i].wrap_t = sampler_state->wrap_t; key->tex[i].force_first_level = vc4_sampler->force_first_level; } } key->ucp_enables = vc4->rasterizer->base.clip_plane_enable; } static void vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode) { struct vc4_job *job = vc4->job; struct vc4_fs_key local_key; struct vc4_fs_key *key = &local_key; if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE | VC4_DIRTY_BLEND | VC4_DIRTY_FRAMEBUFFER | VC4_DIRTY_ZSA | VC4_DIRTY_RASTERIZER | VC4_DIRTY_SAMPLE_MASK | VC4_DIRTY_FRAGTEX | VC4_DIRTY_UNCOMPILED_FS | VC4_DIRTY_UBO_1_SIZE))) { return; } memset(key, 0, sizeof(*key)); vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex); key->base.shader_state = vc4->prog.bind_fs; key->is_points = (prim_mode == PIPE_PRIM_POINTS); key->is_lines = (prim_mode >= PIPE_PRIM_LINES && prim_mode <= PIPE_PRIM_LINE_STRIP); key->blend = vc4->blend->rt[0]; if (vc4->blend->logicop_enable) { key->logicop_func = vc4->blend->logicop_func; } else { key->logicop_func = PIPE_LOGICOP_COPY; } if (job->msaa) { key->msaa = vc4->rasterizer->base.multisample; key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1); key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage; key->sample_alpha_to_one = vc4->blend->alpha_to_one; } if (vc4->framebuffer.cbufs[0]) key->color_format = vc4->framebuffer.cbufs[0]->format; key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0; key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0; key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0; key->depth_enabled = (vc4->zsa->base.depth.enabled || key->stencil_enabled); if (vc4->zsa->base.alpha.enabled) key->alpha_test_func = vc4->zsa->base.alpha.func; else key->alpha_test_func = COMPARE_FUNC_ALWAYS; if (key->is_points) { key->point_sprite_mask = vc4->rasterizer->base.sprite_coord_enable; key->point_coord_upper_left = (vc4->rasterizer->base.sprite_coord_mode == PIPE_SPRITE_COORD_UPPER_LEFT); } key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size; key->light_twoside = vc4->rasterizer->base.light_twoside; struct vc4_compiled_shader *old_fs = vc4->prog.fs; vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base); if (vc4->prog.fs == old_fs) return; vc4->dirty |= VC4_DIRTY_COMPILED_FS; if (vc4->rasterizer->base.flatshade && (!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) { vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS; } if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs) vc4->dirty |= VC4_DIRTY_FS_INPUTS; } static void vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode) { struct vc4_vs_key local_key; struct vc4_vs_key *key = &local_key; if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE | VC4_DIRTY_RASTERIZER | VC4_DIRTY_VERTTEX | VC4_DIRTY_VTXSTATE | VC4_DIRTY_UNCOMPILED_VS | VC4_DIRTY_FS_INPUTS))) { return; } memset(key, 0, sizeof(*key)); vc4_setup_shared_key(vc4, &key->base, &vc4->verttex); key->base.shader_state = vc4->prog.bind_vs; key->fs_inputs = vc4->prog.fs->fs_inputs; key->clamp_color = vc4->rasterizer->base.clamp_vertex_color; for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++) key->attr_formats[i] = vc4->vtx->pipe[i].src_format; key->per_vertex_point_size = (prim_mode == PIPE_PRIM_POINTS && vc4->rasterizer->base.point_size_per_vertex); struct vc4_compiled_shader *vs = vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base); if (vs != vc4->prog.vs) { vc4->prog.vs = vs; vc4->dirty |= VC4_DIRTY_COMPILED_VS; } key->is_coord = true; /* Coord shaders don't care what the FS inputs are. */ key->fs_inputs = NULL; struct vc4_compiled_shader *cs = vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base); if (cs != vc4->prog.cs) { vc4->prog.cs = cs; vc4->dirty |= VC4_DIRTY_COMPILED_CS; } } bool vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode) { vc4_update_compiled_fs(vc4, prim_mode); vc4_update_compiled_vs(vc4, prim_mode); return !(vc4->prog.cs->failed || vc4->prog.vs->failed || vc4->prog.fs->failed); } static uint32_t fs_cache_hash(const void *key) { return _mesa_hash_data(key, sizeof(struct vc4_fs_key)); } static uint32_t vs_cache_hash(const void *key) { return _mesa_hash_data(key, sizeof(struct vc4_vs_key)); } static bool fs_cache_compare(const void *key1, const void *key2) { return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0; } static bool vs_cache_compare(const void *key1, const void *key2) { return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0; } static uint32_t fs_inputs_hash(const void *key) { const struct vc4_fs_inputs *inputs = key; return _mesa_hash_data(inputs->input_slots, sizeof(*inputs->input_slots) * inputs->num_inputs); } static bool fs_inputs_compare(const void *key1, const void *key2) { const struct vc4_fs_inputs *inputs1 = key1; const struct vc4_fs_inputs *inputs2 = key2; return (inputs1->num_inputs == inputs2->num_inputs && memcmp(inputs1->input_slots, inputs2->input_slots, sizeof(*inputs1->input_slots) * inputs1->num_inputs) == 0); } static void delete_from_cache_if_matches(struct hash_table *ht, struct vc4_compiled_shader **last_compile, struct hash_entry *entry, struct vc4_uncompiled_shader *so) { const struct vc4_key *key = entry->key; if (key->shader_state == so) { struct vc4_compiled_shader *shader = entry->data; _mesa_hash_table_remove(ht, entry); vc4_bo_unreference(&shader->bo); if (shader == *last_compile) *last_compile = NULL; ralloc_free(shader); } } static void vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); struct vc4_uncompiled_shader *so = hwcso; hash_table_foreach(vc4->fs_cache, entry) { delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs, entry, so); } hash_table_foreach(vc4->vs_cache, entry) { delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs, entry, so); } ralloc_free(so->base.ir.nir); free(so); } static void vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); vc4->prog.bind_fs = hwcso; vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS; } static void vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); vc4->prog.bind_vs = hwcso; vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS; } void vc4_program_init(struct pipe_context *pctx) { struct vc4_context *vc4 = vc4_context(pctx); pctx->create_vs_state = vc4_shader_state_create; pctx->delete_vs_state = vc4_shader_state_delete; pctx->create_fs_state = vc4_shader_state_create; pctx->delete_fs_state = vc4_shader_state_delete; pctx->bind_fs_state = vc4_fp_state_bind; pctx->bind_vs_state = vc4_vp_state_bind; vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash, fs_cache_compare); vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash, vs_cache_compare); vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash, fs_inputs_compare); } void vc4_program_fini(struct pipe_context *pctx) { struct vc4_context *vc4 = vc4_context(pctx); hash_table_foreach(vc4->fs_cache, entry) { struct vc4_compiled_shader *shader = entry->data; vc4_bo_unreference(&shader->bo); ralloc_free(shader); _mesa_hash_table_remove(vc4->fs_cache, entry); } hash_table_foreach(vc4->vs_cache, entry) { struct vc4_compiled_shader *shader = entry->data; vc4_bo_unreference(&shader->bo); ralloc_free(shader); _mesa_hash_table_remove(vc4->vs_cache, entry); } }