/* * Copyright (c) 2014 Scott Mansell * Copyright © 2014 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "pipe/p_state.h" #include "util/u_format.h" #include "util/u_hash.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/ralloc.h" #include "util/hash_table.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_info.h" #include "tgsi/tgsi_lowering.h" #include "tgsi/tgsi_parse.h" #include "nir/tgsi_to_nir.h" #include "vc4_context.h" #include "vc4_qpu.h" #include "vc4_qir.h" #ifdef USE_VC4_SIMULATOR #include "simpenrose/simpenrose.h" #endif struct vc4_key { struct vc4_uncompiled_shader *shader_state; struct { enum pipe_format format; unsigned compare_mode:1; unsigned compare_func:3; unsigned wrap_s:3; unsigned wrap_t:3; uint8_t swizzle[4]; } tex[VC4_MAX_TEXTURE_SAMPLERS]; uint8_t ucp_enables; }; struct vc4_fs_key { struct vc4_key base; enum pipe_format color_format; bool depth_enabled; bool stencil_enabled; bool stencil_twoside; bool stencil_full_writemasks; bool is_points; bool is_lines; bool alpha_test; bool point_coord_upper_left; bool light_twoside; uint8_t alpha_test_func; uint8_t logicop_func; uint32_t point_sprite_mask; struct pipe_rt_blend_state blend; }; struct vc4_vs_key { struct vc4_key base; /** * This is a proxy for the array of FS input semantics, which is * larger than we would want to put in the key. */ uint64_t compiled_fs_id; enum pipe_format attr_formats[8]; bool is_coord; bool per_vertex_point_size; }; static void resize_qreg_array(struct vc4_compile *c, struct qreg **regs, uint32_t *size, uint32_t decl_size) { if (*size >= decl_size) return; uint32_t old_size = *size; *size = MAX2(*size * 2, decl_size); *regs = reralloc(c, *regs, struct qreg, *size); if (!*regs) { fprintf(stderr, "Malloc failure\n"); abort(); } for (uint32_t i = old_size; i < *size; i++) (*regs)[i] = c->undef; } static struct qreg indirect_uniform_load(struct vc4_compile *c, struct qreg indirect_offset, unsigned offset) { struct vc4_compiler_ubo_range *range = NULL; unsigned i; for (i = 0; i < c->num_uniform_ranges; i++) { range = &c->ubo_ranges[i]; if (offset >= range->src_offset && offset < range->src_offset + range->size) { break; } } /* The driver-location-based offset always has to be within a declared * uniform range. */ assert(range); if (!range->used) { range->used = true; range->dst_offset = c->next_ubo_dst_offset; c->next_ubo_dst_offset += range->size; c->num_ubo_ranges++; }; offset -= range->src_offset; /* Translate the user's TGSI register index from the TGSI register * base to a byte offset. */ indirect_offset = qir_SHL(c, indirect_offset, qir_uniform_ui(c, 4)); /* Adjust for where we stored the TGSI register base. */ indirect_offset = qir_ADD(c, indirect_offset, qir_uniform_ui(c, (range->dst_offset + offset))); /* Clamp to [0, array size). Note that MIN/MAX are signed. */ indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0)); indirect_offset = qir_MIN(c, indirect_offset, qir_uniform_ui(c, (range->dst_offset + range->size - 4))); qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0)); struct qreg r4 = qir_TEX_RESULT(c); c->num_texture_samples++; return qir_MOV(c, r4); } static struct qreg * ntq_get_dest(struct vc4_compile *c, nir_dest dest) { assert(!dest.is_ssa); nir_register *reg = dest.reg.reg; struct hash_entry *entry = _mesa_hash_table_search(c->def_ht, reg); assert(reg->num_array_elems == 0); assert(dest.reg.base_offset == 0); struct qreg *qregs = entry->data; return qregs; } static struct qreg ntq_get_src(struct vc4_compile *c, nir_src src, int i) { struct hash_entry *entry; if (src.is_ssa) { entry = _mesa_hash_table_search(c->def_ht, src.ssa); assert(i < src.ssa->num_components); } else { nir_register *reg = src.reg.reg; entry = _mesa_hash_table_search(c->def_ht, reg); assert(reg->num_array_elems == 0); assert(src.reg.base_offset == 0); assert(i < reg->num_components); } struct qreg *qregs = entry->data; return qregs[i]; } static struct qreg ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr, unsigned src) { assert(util_is_power_of_two(instr->dest.write_mask)); unsigned chan = ffs(instr->dest.write_mask) - 1; struct qreg r = ntq_get_src(c, instr->src[src].src, instr->src[src].swizzle[chan]); assert(!instr->src[src].abs); assert(!instr->src[src].negate); return r; }; static struct qreg get_swizzled_channel(struct vc4_compile *c, struct qreg *srcs, int swiz) { switch (swiz) { default: case UTIL_FORMAT_SWIZZLE_NONE: fprintf(stderr, "warning: unknown swizzle\n"); /* FALLTHROUGH */ case UTIL_FORMAT_SWIZZLE_0: return qir_uniform_f(c, 0.0); case UTIL_FORMAT_SWIZZLE_1: return qir_uniform_f(c, 1.0); case UTIL_FORMAT_SWIZZLE_X: case UTIL_FORMAT_SWIZZLE_Y: case UTIL_FORMAT_SWIZZLE_Z: case UTIL_FORMAT_SWIZZLE_W: return srcs[swiz]; } } static inline struct qreg qir_SAT(struct vc4_compile *c, struct qreg val) { return qir_FMAX(c, qir_FMIN(c, val, qir_uniform_f(c, 1.0)), qir_uniform_f(c, 0.0)); } static struct qreg ntq_rcp(struct vc4_compile *c, struct qreg x) { struct qreg r = qir_RCP(c, x); /* Apply a Newton-Raphson step to improve the accuracy. */ r = qir_FMUL(c, r, qir_FSUB(c, qir_uniform_f(c, 2.0), qir_FMUL(c, x, r))); return r; } static struct qreg ntq_rsq(struct vc4_compile *c, struct qreg x) { struct qreg r = qir_RSQ(c, x); /* Apply a Newton-Raphson step to improve the accuracy. */ r = qir_FMUL(c, r, qir_FSUB(c, qir_uniform_f(c, 1.5), qir_FMUL(c, qir_uniform_f(c, 0.5), qir_FMUL(c, x, qir_FMUL(c, r, r))))); return r; } static struct qreg qir_srgb_decode(struct vc4_compile *c, struct qreg srgb) { struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92)); struct qreg high = qir_POW(c, qir_FMUL(c, qir_FADD(c, srgb, qir_uniform_f(c, 0.055)), qir_uniform_f(c, 1.0 / 1.055)), qir_uniform_f(c, 2.4)); qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045))); return qir_SEL_X_Y_NS(c, low, high); } static struct qreg qir_srgb_encode(struct vc4_compile *c, struct qreg linear) { struct qreg low = qir_FMUL(c, linear, qir_uniform_f(c, 12.92)); struct qreg high = qir_FSUB(c, qir_FMUL(c, qir_uniform_f(c, 1.055), qir_POW(c, linear, qir_uniform_f(c, 0.41666))), qir_uniform_f(c, 0.055)); qir_SF(c, qir_FSUB(c, linear, qir_uniform_f(c, 0.0031308))); return qir_SEL_X_Y_NS(c, low, high); } static struct qreg ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1) { struct qreg src0_hi = qir_SHR(c, src0, qir_uniform_ui(c, 24)); struct qreg src1_hi = qir_SHR(c, src1, qir_uniform_ui(c, 24)); struct qreg hilo = qir_MUL24(c, src0_hi, src1); struct qreg lohi = qir_MUL24(c, src0, src1_hi); struct qreg lolo = qir_MUL24(c, src0, src1); return qir_ADD(c, lolo, qir_SHL(c, qir_ADD(c, hilo, lohi), qir_uniform_ui(c, 24))); } static void ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr) { struct qreg s, t, r, lod, proj, compare; bool is_txb = false, is_txl = false, has_proj = false; unsigned unit = instr->sampler_index; for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_coord: s = ntq_get_src(c, instr->src[i].src, 0); if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D) t = qir_uniform_f(c, 0.5); else t = ntq_get_src(c, instr->src[i].src, 1); if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) r = ntq_get_src(c, instr->src[i].src, 2); break; case nir_tex_src_bias: lod = ntq_get_src(c, instr->src[i].src, 0); is_txb = true; break; case nir_tex_src_lod: lod = ntq_get_src(c, instr->src[i].src, 0); is_txl = true; break; case nir_tex_src_comparitor: compare = ntq_get_src(c, instr->src[i].src, 0); break; case nir_tex_src_projector: proj = qir_RCP(c, ntq_get_src(c, instr->src[i].src, 0)); s = qir_FMUL(c, s, proj); t = qir_FMUL(c, t, proj); has_proj = true; break; default: unreachable("unknown texture source"); } } struct qreg texture_u[] = { qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit), qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit), qir_uniform(c, QUNIFORM_CONSTANT, 0), qir_uniform(c, QUNIFORM_CONSTANT, 0), }; uint32_t next_texture_u = 0; /* There is no native support for GL texture rectangle coordinates, so * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0, * 1]). */ if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) { s = qir_FMUL(c, s, qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit)); t = qir_FMUL(c, t, qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit)); } if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) { texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2, unit | (is_txl << 16)); } if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) { struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r); struct qreg rcp_ma = qir_RCP(c, ma); s = qir_FMUL(c, s, rcp_ma); t = qir_FMUL(c, t, rcp_ma); r = qir_FMUL(c, r, rcp_ma); qir_TEX_R(c, r, texture_u[next_texture_u++]); } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER || c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP || c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER || c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) { qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit), texture_u[next_texture_u++]); } if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) { s = qir_SAT(c, s); } if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) { t = qir_SAT(c, t); } qir_TEX_T(c, t, texture_u[next_texture_u++]); if (is_txl || is_txb) qir_TEX_B(c, lod, texture_u[next_texture_u++]); qir_TEX_S(c, s, texture_u[next_texture_u++]); c->num_texture_samples++; struct qreg r4 = qir_TEX_RESULT(c); enum pipe_format format = c->key->tex[unit].format; struct qreg unpacked[4]; if (util_format_is_depth_or_stencil(format)) { struct qreg depthf = qir_ITOF(c, qir_SHR(c, r4, qir_uniform_ui(c, 8))); struct qreg normalized = qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff)); struct qreg depth_output; struct qreg one = qir_uniform_f(c, 1.0f); if (c->key->tex[unit].compare_mode) { if (has_proj) compare = qir_FMUL(c, compare, proj); switch (c->key->tex[unit].compare_func) { case PIPE_FUNC_NEVER: depth_output = qir_uniform_f(c, 0.0f); break; case PIPE_FUNC_ALWAYS: depth_output = one; break; case PIPE_FUNC_EQUAL: qir_SF(c, qir_FSUB(c, compare, normalized)); depth_output = qir_SEL_X_0_ZS(c, one); break; case PIPE_FUNC_NOTEQUAL: qir_SF(c, qir_FSUB(c, compare, normalized)); depth_output = qir_SEL_X_0_ZC(c, one); break; case PIPE_FUNC_GREATER: qir_SF(c, qir_FSUB(c, compare, normalized)); depth_output = qir_SEL_X_0_NC(c, one); break; case PIPE_FUNC_GEQUAL: qir_SF(c, qir_FSUB(c, normalized, compare)); depth_output = qir_SEL_X_0_NS(c, one); break; case PIPE_FUNC_LESS: qir_SF(c, qir_FSUB(c, compare, normalized)); depth_output = qir_SEL_X_0_NS(c, one); break; case PIPE_FUNC_LEQUAL: qir_SF(c, qir_FSUB(c, normalized, compare)); depth_output = qir_SEL_X_0_NC(c, one); break; } } else { depth_output = normalized; } for (int i = 0; i < 4; i++) unpacked[i] = depth_output; } else { for (int i = 0; i < 4; i++) unpacked[i] = qir_R4_UNPACK(c, r4, i); } const uint8_t *format_swiz = vc4_get_format_swizzle(format); struct qreg texture_output[4]; for (int i = 0; i < 4; i++) { texture_output[i] = get_swizzled_channel(c, unpacked, format_swiz[i]); } if (util_format_is_srgb(format)) { for (int i = 0; i < 3; i++) texture_output[i] = qir_srgb_decode(c, texture_output[i]); } struct qreg *dest = ntq_get_dest(c, instr->dest); for (int i = 0; i < 4; i++) { dest[i] = get_swizzled_channel(c, texture_output, c->key->tex[unit].swizzle[i]); } } /** * Computes x - floor(x), which is tricky because our FTOI truncates (rounds * to zero). */ static struct qreg ntq_ffract(struct vc4_compile *c, struct qreg src) { struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src)); struct qreg diff = qir_FSUB(c, src, trunc); qir_SF(c, diff); return qir_SEL_X_Y_NS(c, qir_FADD(c, diff, qir_uniform_f(c, 1.0)), diff); } /** * Computes floor(x), which is tricky because our FTOI truncates (rounds to * zero). */ static struct qreg ntq_ffloor(struct vc4_compile *c, struct qreg src) { struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src)); /* This will be < 0 if we truncated and the truncation was of a value * that was < 0 in the first place. */ qir_SF(c, qir_FSUB(c, src, trunc)); return qir_SEL_X_Y_NS(c, qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)), trunc); } /** * Computes ceil(x), which is tricky because our FTOI truncates (rounds to * zero). */ static struct qreg ntq_fceil(struct vc4_compile *c, struct qreg src) { struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src)); /* This will be < 0 if we truncated and the truncation was of a value * that was > 0 in the first place. */ qir_SF(c, qir_FSUB(c, trunc, src)); return qir_SEL_X_Y_NS(c, qir_FADD(c, trunc, qir_uniform_f(c, 1.0)), trunc); } static struct qreg ntq_fsin(struct vc4_compile *c, struct qreg src) { float coeff[] = { -2.0 * M_PI, pow(2.0 * M_PI, 3) / (3 * 2 * 1), -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1), pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1), -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), }; struct qreg scaled_x = qir_FMUL(c, src, qir_uniform_f(c, 1.0 / (M_PI * 2.0))); struct qreg x = qir_FADD(c, ntq_ffract(c, scaled_x), qir_uniform_f(c, -0.5)); struct qreg x2 = qir_FMUL(c, x, x); struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0])); for (int i = 1; i < ARRAY_SIZE(coeff); i++) { x = qir_FMUL(c, x, x2); sum = qir_FADD(c, sum, qir_FMUL(c, x, qir_uniform_f(c, coeff[i]))); } return sum; } static struct qreg ntq_fcos(struct vc4_compile *c, struct qreg src) { float coeff[] = { -1.0f, pow(2.0 * M_PI, 2) / (2 * 1), -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1), pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1), -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), }; struct qreg scaled_x = qir_FMUL(c, src, qir_uniform_f(c, 1.0f / (M_PI * 2.0f))); struct qreg x_frac = qir_FADD(c, ntq_ffract(c, scaled_x), qir_uniform_f(c, -0.5)); struct qreg sum = qir_uniform_f(c, coeff[0]); struct qreg x2 = qir_FMUL(c, x_frac, x_frac); struct qreg x = x2; /* Current x^2, x^4, or x^6 */ for (int i = 1; i < ARRAY_SIZE(coeff); i++) { if (i != 1) x = qir_FMUL(c, x, x2); struct qreg mul = qir_FMUL(c, x, qir_uniform_f(c, coeff[i])); if (i == 0) sum = mul; else sum = qir_FADD(c, sum, mul); } return sum; } static struct qreg ntq_fsign(struct vc4_compile *c, struct qreg src) { qir_SF(c, src); return qir_SEL_X_Y_NC(c, qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)), qir_uniform_f(c, -1.0)); } static struct qreg get_channel_from_vpm(struct vc4_compile *c, struct qreg *vpm_reads, uint8_t swiz, const struct util_format_description *desc) { const struct util_format_channel_description *chan = &desc->channel[swiz]; struct qreg temp; if (swiz > UTIL_FORMAT_SWIZZLE_W) return get_swizzled_channel(c, vpm_reads, swiz); else if (chan->size == 32 && chan->type == UTIL_FORMAT_TYPE_FLOAT) { return get_swizzled_channel(c, vpm_reads, swiz); } else if (chan->size == 32 && chan->type == UTIL_FORMAT_TYPE_SIGNED) { if (chan->normalized) { return qir_FMUL(c, qir_ITOF(c, vpm_reads[swiz]), qir_uniform_f(c, 1.0 / 0x7fffffff)); } else { return qir_ITOF(c, vpm_reads[swiz]); } } else if (chan->size == 8 && (chan->type == UTIL_FORMAT_TYPE_UNSIGNED || chan->type == UTIL_FORMAT_TYPE_SIGNED)) { struct qreg vpm = vpm_reads[0]; if (chan->type == UTIL_FORMAT_TYPE_SIGNED) { temp = qir_XOR(c, vpm, qir_uniform_ui(c, 0x80808080)); if (chan->normalized) { return qir_FSUB(c, qir_FMUL(c, qir_UNPACK_8_F(c, temp, swiz), qir_uniform_f(c, 2.0)), qir_uniform_f(c, 1.0)); } else { return qir_FADD(c, qir_ITOF(c, qir_UNPACK_8_I(c, temp, swiz)), qir_uniform_f(c, -128.0)); } } else { if (chan->normalized) { return qir_UNPACK_8_F(c, vpm, swiz); } else { return qir_ITOF(c, qir_UNPACK_8_I(c, vpm, swiz)); } } } else if (chan->size == 16 && (chan->type == UTIL_FORMAT_TYPE_UNSIGNED || chan->type == UTIL_FORMAT_TYPE_SIGNED)) { struct qreg vpm = vpm_reads[swiz / 2]; /* Note that UNPACK_16F eats a half float, not ints, so we use * UNPACK_16_I for all of these. */ if (chan->type == UTIL_FORMAT_TYPE_SIGNED) { temp = qir_ITOF(c, qir_UNPACK_16_I(c, vpm, swiz % 2)); if (chan->normalized) { return qir_FMUL(c, temp, qir_uniform_f(c, 1/32768.0f)); } else { return temp; } } else { /* UNPACK_16I sign-extends, so we have to emit ANDs. */ temp = vpm; if (swiz == 1 || swiz == 3) temp = qir_UNPACK_16_I(c, temp, 1); temp = qir_AND(c, temp, qir_uniform_ui(c, 0xffff)); temp = qir_ITOF(c, temp); if (chan->normalized) { return qir_FMUL(c, temp, qir_uniform_f(c, 1 / 65535.0)); } else { return temp; } } } else { return c->undef; } } static void emit_vertex_input(struct vc4_compile *c, int attr) { enum pipe_format format = c->vs_key->attr_formats[attr]; uint32_t attr_size = util_format_get_blocksize(format); struct qreg vpm_reads[4]; c->vattr_sizes[attr] = align(attr_size, 4); for (int i = 0; i < align(attr_size, 4) / 4; i++) { struct qreg vpm = { QFILE_VPM, attr * 4 + i }; vpm_reads[i] = qir_MOV(c, vpm); c->num_inputs++; } bool format_warned = false; const struct util_format_description *desc = util_format_description(format); for (int i = 0; i < 4; i++) { uint8_t swiz = desc->swizzle[i]; struct qreg result = get_channel_from_vpm(c, vpm_reads, swiz, desc); if (result.file == QFILE_NULL) { if (!format_warned) { fprintf(stderr, "vtx element %d unsupported type: %s\n", attr, util_format_name(format)); format_warned = true; } result = qir_uniform_f(c, 0.0); } c->inputs[attr * 4 + i] = result; } } static void emit_fragcoord_input(struct vc4_compile *c, int attr) { c->inputs[attr * 4 + 0] = qir_FRAG_X(c); c->inputs[attr * 4 + 1] = qir_FRAG_Y(c); c->inputs[attr * 4 + 2] = qir_FMUL(c, qir_ITOF(c, qir_FRAG_Z(c)), qir_uniform_f(c, 1.0 / 0xffffff)); c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c)); } static void emit_point_coord_input(struct vc4_compile *c, int attr) { if (c->point_x.file == QFILE_NULL) { c->point_x = qir_uniform_f(c, 0.0); c->point_y = qir_uniform_f(c, 0.0); } c->inputs[attr * 4 + 0] = c->point_x; if (c->fs_key->point_coord_upper_left) { c->inputs[attr * 4 + 1] = qir_FSUB(c, qir_uniform_f(c, 1.0), c->point_y); } else { c->inputs[attr * 4 + 1] = c->point_y; } c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0); c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0); } static struct qreg emit_fragment_varying(struct vc4_compile *c, uint8_t semantic, uint8_t index, uint8_t swizzle) { uint32_t i = c->num_input_semantics++; struct qreg vary = { QFILE_VARY, i }; if (c->num_input_semantics >= c->input_semantics_array_size) { c->input_semantics_array_size = MAX2(4, c->input_semantics_array_size * 2); c->input_semantics = reralloc(c, c->input_semantics, struct vc4_varying_semantic, c->input_semantics_array_size); } c->input_semantics[i].semantic = semantic; c->input_semantics[i].index = index; c->input_semantics[i].swizzle = swizzle; return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c))); } static void emit_fragment_input(struct vc4_compile *c, int attr, unsigned semantic_name, unsigned semantic_index) { for (int i = 0; i < 4; i++) { c->inputs[attr * 4 + i] = emit_fragment_varying(c, semantic_name, semantic_index, i); c->num_inputs++; } } static void emit_face_input(struct vc4_compile *c, int attr) { c->inputs[attr * 4 + 0] = qir_FSUB(c, qir_uniform_f(c, 1.0), qir_FMUL(c, qir_ITOF(c, qir_FRAG_REV_FLAG(c)), qir_uniform_f(c, 2.0))); c->inputs[attr * 4 + 1] = qir_uniform_f(c, 0.0); c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0); c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0); } static void add_output(struct vc4_compile *c, uint32_t decl_offset, uint8_t semantic_name, uint8_t semantic_index, uint8_t semantic_swizzle) { uint32_t old_array_size = c->outputs_array_size; resize_qreg_array(c, &c->outputs, &c->outputs_array_size, decl_offset + 1); if (old_array_size != c->outputs_array_size) { c->output_semantics = reralloc(c, c->output_semantics, struct vc4_varying_semantic, c->outputs_array_size); } c->output_semantics[decl_offset].semantic = semantic_name; c->output_semantics[decl_offset].index = semantic_index; c->output_semantics[decl_offset].swizzle = semantic_swizzle; } static void declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size) { unsigned array_id = c->num_uniform_ranges++; if (array_id >= c->ubo_ranges_array_size) { c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2, array_id + 1); c->ubo_ranges = reralloc(c, c->ubo_ranges, struct vc4_compiler_ubo_range, c->ubo_ranges_array_size); } c->ubo_ranges[array_id].dst_offset = 0; c->ubo_ranges[array_id].src_offset = start; c->ubo_ranges[array_id].size = size; c->ubo_ranges[array_id].used = false; } static void ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr) { /* Vectors are special in that they have non-scalarized writemasks, * and just take the first swizzle channel for each argument in order * into each writemask channel. */ if (instr->op == nir_op_vec2 || instr->op == nir_op_vec3 || instr->op == nir_op_vec4) { struct qreg srcs[4]; for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) srcs[i] = ntq_get_src(c, instr->src[i].src, instr->src[i].swizzle[0]); struct qreg *dest = ntq_get_dest(c, instr->dest.dest); for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) dest[i] = srcs[i]; return; } /* General case: We can just grab the one used channel per src. */ struct qreg src[nir_op_infos[instr->op].num_inputs]; for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { src[i] = ntq_get_alu_src(c, instr, i); } /* Pick the channel to store the output in. */ assert(!instr->dest.saturate); struct qreg *dest = ntq_get_dest(c, instr->dest.dest); assert(util_is_power_of_two(instr->dest.write_mask)); dest += ffs(instr->dest.write_mask) - 1; switch (instr->op) { case nir_op_fmov: case nir_op_imov: *dest = qir_MOV(c, src[0]); break; case nir_op_fmul: *dest = qir_FMUL(c, src[0], src[1]); break; case nir_op_fadd: *dest = qir_FADD(c, src[0], src[1]); break; case nir_op_fsub: *dest = qir_FSUB(c, src[0], src[1]); break; case nir_op_fmin: *dest = qir_FMIN(c, src[0], src[1]); break; case nir_op_fmax: *dest = qir_FMAX(c, src[0], src[1]); break; case nir_op_f2i: case nir_op_f2u: *dest = qir_FTOI(c, src[0]); break; case nir_op_i2f: case nir_op_u2f: *dest = qir_ITOF(c, src[0]); break; case nir_op_b2f: *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0)); break; case nir_op_b2i: *dest = qir_AND(c, src[0], qir_uniform_ui(c, 1)); break; case nir_op_i2b: case nir_op_f2b: qir_SF(c, src[0]); *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0)); break; case nir_op_iadd: *dest = qir_ADD(c, src[0], src[1]); break; case nir_op_ushr: *dest = qir_SHR(c, src[0], src[1]); break; case nir_op_isub: *dest = qir_SUB(c, src[0], src[1]); break; case nir_op_ishr: *dest = qir_ASR(c, src[0], src[1]); break; case nir_op_ishl: *dest = qir_SHL(c, src[0], src[1]); break; case nir_op_imin: *dest = qir_MIN(c, src[0], src[1]); break; case nir_op_imax: *dest = qir_MAX(c, src[0], src[1]); break; case nir_op_iand: *dest = qir_AND(c, src[0], src[1]); break; case nir_op_ior: *dest = qir_OR(c, src[0], src[1]); break; case nir_op_ixor: *dest = qir_XOR(c, src[0], src[1]); break; case nir_op_inot: *dest = qir_NOT(c, src[0]); break; case nir_op_imul: *dest = ntq_umul(c, src[0], src[1]); break; case nir_op_seq: qir_SF(c, qir_FSUB(c, src[0], src[1])); *dest = qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0)); break; case nir_op_sne: qir_SF(c, qir_FSUB(c, src[0], src[1])); *dest = qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)); break; case nir_op_sge: qir_SF(c, qir_FSUB(c, src[0], src[1])); *dest = qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0)); break; case nir_op_slt: qir_SF(c, qir_FSUB(c, src[0], src[1])); *dest = qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0)); break; case nir_op_feq: qir_SF(c, qir_FSUB(c, src[0], src[1])); *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0)); break; case nir_op_fne: qir_SF(c, qir_FSUB(c, src[0], src[1])); *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0)); break; case nir_op_fge: qir_SF(c, qir_FSUB(c, src[0], src[1])); *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0)); break; case nir_op_flt: qir_SF(c, qir_FSUB(c, src[0], src[1])); *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0)); break; case nir_op_ieq: qir_SF(c, qir_SUB(c, src[0], src[1])); *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0)); break; case nir_op_ine: qir_SF(c, qir_SUB(c, src[0], src[1])); *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0)); break; case nir_op_ige: qir_SF(c, qir_SUB(c, src[0], src[1])); *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0)); break; case nir_op_ilt: qir_SF(c, qir_SUB(c, src[0], src[1])); *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0)); break; case nir_op_bcsel: qir_SF(c, src[0]); *dest = qir_SEL_X_Y_NS(c, src[1], src[2]); break; case nir_op_fcsel: qir_SF(c, src[0]); *dest = qir_SEL_X_Y_ZC(c, src[1], src[2]); break; case nir_op_frcp: *dest = ntq_rcp(c, src[0]); break; case nir_op_frsq: *dest = ntq_rsq(c, src[0]); break; case nir_op_fexp2: *dest = qir_EXP2(c, src[0]); break; case nir_op_flog2: *dest = qir_LOG2(c, src[0]); break; case nir_op_ftrunc: *dest = qir_ITOF(c, qir_FTOI(c, src[0])); break; case nir_op_fceil: *dest = ntq_fceil(c, src[0]); break; case nir_op_ffract: *dest = ntq_ffract(c, src[0]); break; case nir_op_ffloor: *dest = ntq_ffloor(c, src[0]); break; case nir_op_fsin: *dest = ntq_fsin(c, src[0]); break; case nir_op_fcos: *dest = ntq_fcos(c, src[0]); break; case nir_op_fsign: *dest = ntq_fsign(c, src[0]); break; case nir_op_fabs: *dest = qir_FMAXABS(c, src[0], src[0]); break; case nir_op_iabs: *dest = qir_MAX(c, src[0], qir_SUB(c, qir_uniform_ui(c, 0), src[0])); break; default: fprintf(stderr, "unknown NIR ALU inst: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); } } static struct qreg vc4_blend_channel(struct vc4_compile *c, struct qreg *dst, struct qreg *src, struct qreg val, unsigned factor, int channel) { switch(factor) { case PIPE_BLENDFACTOR_ONE: return val; case PIPE_BLENDFACTOR_SRC_COLOR: return qir_FMUL(c, val, src[channel]); case PIPE_BLENDFACTOR_SRC_ALPHA: return qir_FMUL(c, val, src[3]); case PIPE_BLENDFACTOR_DST_ALPHA: return qir_FMUL(c, val, dst[3]); case PIPE_BLENDFACTOR_DST_COLOR: return qir_FMUL(c, val, dst[channel]); case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: if (channel != 3) { return qir_FMUL(c, val, qir_FMIN(c, src[3], qir_FSUB(c, qir_uniform_f(c, 1.0), dst[3]))); } else { return val; } case PIPE_BLENDFACTOR_CONST_COLOR: return qir_FMUL(c, val, qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR, channel)); case PIPE_BLENDFACTOR_CONST_ALPHA: return qir_FMUL(c, val, qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR, 3)); case PIPE_BLENDFACTOR_ZERO: return qir_uniform_f(c, 0.0); case PIPE_BLENDFACTOR_INV_SRC_COLOR: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0), src[channel])); case PIPE_BLENDFACTOR_INV_SRC_ALPHA: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0), src[3])); case PIPE_BLENDFACTOR_INV_DST_ALPHA: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0), dst[3])); case PIPE_BLENDFACTOR_INV_DST_COLOR: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0), dst[channel])); case PIPE_BLENDFACTOR_INV_CONST_COLOR: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0), qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR, channel))); case PIPE_BLENDFACTOR_INV_CONST_ALPHA: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0), qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR, 3))); default: case PIPE_BLENDFACTOR_SRC1_COLOR: case PIPE_BLENDFACTOR_SRC1_ALPHA: case PIPE_BLENDFACTOR_INV_SRC1_COLOR: case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: /* Unsupported. */ fprintf(stderr, "Unknown blend factor %d\n", factor); return val; } } static struct qreg vc4_blend_func(struct vc4_compile *c, struct qreg src, struct qreg dst, unsigned func) { switch (func) { case PIPE_BLEND_ADD: return qir_FADD(c, src, dst); case PIPE_BLEND_SUBTRACT: return qir_FSUB(c, src, dst); case PIPE_BLEND_REVERSE_SUBTRACT: return qir_FSUB(c, dst, src); case PIPE_BLEND_MIN: return qir_FMIN(c, src, dst); case PIPE_BLEND_MAX: return qir_FMAX(c, src, dst); default: /* Unsupported. */ fprintf(stderr, "Unknown blend func %d\n", func); return src; } } /** * Implements fixed function blending in shader code. * * VC4 doesn't have any hardware support for blending. Instead, you read the * current contents of the destination from the tile buffer after having * waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do * math using your output color and that destination value, and update the * output color appropriately. */ static void vc4_blend(struct vc4_compile *c, struct qreg *result, struct qreg *dst_color, struct qreg *src_color) { struct pipe_rt_blend_state *blend = &c->fs_key->blend; if (!blend->blend_enable) { for (int i = 0; i < 4; i++) result[i] = src_color[i]; return; } struct qreg clamped_src[4]; struct qreg clamped_dst[4]; for (int i = 0; i < 4; i++) { clamped_src[i] = qir_SAT(c, src_color[i]); clamped_dst[i] = qir_SAT(c, dst_color[i]); } src_color = clamped_src; dst_color = clamped_dst; struct qreg src_blend[4], dst_blend[4]; for (int i = 0; i < 3; i++) { src_blend[i] = vc4_blend_channel(c, dst_color, src_color, src_color[i], blend->rgb_src_factor, i); dst_blend[i] = vc4_blend_channel(c, dst_color, src_color, dst_color[i], blend->rgb_dst_factor, i); } src_blend[3] = vc4_blend_channel(c, dst_color, src_color, src_color[3], blend->alpha_src_factor, 3); dst_blend[3] = vc4_blend_channel(c, dst_color, src_color, dst_color[3], blend->alpha_dst_factor, 3); for (int i = 0; i < 3; i++) { result[i] = vc4_blend_func(c, src_blend[i], dst_blend[i], blend->rgb_func); } result[3] = vc4_blend_func(c, src_blend[3], dst_blend[3], blend->alpha_func); } static void clip_distance_discard(struct vc4_compile *c) { for (int i = 0; i < PIPE_MAX_CLIP_PLANES; i++) { if (!(c->key->ucp_enables & (1 << i))) continue; struct qreg dist = emit_fragment_varying(c, TGSI_SEMANTIC_CLIPDIST, i, TGSI_SWIZZLE_X); qir_SF(c, dist); if (c->discard.file == QFILE_NULL) c->discard = qir_uniform_ui(c, 0); c->discard = qir_SEL_X_Y_NS(c, qir_uniform_ui(c, ~0), c->discard); } } static void alpha_test_discard(struct vc4_compile *c) { struct qreg src_alpha; struct qreg alpha_ref = qir_uniform(c, QUNIFORM_ALPHA_REF, 0); if (!c->fs_key->alpha_test) return; if (c->output_color_index != -1) src_alpha = c->outputs[c->output_color_index + 3]; else src_alpha = qir_uniform_f(c, 1.0); if (c->discard.file == QFILE_NULL) c->discard = qir_uniform_ui(c, 0); switch (c->fs_key->alpha_test_func) { case PIPE_FUNC_NEVER: c->discard = qir_uniform_ui(c, ~0); break; case PIPE_FUNC_ALWAYS: break; case PIPE_FUNC_EQUAL: qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref)); c->discard = qir_SEL_X_Y_ZS(c, c->discard, qir_uniform_ui(c, ~0)); break; case PIPE_FUNC_NOTEQUAL: qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref)); c->discard = qir_SEL_X_Y_ZC(c, c->discard, qir_uniform_ui(c, ~0)); break; case PIPE_FUNC_GREATER: qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref)); c->discard = qir_SEL_X_Y_NC(c, c->discard, qir_uniform_ui(c, ~0)); break; case PIPE_FUNC_GEQUAL: qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha)); c->discard = qir_SEL_X_Y_NS(c, c->discard, qir_uniform_ui(c, ~0)); break; case PIPE_FUNC_LESS: qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref)); c->discard = qir_SEL_X_Y_NS(c, c->discard, qir_uniform_ui(c, ~0)); break; case PIPE_FUNC_LEQUAL: qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha)); c->discard = qir_SEL_X_Y_NC(c, c->discard, qir_uniform_ui(c, ~0)); break; } } static struct qreg vc4_logicop(struct vc4_compile *c, struct qreg src, struct qreg dst) { switch (c->fs_key->logicop_func) { case PIPE_LOGICOP_CLEAR: return qir_uniform_f(c, 0.0); case PIPE_LOGICOP_NOR: return qir_NOT(c, qir_OR(c, src, dst)); case PIPE_LOGICOP_AND_INVERTED: return qir_AND(c, qir_NOT(c, src), dst); case PIPE_LOGICOP_COPY_INVERTED: return qir_NOT(c, src); case PIPE_LOGICOP_AND_REVERSE: return qir_AND(c, src, qir_NOT(c, dst)); case PIPE_LOGICOP_INVERT: return qir_NOT(c, dst); case PIPE_LOGICOP_XOR: return qir_XOR(c, src, dst); case PIPE_LOGICOP_NAND: return qir_NOT(c, qir_AND(c, src, dst)); case PIPE_LOGICOP_AND: return qir_AND(c, src, dst); case PIPE_LOGICOP_EQUIV: return qir_NOT(c, qir_XOR(c, src, dst)); case PIPE_LOGICOP_NOOP: return dst; case PIPE_LOGICOP_OR_INVERTED: return qir_OR(c, qir_NOT(c, src), dst); case PIPE_LOGICOP_OR_REVERSE: return qir_OR(c, src, qir_NOT(c, dst)); case PIPE_LOGICOP_OR: return qir_OR(c, src, dst); case PIPE_LOGICOP_SET: return qir_uniform_ui(c, ~0); case PIPE_LOGICOP_COPY: default: return src; } } /** * Applies the GL blending pipeline and returns the packed (8888) output * color. */ static struct qreg blend_pipeline(struct vc4_compile *c) { enum pipe_format color_format = c->fs_key->color_format; const uint8_t *format_swiz = vc4_get_format_swizzle(color_format); struct qreg tlb_read_color[4] = { c->undef, c->undef, c->undef, c->undef }; struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef }; struct qreg linear_dst_color[4] = { c->undef, c->undef, c->undef, c->undef }; struct qreg packed_dst_color = c->undef; if (c->fs_key->blend.blend_enable || c->fs_key->blend.colormask != 0xf || c->fs_key->logicop_func != PIPE_LOGICOP_COPY) { struct qreg r4 = qir_TLB_COLOR_READ(c); for (int i = 0; i < 4; i++) tlb_read_color[i] = qir_R4_UNPACK(c, r4, i); for (int i = 0; i < 4; i++) { dst_color[i] = get_swizzled_channel(c, tlb_read_color, format_swiz[i]); if (util_format_is_srgb(color_format) && i != 3) { linear_dst_color[i] = qir_srgb_decode(c, dst_color[i]); } else { linear_dst_color[i] = dst_color[i]; } } /* Save the packed value for logic ops. Can't reuse r4 * because other things might smash it (like sRGB) */ packed_dst_color = qir_MOV(c, r4); } struct qreg undef_array[4] = { c->undef, c->undef, c->undef, c->undef }; const struct qreg *output_colors = (c->output_color_index != -1 ? c->outputs + c->output_color_index : undef_array); struct qreg blend_src_color[4]; for (int i = 0; i < 4; i++) blend_src_color[i] = output_colors[i]; struct qreg blend_color[4]; vc4_blend(c, blend_color, linear_dst_color, blend_src_color); if (util_format_is_srgb(color_format)) { for (int i = 0; i < 3; i++) blend_color[i] = qir_srgb_encode(c, blend_color[i]); } /* Debug: Sometimes you're getting a black output and just want to see * if the FS is getting executed at all. Spam magenta into the color * output. */ if (0) { blend_color[0] = qir_uniform_f(c, 1.0); blend_color[1] = qir_uniform_f(c, 0.0); blend_color[2] = qir_uniform_f(c, 1.0); blend_color[3] = qir_uniform_f(c, 0.5); } struct qreg swizzled_outputs[4]; for (int i = 0; i < 4; i++) { swizzled_outputs[i] = get_swizzled_channel(c, blend_color, format_swiz[i]); } struct qreg packed_color = c->undef; for (int i = 0; i < 4; i++) { if (swizzled_outputs[i].file == QFILE_NULL) continue; if (packed_color.file == QFILE_NULL) { packed_color = qir_PACK_8888_F(c, swizzled_outputs[i]); } else { packed_color = qir_PACK_8_F(c, packed_color, swizzled_outputs[i], i); } } if (packed_color.file == QFILE_NULL) packed_color = qir_uniform_ui(c, 0); if (c->fs_key->logicop_func != PIPE_LOGICOP_COPY) { packed_color = vc4_logicop(c, packed_color, packed_dst_color); } /* If the bit isn't set in the color mask, then just return the * original dst color, instead. */ uint32_t colormask = 0xffffffff; for (int i = 0; i < 4; i++) { if (format_swiz[i] < 4 && !(c->fs_key->blend.colormask & (1 << format_swiz[i]))) { colormask &= ~(0xff << (i * 8)); } } if (colormask != 0xffffffff) { packed_color = qir_OR(c, qir_AND(c, packed_color, qir_uniform_ui(c, colormask)), qir_AND(c, packed_dst_color, qir_uniform_ui(c, ~colormask))); } return packed_color; } static void emit_frag_end(struct vc4_compile *c) { clip_distance_discard(c); alpha_test_discard(c); struct qreg color = blend_pipeline(c); if (c->discard.file != QFILE_NULL) qir_TLB_DISCARD_SETUP(c, c->discard); if (c->fs_key->stencil_enabled) { qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 0)); if (c->fs_key->stencil_twoside) { qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 1)); } if (c->fs_key->stencil_full_writemasks) { qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 2)); } } if (c->fs_key->depth_enabled) { struct qreg z; if (c->output_position_index != -1) { z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2], qir_uniform_f(c, 0xffffff))); } else { z = qir_FRAG_Z(c); } qir_TLB_Z_WRITE(c, z); } qir_TLB_COLOR_WRITE(c, color); } static void emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w) { struct qreg xyi[2]; for (int i = 0; i < 2; i++) { struct qreg scale = qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0); xyi[i] = qir_FTOI(c, qir_FMUL(c, qir_FMUL(c, c->outputs[c->output_position_index + i], scale), rcp_w)); } qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1])); } static void emit_zs_write(struct vc4_compile *c, struct qreg rcp_w) { struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0); struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0); qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c, c->outputs[c->output_position_index + 2], zscale), rcp_w), zoffset)); } static void emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w) { qir_VPM_WRITE(c, rcp_w); } static void emit_point_size_write(struct vc4_compile *c) { struct qreg point_size; if (c->output_point_size_index != -1) point_size = c->outputs[c->output_point_size_index + 3]; else point_size = qir_uniform_f(c, 1.0); /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835, * BCM21553). */ point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125)); qir_VPM_WRITE(c, point_size); } /** * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c. * * The simulator insists that there be at least one vertex attribute, so * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also * insists that all vertex attributes loaded get read by the VS/CS, so we have * to consume it here. */ static void emit_stub_vpm_read(struct vc4_compile *c) { if (c->num_inputs) return; c->vattr_sizes[0] = 4; struct qreg vpm = { QFILE_VPM, 0 }; (void)qir_MOV(c, vpm); c->num_inputs++; } static void emit_ucp_clipdistance(struct vc4_compile *c) { unsigned cv; if (c->output_clipvertex_index != -1) cv = c->output_clipvertex_index; else if (c->output_position_index != -1) cv = c->output_position_index; else return; for (int plane = 0; plane < PIPE_MAX_CLIP_PLANES; plane++) { if (!(c->key->ucp_enables & (1 << plane))) continue; /* Pick the next outputs[] that hasn't been written to, since * there are no other program writes left to be processed at * this point. If something had been declared but not written * (like a w component), we'll just smash over the top of it. */ uint32_t output_index = c->num_outputs++; add_output(c, output_index, TGSI_SEMANTIC_CLIPDIST, plane, TGSI_SWIZZLE_X); struct qreg dist = qir_uniform_f(c, 0.0); for (int i = 0; i < 4; i++) { struct qreg pos_chan = c->outputs[cv + i]; struct qreg ucp = qir_uniform(c, QUNIFORM_USER_CLIP_PLANE, plane * 4 + i); dist = qir_FADD(c, dist, qir_FMUL(c, pos_chan, ucp)); } c->outputs[output_index] = dist; } } static void emit_vert_end(struct vc4_compile *c, struct vc4_varying_semantic *fs_inputs, uint32_t num_fs_inputs) { struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]); emit_stub_vpm_read(c); emit_ucp_clipdistance(c); emit_scaled_viewport_write(c, rcp_w); emit_zs_write(c, rcp_w); emit_rcp_wc_write(c, rcp_w); if (c->vs_key->per_vertex_point_size) emit_point_size_write(c); for (int i = 0; i < num_fs_inputs; i++) { struct vc4_varying_semantic *input = &fs_inputs[i]; int j; for (j = 0; j < c->num_outputs; j++) { struct vc4_varying_semantic *output = &c->output_semantics[j]; if (input->semantic == output->semantic && input->index == output->index && input->swizzle == output->swizzle) { qir_VPM_WRITE(c, c->outputs[j]); break; } } /* Emit padding if we didn't find a declared VS output for * this FS input. */ if (j == c->num_outputs) qir_VPM_WRITE(c, qir_uniform_f(c, 0.0)); } } static void emit_coord_end(struct vc4_compile *c) { struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]); emit_stub_vpm_read(c); for (int i = 0; i < 4; i++) qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]); emit_scaled_viewport_write(c, rcp_w); emit_zs_write(c, rcp_w); emit_rcp_wc_write(c, rcp_w); if (c->vs_key->per_vertex_point_size) emit_point_size_write(c); } static void vc4_optimize_nir(struct nir_shader *s) { bool progress; do { progress = false; nir_lower_vars_to_ssa(s); nir_lower_alu_to_scalar(s); progress = nir_copy_prop(s) || progress; progress = nir_opt_dce(s) || progress; progress = nir_opt_cse(s) || progress; progress = nir_opt_peephole_select(s) || progress; progress = nir_opt_algebraic(s) || progress; progress = nir_opt_constant_folding(s) || progress; } while (progress); } static int driver_location_compare(const void *in_a, const void *in_b) { const nir_variable *const *a = in_a; const nir_variable *const *b = in_b; return (*a)->data.driver_location - (*b)->data.driver_location; } static void ntq_setup_inputs(struct vc4_compile *c) { unsigned num_entries = 0; foreach_list_typed(nir_variable, var, node, &c->s->inputs) num_entries++; nir_variable *vars[num_entries]; unsigned i = 0; foreach_list_typed(nir_variable, var, node, &c->s->inputs) vars[i++] = var; /* Sort the variables so that we emit the input setup in * driver_location order. This is required for VPM reads, whose data * is fetched into the VPM in driver_location (TGSI register index) * order. */ qsort(&vars, num_entries, sizeof(*vars), driver_location_compare); for (unsigned i = 0; i < num_entries; i++) { nir_variable *var = vars[i]; unsigned array_len = MAX2(glsl_get_length(var->type), 1); /* XXX: map loc slots to semantics */ unsigned semantic_name = var->data.location; unsigned semantic_index = var->data.index; unsigned loc = var->data.driver_location; assert(array_len == 1); (void)array_len; resize_qreg_array(c, &c->inputs, &c->inputs_array_size, (loc + 1) * 4); if (c->stage == QSTAGE_FRAG) { if (semantic_name == TGSI_SEMANTIC_POSITION) { emit_fragcoord_input(c, loc); } else if (semantic_name == TGSI_SEMANTIC_FACE) { emit_face_input(c, loc); } else if (semantic_name == TGSI_SEMANTIC_GENERIC && (c->fs_key->point_sprite_mask & (1 << semantic_index))) { emit_point_coord_input(c, loc); } else { emit_fragment_input(c, loc, semantic_name, semantic_index); } } else { emit_vertex_input(c, loc); } } } static void ntq_setup_outputs(struct vc4_compile *c) { foreach_list_typed(nir_variable, var, node, &c->s->outputs) { unsigned array_len = MAX2(glsl_get_length(var->type), 1); /* XXX: map loc slots to semantics */ unsigned semantic_name = var->data.location; unsigned semantic_index = var->data.index; unsigned loc = var->data.driver_location * 4; assert(array_len == 1); (void)array_len; /* NIR hack to pass through * TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS */ if (semantic_name == TGSI_SEMANTIC_COLOR && semantic_index == -1) semantic_index = 0; for (int i = 0; i < 4; i++) { add_output(c, loc + i, semantic_name, semantic_index, i); } switch (semantic_name) { case TGSI_SEMANTIC_POSITION: c->output_position_index = loc; break; case TGSI_SEMANTIC_CLIPVERTEX: c->output_clipvertex_index = loc; break; case TGSI_SEMANTIC_COLOR: c->output_color_index = loc; break; case TGSI_SEMANTIC_PSIZE: c->output_point_size_index = loc; break; } } } static void ntq_setup_uniforms(struct vc4_compile *c) { foreach_list_typed(nir_variable, var, node, &c->s->uniforms) { unsigned array_len = MAX2(glsl_get_length(var->type), 1); unsigned array_elem_size = 4 * sizeof(float); declare_uniform_range(c, var->data.driver_location * array_elem_size, array_len * array_elem_size); } } /** * Sets up the mapping from nir_register to struct qreg *. * * Each nir_register gets a struct qreg per 32-bit component being stored. */ static void ntq_setup_registers(struct vc4_compile *c, struct exec_list *list) { foreach_list_typed(nir_register, nir_reg, node, list) { unsigned array_len = MAX2(nir_reg->num_array_elems, 1); struct qreg *qregs = ralloc_array(c->def_ht, struct qreg, array_len * nir_reg->num_components); _mesa_hash_table_insert(c->def_ht, nir_reg, qregs); for (int i = 0; i < array_len * nir_reg->num_components; i++) qregs[i] = qir_uniform_ui(c, 0); } } static void ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr) { struct qreg *qregs = ralloc_array(c->def_ht, struct qreg, instr->def.num_components); for (int i = 0; i < instr->def.num_components; i++) qregs[i] = qir_uniform_ui(c, instr->value.u[i]); _mesa_hash_table_insert(c->def_ht, &instr->def, qregs); } static void ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr) { const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; struct qreg *dest = NULL; if (info->has_dest) { dest = ntq_get_dest(c, instr->dest); } switch (instr->intrinsic) { case nir_intrinsic_load_uniform: for (int i = 0; i < instr->num_components; i++) { dest[i] = qir_uniform(c, QUNIFORM_UNIFORM, instr->const_index[0] * 4 + i); } break; case nir_intrinsic_load_uniform_indirect: for (int i = 0; i < instr->num_components; i++) { dest[i] = indirect_uniform_load(c, ntq_get_src(c, instr->src[0], 0), (instr->const_index[0] * 4 + i) * sizeof(float)); } break; case nir_intrinsic_load_input: for (int i = 0; i < instr->num_components; i++) dest[i] = c->inputs[instr->const_index[0] * 4 + i]; break; case nir_intrinsic_store_output: for (int i = 0; i < instr->num_components; i++) { c->outputs[instr->const_index[0] * 4 + i] = qir_MOV(c, ntq_get_src(c, instr->src[0], i)); } c->num_outputs = MAX2(c->num_outputs, instr->const_index[0] * 4 + instr->num_components + 1); break; case nir_intrinsic_discard: c->discard = qir_uniform_ui(c, ~0); break; case nir_intrinsic_discard_if: if (c->discard.file == QFILE_NULL) c->discard = qir_uniform_ui(c, 0); c->discard = qir_OR(c, c->discard, ntq_get_src(c, instr->src[0], 0)); break; default: fprintf(stderr, "Unknown intrinsic: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); break; } } static void ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt) { fprintf(stderr, "general IF statements not handled.\n"); } static void ntq_emit_instr(struct vc4_compile *c, nir_instr *instr) { switch (instr->type) { case nir_instr_type_alu: ntq_emit_alu(c, nir_instr_as_alu(instr)); break; case nir_instr_type_intrinsic: ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_load_const: ntq_emit_load_const(c, nir_instr_as_load_const(instr)); break; case nir_instr_type_tex: ntq_emit_tex(c, nir_instr_as_tex(instr)); break; default: fprintf(stderr, "Unknown NIR instr type: "); nir_print_instr(instr, stderr); fprintf(stderr, "\n"); abort(); } } static void ntq_emit_block(struct vc4_compile *c, nir_block *block) { nir_foreach_instr(block, instr) { ntq_emit_instr(c, instr); } } static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list) { foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { /* case nir_cf_node_loop: */ case nir_cf_node_block: ntq_emit_block(c, nir_cf_node_as_block(node)); break; case nir_cf_node_if: ntq_emit_if(c, nir_cf_node_as_if(node)); break; default: assert(0); } } } static void ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl) { ntq_setup_registers(c, &impl->registers); ntq_emit_cf_list(c, &impl->body); } static void nir_to_qir(struct vc4_compile *c) { ntq_setup_inputs(c); ntq_setup_outputs(c); ntq_setup_uniforms(c); ntq_setup_registers(c, &c->s->registers); /* Find the main function and emit the body. */ nir_foreach_overload(c->s, overload) { assert(strcmp(overload->function->name, "main") == 0); assert(overload->impl); ntq_emit_impl(c, overload->impl); } } static const nir_shader_compiler_options nir_options = { .lower_ffma = true, .lower_flrp = true, .lower_fpow = true, .lower_fsat = true, .lower_fsqrt = true, .lower_negate = true, }; static bool count_nir_instrs_in_block(nir_block *block, void *state) { int *count = (int *) state; nir_foreach_instr(block, instr) { *count = *count + 1; } return true; } static int count_nir_instrs(nir_shader *nir) { int count = 0; nir_foreach_overload(nir, overload) { if (!overload->impl) continue; nir_foreach_block(overload->impl, count_nir_instrs_in_block, &count); } return count; } static struct vc4_compile * vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage, struct vc4_key *key) { struct vc4_compile *c = qir_compile_init(); c->stage = stage; c->shader_state = &key->shader_state->base; c->program_id = key->shader_state->program_id; c->variant_id = key->shader_state->compiled_variant_count++; c->key = key; switch (stage) { case QSTAGE_FRAG: c->fs_key = (struct vc4_fs_key *)key; if (c->fs_key->is_points) { c->point_x = emit_fragment_varying(c, ~0, ~0, 0); c->point_y = emit_fragment_varying(c, ~0, ~0, 0); } else if (c->fs_key->is_lines) { c->line_x = emit_fragment_varying(c, ~0, ~0, 0); } break; case QSTAGE_VERT: c->vs_key = (struct vc4_vs_key *)key; break; case QSTAGE_COORD: c->vs_key = (struct vc4_vs_key *)key; break; } const struct tgsi_token *tokens = key->shader_state->base.tokens; if (c->fs_key && c->fs_key->light_twoside) { if (!key->shader_state->twoside_tokens) { const struct tgsi_lowering_config lowering_config = { .color_two_side = true, }; struct tgsi_shader_info info; key->shader_state->twoside_tokens = tgsi_transform_lowering(&lowering_config, key->shader_state->base.tokens, &info); /* If no transformation occurred, then NULL is * returned and we just use our original tokens. */ if (!key->shader_state->twoside_tokens) { key->shader_state->twoside_tokens = key->shader_state->base.tokens; } } tokens = key->shader_state->twoside_tokens; } if (vc4_debug & VC4_DEBUG_TGSI) { fprintf(stderr, "%s prog %d/%d TGSI:\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id); tgsi_dump(tokens, 0); } c->s = tgsi_to_nir(tokens, &nir_options); nir_opt_global_to_local(c->s); nir_convert_to_ssa(c->s); nir_lower_idiv(c->s); vc4_optimize_nir(c->s); nir_remove_dead_variables(c->s); nir_convert_from_ssa(c->s, false); if (vc4_debug & VC4_DEBUG_SHADERDB) { fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id, count_nir_instrs(c->s)); } if (vc4_debug & VC4_DEBUG_NIR) { fprintf(stderr, "%s prog %d/%d NIR:\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id); nir_print_shader(c->s, stderr); } nir_to_qir(c); switch (stage) { case QSTAGE_FRAG: emit_frag_end(c); break; case QSTAGE_VERT: emit_vert_end(c, vc4->prog.fs->input_semantics, vc4->prog.fs->num_inputs); break; case QSTAGE_COORD: emit_coord_end(c); break; } if (vc4_debug & VC4_DEBUG_QIR) { fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id); qir_dump(c); } qir_optimize(c); qir_lower_uniforms(c); if (vc4_debug & VC4_DEBUG_QIR) { fprintf(stderr, "%s prog %d/%d QIR:\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id); qir_dump(c); } qir_reorder_uniforms(c); vc4_generate_code(vc4, c); if (vc4_debug & VC4_DEBUG_SHADERDB) { fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id, c->qpu_inst_count); fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id, c->num_uniforms); } ralloc_free(c->s); return c; } static void * vc4_shader_state_create(struct pipe_context *pctx, const struct pipe_shader_state *cso) { struct vc4_context *vc4 = vc4_context(pctx); struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader); if (!so) return NULL; so->base.tokens = tgsi_dup_tokens(cso->tokens); so->program_id = vc4->next_uncompiled_program_id++; return so; } static void copy_uniform_state_to_shader(struct vc4_compiled_shader *shader, struct vc4_compile *c) { int count = c->num_uniforms; struct vc4_shader_uniform_info *uinfo = &shader->uniforms; uinfo->count = count; uinfo->data = ralloc_array(shader, uint32_t, count); memcpy(uinfo->data, c->uniform_data, count * sizeof(*uinfo->data)); uinfo->contents = ralloc_array(shader, enum quniform_contents, count); memcpy(uinfo->contents, c->uniform_contents, count * sizeof(*uinfo->contents)); uinfo->num_texture_samples = c->num_texture_samples; vc4_set_shader_uniform_dirty_flags(shader); } static struct vc4_compiled_shader * vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage, struct vc4_key *key) { struct hash_table *ht; uint32_t key_size; if (stage == QSTAGE_FRAG) { ht = vc4->fs_cache; key_size = sizeof(struct vc4_fs_key); } else { ht = vc4->vs_cache; key_size = sizeof(struct vc4_vs_key); } struct vc4_compiled_shader *shader; struct hash_entry *entry = _mesa_hash_table_search(ht, key); if (entry) return entry->data; struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key); shader = rzalloc(NULL, struct vc4_compiled_shader); shader->program_id = vc4->next_compiled_program_id++; if (stage == QSTAGE_FRAG) { bool input_live[c->num_input_semantics]; memset(input_live, 0, sizeof(input_live)); list_for_each_entry(struct qinst, inst, &c->instructions, link) { for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) { if (inst->src[i].file == QFILE_VARY) input_live[inst->src[i].index] = true; } } shader->input_semantics = ralloc_array(shader, struct vc4_varying_semantic, c->num_input_semantics); for (int i = 0; i < c->num_input_semantics; i++) { struct vc4_varying_semantic *sem = &c->input_semantics[i]; if (!input_live[i]) continue; /* Skip non-VS-output inputs. */ if (sem->semantic == (uint8_t)~0) continue; if (sem->semantic == TGSI_SEMANTIC_COLOR || sem->semantic == TGSI_SEMANTIC_BCOLOR) { shader->color_inputs |= (1 << shader->num_inputs); } shader->input_semantics[shader->num_inputs] = *sem; shader->num_inputs++; } } else { shader->num_inputs = c->num_inputs; shader->vattr_offsets[0] = 0; for (int i = 0; i < 8; i++) { shader->vattr_offsets[i + 1] = shader->vattr_offsets[i] + c->vattr_sizes[i]; if (c->vattr_sizes[i]) shader->vattrs_live |= (1 << i); } } copy_uniform_state_to_shader(shader, c); shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts, c->qpu_inst_count * sizeof(uint64_t)); /* Copy the compiler UBO range state to the compiled shader, dropping * out arrays that were never referenced by an indirect load. * * (Note that QIR dead code elimination of an array access still * leaves that array alive, though) */ if (c->num_ubo_ranges) { shader->num_ubo_ranges = c->num_ubo_ranges; shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range, c->num_ubo_ranges); uint32_t j = 0; for (int i = 0; i < c->num_uniform_ranges; i++) { struct vc4_compiler_ubo_range *range = &c->ubo_ranges[i]; if (!range->used) continue; shader->ubo_ranges[j].dst_offset = range->dst_offset; shader->ubo_ranges[j].src_offset = range->src_offset; shader->ubo_ranges[j].size = range->size; shader->ubo_size += c->ubo_ranges[i].size; j++; } } if (shader->ubo_size) { if (vc4_debug & VC4_DEBUG_SHADERDB) { fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n", qir_get_stage_name(c->stage), c->program_id, c->variant_id, shader->ubo_size / 4); } } qir_compile_destroy(c); struct vc4_key *dup_key; dup_key = ralloc_size(shader, key_size); memcpy(dup_key, key, key_size); _mesa_hash_table_insert(ht, dup_key, shader); return shader; } static void vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key, struct vc4_texture_stateobj *texstate) { for (int i = 0; i < texstate->num_textures; i++) { struct pipe_sampler_view *sampler = texstate->textures[i]; struct pipe_sampler_state *sampler_state = texstate->samplers[i]; if (sampler) { key->tex[i].format = sampler->format; key->tex[i].swizzle[0] = sampler->swizzle_r; key->tex[i].swizzle[1] = sampler->swizzle_g; key->tex[i].swizzle[2] = sampler->swizzle_b; key->tex[i].swizzle[3] = sampler->swizzle_a; key->tex[i].compare_mode = sampler_state->compare_mode; key->tex[i].compare_func = sampler_state->compare_func; key->tex[i].wrap_s = sampler_state->wrap_s; key->tex[i].wrap_t = sampler_state->wrap_t; } } key->ucp_enables = vc4->rasterizer->base.clip_plane_enable; } static void vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode) { struct vc4_fs_key local_key; struct vc4_fs_key *key = &local_key; if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE | VC4_DIRTY_BLEND | VC4_DIRTY_FRAMEBUFFER | VC4_DIRTY_ZSA | VC4_DIRTY_RASTERIZER | VC4_DIRTY_FRAGTEX | VC4_DIRTY_TEXSTATE | VC4_DIRTY_UNCOMPILED_FS))) { return; } memset(key, 0, sizeof(*key)); vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex); key->base.shader_state = vc4->prog.bind_fs; key->is_points = (prim_mode == PIPE_PRIM_POINTS); key->is_lines = (prim_mode >= PIPE_PRIM_LINES && prim_mode <= PIPE_PRIM_LINE_STRIP); key->blend = vc4->blend->rt[0]; if (vc4->blend->logicop_enable) { key->logicop_func = vc4->blend->logicop_func; } else { key->logicop_func = PIPE_LOGICOP_COPY; } if (vc4->framebuffer.cbufs[0]) key->color_format = vc4->framebuffer.cbufs[0]->format; key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0; key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0; key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0; key->depth_enabled = (vc4->zsa->base.depth.enabled || key->stencil_enabled); if (vc4->zsa->base.alpha.enabled) { key->alpha_test = true; key->alpha_test_func = vc4->zsa->base.alpha.func; } if (key->is_points) { key->point_sprite_mask = vc4->rasterizer->base.sprite_coord_enable; key->point_coord_upper_left = (vc4->rasterizer->base.sprite_coord_mode == PIPE_SPRITE_COORD_UPPER_LEFT); } key->light_twoside = vc4->rasterizer->base.light_twoside; struct vc4_compiled_shader *old_fs = vc4->prog.fs; vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base); if (vc4->prog.fs == old_fs) return; vc4->dirty |= VC4_DIRTY_COMPILED_FS; if (vc4->rasterizer->base.flatshade && old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) { vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS; } } static void vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode) { struct vc4_vs_key local_key; struct vc4_vs_key *key = &local_key; if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE | VC4_DIRTY_RASTERIZER | VC4_DIRTY_VERTTEX | VC4_DIRTY_TEXSTATE | VC4_DIRTY_VTXSTATE | VC4_DIRTY_UNCOMPILED_VS | VC4_DIRTY_COMPILED_FS))) { return; } memset(key, 0, sizeof(*key)); vc4_setup_shared_key(vc4, &key->base, &vc4->verttex); key->base.shader_state = vc4->prog.bind_vs; key->compiled_fs_id = vc4->prog.fs->program_id; for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++) key->attr_formats[i] = vc4->vtx->pipe[i].src_format; key->per_vertex_point_size = (prim_mode == PIPE_PRIM_POINTS && vc4->rasterizer->base.point_size_per_vertex); struct vc4_compiled_shader *vs = vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base); if (vs != vc4->prog.vs) { vc4->prog.vs = vs; vc4->dirty |= VC4_DIRTY_COMPILED_VS; } key->is_coord = true; struct vc4_compiled_shader *cs = vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base); if (cs != vc4->prog.cs) { vc4->prog.cs = cs; vc4->dirty |= VC4_DIRTY_COMPILED_CS; } } void vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode) { vc4_update_compiled_fs(vc4, prim_mode); vc4_update_compiled_vs(vc4, prim_mode); } static uint32_t fs_cache_hash(const void *key) { return _mesa_hash_data(key, sizeof(struct vc4_fs_key)); } static uint32_t vs_cache_hash(const void *key) { return _mesa_hash_data(key, sizeof(struct vc4_vs_key)); } static bool fs_cache_compare(const void *key1, const void *key2) { return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0; } static bool vs_cache_compare(const void *key1, const void *key2) { return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0; } static void delete_from_cache_if_matches(struct hash_table *ht, struct hash_entry *entry, struct vc4_uncompiled_shader *so) { const struct vc4_key *key = entry->key; if (key->shader_state == so) { struct vc4_compiled_shader *shader = entry->data; _mesa_hash_table_remove(ht, entry); vc4_bo_unreference(&shader->bo); ralloc_free(shader); } } static void vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); struct vc4_uncompiled_shader *so = hwcso; struct hash_entry *entry; hash_table_foreach(vc4->fs_cache, entry) delete_from_cache_if_matches(vc4->fs_cache, entry, so); hash_table_foreach(vc4->vs_cache, entry) delete_from_cache_if_matches(vc4->vs_cache, entry, so); if (so->twoside_tokens != so->base.tokens) free((void *)so->twoside_tokens); free((void *)so->base.tokens); free(so); } static void vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); vc4->prog.bind_fs = hwcso; vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS; } static void vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); vc4->prog.bind_vs = hwcso; vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS; } void vc4_program_init(struct pipe_context *pctx) { struct vc4_context *vc4 = vc4_context(pctx); pctx->create_vs_state = vc4_shader_state_create; pctx->delete_vs_state = vc4_shader_state_delete; pctx->create_fs_state = vc4_shader_state_create; pctx->delete_fs_state = vc4_shader_state_delete; pctx->bind_fs_state = vc4_fp_state_bind; pctx->bind_vs_state = vc4_vp_state_bind; vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash, fs_cache_compare); vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash, vs_cache_compare); } void vc4_program_fini(struct pipe_context *pctx) { struct vc4_context *vc4 = vc4_context(pctx); struct hash_entry *entry; hash_table_foreach(vc4->fs_cache, entry) { struct vc4_compiled_shader *shader = entry->data; vc4_bo_unreference(&shader->bo); ralloc_free(shader); _mesa_hash_table_remove(vc4->fs_cache, entry); } hash_table_foreach(vc4->vs_cache, entry) { struct vc4_compiled_shader *shader = entry->data; vc4_bo_unreference(&shader->bo); ralloc_free(shader); _mesa_hash_table_remove(vc4->vs_cache, entry); } }