/* * Copyright (c) 2014 Scott Mansell * Copyright © 2014 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "pipe/p_state.h" #include "util/u_format.h" #include "util/u_hash_table.h" #include "util/u_hash.h" #include "util/u_memory.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_dump.h" #include "vc4_context.h" #include "vc4_qpu.h" #include "vc4_qir.h" #ifdef USE_VC4_SIMULATOR #include "simpenrose/simpenrose.h" #endif struct tgsi_to_qir { struct tgsi_parse_context parser; struct qcompile *c; struct qreg *temps; struct qreg *inputs; struct qreg *outputs; struct qreg *uniforms; struct qreg *consts; struct qreg line_x, point_x, point_y; uint32_t num_consts; struct pipe_shader_state *shader_state; struct vc4_key *key; struct vc4_fs_key *fs_key; struct vc4_vs_key *vs_key; uint32_t *uniform_data; enum quniform_contents *uniform_contents; uint32_t num_uniforms; uint32_t num_outputs; uint32_t num_texture_samples; }; struct vc4_key { struct pipe_shader_state *shader_state; enum pipe_format tex_format[VC4_MAX_TEXTURE_SAMPLERS]; }; struct vc4_fs_key { struct vc4_key base; enum pipe_format color_format; bool depth_enabled; bool is_points; bool is_lines; struct pipe_rt_blend_state blend; }; struct vc4_vs_key { struct vc4_key base; enum pipe_format attr_formats[8]; }; static struct qreg add_uniform(struct tgsi_to_qir *trans, enum quniform_contents contents, uint32_t data) { uint32_t uniform = trans->num_uniforms++; struct qreg u = { QFILE_UNIF, uniform }; trans->uniform_contents[uniform] = contents; trans->uniform_data[uniform] = data; return u; } static struct qreg get_temp_for_uniform(struct tgsi_to_qir *trans, enum quniform_contents contents, uint32_t data) { struct qcompile *c = trans->c; for (int i = 0; i < trans->num_uniforms; i++) { if (trans->uniform_contents[i] == contents && trans->uniform_data[i] == data) return trans->uniforms[i]; } struct qreg u = add_uniform(trans, contents, data); struct qreg t = qir_MOV(c, u); trans->uniforms[u.index] = t; return t; } static struct qreg qir_uniform_ui(struct tgsi_to_qir *trans, uint32_t ui) { return get_temp_for_uniform(trans, QUNIFORM_CONSTANT, ui); } static struct qreg qir_uniform_f(struct tgsi_to_qir *trans, float f) { return qir_uniform_ui(trans, fui(f)); } static struct qreg get_src(struct tgsi_to_qir *trans, struct tgsi_src_register *src, int i) { struct qcompile *c = trans->c; struct qreg r = c->undef; uint32_t s = i; switch (i) { case TGSI_SWIZZLE_X: s = src->SwizzleX; break; case TGSI_SWIZZLE_Y: s = src->SwizzleY; break; case TGSI_SWIZZLE_Z: s = src->SwizzleZ; break; case TGSI_SWIZZLE_W: s = src->SwizzleW; break; default: abort(); } assert(!src->Indirect); switch (src->File) { case TGSI_FILE_NULL: return r; case TGSI_FILE_TEMPORARY: r = trans->temps[src->Index * 4 + s]; break; case TGSI_FILE_IMMEDIATE: r = trans->consts[src->Index * 4 + s]; break; case TGSI_FILE_CONSTANT: r = get_temp_for_uniform(trans, QUNIFORM_UNIFORM, src->Index * 4 + s); break; case TGSI_FILE_INPUT: r = trans->inputs[src->Index * 4 + s]; break; case TGSI_FILE_SAMPLER: case TGSI_FILE_SAMPLER_VIEW: r = c->undef; break; default: fprintf(stderr, "unknown src file %d\n", src->File); abort(); } if (src->Absolute) r = qir_FMAXABS(c, r, r); if (src->Negate) r = qir_FSUB(c, qir_uniform_f(trans, 0), r); return r; }; static void update_dst(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, int i, struct qreg val) { struct tgsi_dst_register *tgsi_dst = &tgsi_inst->Dst[0].Register; assert(!tgsi_dst->Indirect); switch (tgsi_dst->File) { case TGSI_FILE_TEMPORARY: trans->temps[tgsi_dst->Index * 4 + i] = val; break; case TGSI_FILE_OUTPUT: trans->outputs[tgsi_dst->Index * 4 + i] = val; trans->num_outputs = MAX2(trans->num_outputs, tgsi_dst->Index * 4 + i + 1); break; default: fprintf(stderr, "unknown dst file %d\n", tgsi_dst->File); abort(); } }; static struct qreg get_swizzled_channel(struct tgsi_to_qir *trans, struct qreg *srcs, int swiz) { switch (swiz) { default: case UTIL_FORMAT_SWIZZLE_NONE: fprintf(stderr, "warning: unknown swizzle\n"); /* FALLTHROUGH */ case UTIL_FORMAT_SWIZZLE_0: return qir_uniform_f(trans, 0.0); case UTIL_FORMAT_SWIZZLE_1: return qir_uniform_f(trans, 1.0); case UTIL_FORMAT_SWIZZLE_X: case UTIL_FORMAT_SWIZZLE_Y: case UTIL_FORMAT_SWIZZLE_Z: case UTIL_FORMAT_SWIZZLE_W: return srcs[swiz]; } } static struct qreg tgsi_to_qir_alu(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; struct qreg dst = qir_get_temp(c); qir_emit(c, qir_inst4(op, dst, src[0 * 4 + i], src[1 * 4 + i], src[2 * 4 + i], c->undef)); return dst; } static struct qreg tgsi_to_qir_mad(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; return qir_FADD(c, qir_FMUL(c, src[0 * 4 + i], src[1 * 4 + i]), src[2 * 4 + i]); } static struct qreg tgsi_to_qir_lit(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; struct qreg x = src[0 * 4 + 0]; struct qreg y = src[0 * 4 + 1]; struct qreg w = src[0 * 4 + 3]; switch (i) { case 0: case 3: return qir_uniform_f(trans, 1.0); case 1: return qir_FMAX(c, src[0 * 4 + 0], qir_uniform_f(trans, 0.0)); case 2: { struct qreg zero = qir_uniform_f(trans, 0.0); /* XXX: Clamp w to -128..128 */ return qir_CMP(c, x, zero, qir_EXP2(c, qir_FMUL(c, w, qir_LOG2(c, qir_FMAX(c, y, zero))))); } default: assert(!"not reached"); return c->undef; } } static struct qreg tgsi_to_qir_lrp(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; struct qreg src0 = src[0 * 4 + i]; struct qreg src1 = src[1 * 4 + i]; struct qreg src2 = src[2 * 4 + i]; /* LRP is: * src0 * src1 + (1 - src0) * src2. * -> src0 * src1 + src2 - src0 * src2 * -> src2 + src0 * (src1 - src2) */ return qir_FADD(c, src2, qir_FMUL(c, src0, qir_FSUB(c, src1, src2))); } static void tgsi_to_qir_tex(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src) { struct qcompile *c = trans->c; assert(!tgsi_inst->Instruction.Saturate); struct qreg s = src[0 * 4 + 0]; struct qreg t = src[0 * 4 + 1]; uint32_t sampler = 0; /* XXX */ if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP) { struct qreg proj = qir_RCP(c, src[0 * 4 + 3]); s = qir_FMUL(c, s, proj); t = qir_FMUL(c, t, proj); } /* There is no native support for GL texture rectangle coordinates, so * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0, * 1]). */ if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_RECT) { s = qir_FMUL(c, s, get_temp_for_uniform(trans, QUNIFORM_TEXRECT_SCALE_X, sampler)); t = qir_FMUL(c, t, get_temp_for_uniform(trans, QUNIFORM_TEXRECT_SCALE_Y, sampler)); } uint32_t tex_and_sampler = 0; /* XXX */ qir_TEX_T(c, t, add_uniform(trans, QUNIFORM_TEXTURE_CONFIG_P0, tex_and_sampler)); struct qreg sampler_p1 = add_uniform(trans, QUNIFORM_TEXTURE_CONFIG_P1, tex_and_sampler); if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXB) { qir_TEX_B(c, src[0 * 4 + 3], sampler_p1); qir_TEX_S(c, s, add_uniform(trans, QUNIFORM_CONSTANT, 0)); } else { qir_TEX_S(c, s, sampler_p1); } trans->num_texture_samples++; qir_emit(c, qir_inst(QOP_TEX_RESULT, c->undef, c->undef, c->undef)); struct qreg unpacked[4]; for (int i = 0; i < 4; i++) unpacked[i] = qir_R4_UNPACK(c, i); bool format_warned = false; for (int i = 0; i < 4; i++) { if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i))) continue; enum pipe_format format = trans->key->tex_format[sampler]; const struct util_format_description *desc = util_format_description(format); uint8_t swiz = desc->swizzle[i]; if (!format_warned && swiz <= UTIL_FORMAT_SWIZZLE_W && (desc->channel[swiz].type != UTIL_FORMAT_TYPE_UNSIGNED || desc->channel[swiz].size != 8)) { fprintf(stderr, "tex channel %d unsupported type: %s\n", i, util_format_name(format)); format_warned = true; } update_dst(trans, tgsi_inst, i, get_swizzled_channel(trans, unpacked, swiz)); } } static struct qreg tgsi_to_qir_pow(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; /* Note that this instruction replicates its result from the x channel */ return qir_EXP2(c, qir_FMUL(c, src[1 * 4 + 0], qir_LOG2(c, src[0 * 4 + 0]))); } static struct qreg tgsi_to_qir_trunc(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; return qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i])); } /** * Computes x - floor(x), which is tricky because our FTOI truncates (rounds * to zero). */ static struct qreg tgsi_to_qir_frc(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i])); struct qreg diff = qir_FSUB(c, src[0 * 4 + i], trunc); return qir_CMP(c, diff, qir_FADD(c, diff, qir_uniform_f(trans, 1.0)), diff); } /** * Computes floor(x), which is tricky because our FTOI truncates (rounds to * zero). */ static struct qreg tgsi_to_qir_flr(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i])); return qir_CMP(c, src[0 * 4 + i], qir_FSUB(c, trunc, qir_uniform_f(trans, 1.0)), trunc); } static struct qreg tgsi_to_qir_dp(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, int num, struct qreg *src, int i) { struct qcompile *c = trans->c; struct qreg sum = qir_FMUL(c, src[0 * 4 + 0], src[1 * 4 + 0]); for (int j = 1; j < num; j++) { sum = qir_FADD(c, sum, qir_FMUL(c, src[0 * 4 + j], src[1 * 4 + j])); } return sum; } static struct qreg tgsi_to_qir_dp2(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { return tgsi_to_qir_dp(trans, tgsi_inst, 2, src, i); } static struct qreg tgsi_to_qir_dp3(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { return tgsi_to_qir_dp(trans, tgsi_inst, 3, src, i); } static struct qreg tgsi_to_qir_dp4(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { return tgsi_to_qir_dp(trans, tgsi_inst, 4, src, i); } static struct qreg tgsi_to_qir_abs(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; struct qreg arg = src[0 * 4 + i]; return qir_FMAXABS(c, arg, arg); } /* Note that this instruction replicates its result from the x channel */ static struct qreg tgsi_to_qir_sin(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; float coeff[] = { 2.0 * M_PI, -pow(2.0 * M_PI, 3) / (3 * 2 * 1), pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1), -pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1), }; struct qreg scaled_x = qir_FMUL(c, src[0 * 4 + 0], qir_uniform_f(trans, 1.0f / (M_PI * 2.0f))); struct qreg x = tgsi_to_qir_frc(trans, NULL, 0, &scaled_x, 0); struct qreg x2 = qir_FMUL(c, x, x); struct qreg sum = qir_FMUL(c, x, qir_uniform_f(trans, coeff[0])); for (int i = 1; i < ARRAY_SIZE(coeff); i++) { x = qir_FMUL(c, x, x2); sum = qir_FADD(c, sum, qir_FMUL(c, x, qir_uniform_f(trans, coeff[i]))); } return sum; } /* Note that this instruction replicates its result from the x channel */ static struct qreg tgsi_to_qir_cos(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i) { struct qcompile *c = trans->c; float coeff[] = { 1.0f, -pow(2.0 * M_PI, 2) / (2 * 1), pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1), -pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1), }; struct qreg scaled_x = qir_FMUL(c, src[0 * 4 + 0], qir_uniform_f(trans, 1.0f / (M_PI * 2.0f))); struct qreg x_frac = tgsi_to_qir_frc(trans, NULL, 0, &scaled_x, 0); struct qreg sum = qir_uniform_f(trans, coeff[0]); struct qreg x2 = qir_FMUL(c, x_frac, x_frac); struct qreg x = x2; /* Current x^2, x^4, or x^6 */ for (int i = 1; i < ARRAY_SIZE(coeff); i++) { if (i != 1) x = qir_FMUL(c, x, x2); struct qreg mul = qir_FMUL(c, x, qir_uniform_f(trans, coeff[i])); if (i == 0) sum = mul; else sum = qir_FADD(c, sum, mul); } return sum; } static void emit_vertex_input(struct tgsi_to_qir *trans, int attr) { enum pipe_format format = trans->vs_key->attr_formats[attr]; struct qcompile *c = trans->c; struct qreg vpm_reads[4]; /* Right now, we're setting the VPM offsets to be 16 bytes wide every * time, so we always read 4 32-bit VPM entries. */ for (int i = 0; i < 4; i++) { vpm_reads[i] = qir_get_temp(c); qir_emit(c, qir_inst(QOP_VPM_READ, vpm_reads[i], c->undef, c->undef)); c->num_inputs++; } bool format_warned = false; const struct util_format_description *desc = util_format_description(format); for (int i = 0; i < 4; i++) { uint8_t swiz = desc->swizzle[i]; if (swiz <= UTIL_FORMAT_SWIZZLE_W && !format_warned && (desc->channel[swiz].type != UTIL_FORMAT_TYPE_FLOAT || desc->channel[swiz].size != 32)) { fprintf(stderr, "vtx element %d unsupported type: %s\n", attr, util_format_name(format)); format_warned = true; } trans->inputs[attr * 4 + i] = get_swizzled_channel(trans, vpm_reads, swiz); } } static void emit_fragcoord_input(struct tgsi_to_qir *trans, int attr) { struct qcompile *c = trans->c; trans->inputs[attr * 4 + 0] = qir_FRAG_X(c); trans->inputs[attr * 4 + 1] = qir_FRAG_Y(c); trans->inputs[attr * 4 + 2] = qir_FMUL(c, qir_FRAG_Z(c), qir_uniform_f(trans, 1.0 / 0xffffff)); trans->inputs[attr * 4 + 3] = qir_FRAG_RCP_W(c); } static struct qreg emit_fragment_varying(struct tgsi_to_qir *trans, int index) { struct qcompile *c = trans->c; struct qreg vary = { QFILE_VARY, index }; /* XXX: multiply by W */ return qir_VARY_ADD_C(c, qir_MOV(c, vary)); } static void emit_fragment_input(struct tgsi_to_qir *trans, int attr) { struct qcompile *c = trans->c; for (int i = 0; i < 4; i++) { trans->inputs[attr * 4 + i] = emit_fragment_varying(trans, attr * 4 + i); c->num_inputs++; } } static void emit_tgsi_declaration(struct tgsi_to_qir *trans, struct tgsi_full_declaration *decl) { struct qcompile *c = trans->c; switch (decl->Declaration.File) { case TGSI_FILE_INPUT: for (int i = decl->Range.First; i <= decl->Range.Last; i++) { if (c->stage == QSTAGE_FRAG) { if (decl->Semantic.Name == TGSI_SEMANTIC_POSITION) { emit_fragcoord_input(trans, i); } else { emit_fragment_input(trans, i); } } else { emit_vertex_input(trans, i); } } break; } } static void emit_tgsi_instruction(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst) { struct qcompile *c = trans->c; struct { enum qop op; struct qreg (*func)(struct tgsi_to_qir *trans, struct tgsi_full_instruction *tgsi_inst, enum qop op, struct qreg *src, int i); } op_trans[] = { [TGSI_OPCODE_MOV] = { QOP_MOV, tgsi_to_qir_alu }, [TGSI_OPCODE_ABS] = { 0, tgsi_to_qir_abs }, [TGSI_OPCODE_MUL] = { QOP_FMUL, tgsi_to_qir_alu }, [TGSI_OPCODE_ADD] = { QOP_FADD, tgsi_to_qir_alu }, [TGSI_OPCODE_SUB] = { QOP_FSUB, tgsi_to_qir_alu }, [TGSI_OPCODE_MIN] = { QOP_FMIN, tgsi_to_qir_alu }, [TGSI_OPCODE_MAX] = { QOP_FMAX, tgsi_to_qir_alu }, [TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_alu }, [TGSI_OPCODE_SEQ] = { QOP_SEQ, tgsi_to_qir_alu }, [TGSI_OPCODE_SNE] = { QOP_SNE, tgsi_to_qir_alu }, [TGSI_OPCODE_SGE] = { QOP_SGE, tgsi_to_qir_alu }, [TGSI_OPCODE_SLT] = { QOP_SLT, tgsi_to_qir_alu }, [TGSI_OPCODE_CMP] = { QOP_CMP, tgsi_to_qir_alu }, [TGSI_OPCODE_MAD] = { 0, tgsi_to_qir_mad }, [TGSI_OPCODE_DP2] = { 0, tgsi_to_qir_dp2 }, [TGSI_OPCODE_DP3] = { 0, tgsi_to_qir_dp3 }, [TGSI_OPCODE_DP4] = { 0, tgsi_to_qir_dp4 }, [TGSI_OPCODE_RCP] = { QOP_RCP, tgsi_to_qir_alu }, [TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_alu }, [TGSI_OPCODE_EX2] = { QOP_EXP2, tgsi_to_qir_alu }, [TGSI_OPCODE_LG2] = { QOP_LOG2, tgsi_to_qir_alu }, [TGSI_OPCODE_LIT] = { 0, tgsi_to_qir_lit }, [TGSI_OPCODE_LRP] = { 0, tgsi_to_qir_lrp }, [TGSI_OPCODE_POW] = { 0, tgsi_to_qir_pow }, [TGSI_OPCODE_TRUNC] = { 0, tgsi_to_qir_trunc }, [TGSI_OPCODE_FRC] = { 0, tgsi_to_qir_frc }, [TGSI_OPCODE_FLR] = { 0, tgsi_to_qir_flr }, [TGSI_OPCODE_SIN] = { 0, tgsi_to_qir_sin }, [TGSI_OPCODE_COS] = { 0, tgsi_to_qir_cos }, }; static int asdf = 0; uint32_t tgsi_op = tgsi_inst->Instruction.Opcode; if (tgsi_op == TGSI_OPCODE_END) return; struct qreg src_regs[12]; for (int s = 0; s < 3; s++) { for (int i = 0; i < 4; i++) { src_regs[4 * s + i] = get_src(trans, &tgsi_inst->Src[s].Register, i); } } switch (tgsi_op) { case TGSI_OPCODE_TEX: case TGSI_OPCODE_TXP: case TGSI_OPCODE_TXB: tgsi_to_qir_tex(trans, tgsi_inst, op_trans[tgsi_op].op, src_regs); return; default: break; } if (tgsi_op > ARRAY_SIZE(op_trans) || !(op_trans[tgsi_op].func)) { fprintf(stderr, "unknown tgsi inst: "); tgsi_dump_instruction(tgsi_inst, asdf++); fprintf(stderr, "\n"); abort(); } for (int i = 0; i < 4; i++) { if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i))) continue; struct qreg result; result = op_trans[tgsi_op].func(trans, tgsi_inst, op_trans[tgsi_op].op, src_regs, i); if (tgsi_inst->Instruction.Saturate) { float low = (tgsi_inst->Instruction.Saturate == TGSI_SAT_MINUS_PLUS_ONE ? -1.0 : 0.0); result = qir_FMAX(c, qir_FMIN(c, result, qir_uniform_f(trans, 1.0)), qir_uniform_f(trans, low)); } update_dst(trans, tgsi_inst, i, result); } } static void parse_tgsi_immediate(struct tgsi_to_qir *trans, struct tgsi_full_immediate *imm) { for (int i = 0; i < 4; i++) { unsigned n = trans->num_consts++; trans->consts[n] = qir_uniform_ui(trans, imm->u[i].Uint); } } static struct qreg vc4_blend_channel(struct tgsi_to_qir *trans, struct qreg *dst, struct qreg *src, struct qreg val, unsigned factor, int channel) { struct qcompile *c = trans->c; switch(factor) { case PIPE_BLENDFACTOR_ONE: return val; case PIPE_BLENDFACTOR_SRC_COLOR: return qir_FMUL(c, val, src[channel]); case PIPE_BLENDFACTOR_SRC_ALPHA: return qir_FMUL(c, val, src[3]); case PIPE_BLENDFACTOR_DST_ALPHA: return qir_FMUL(c, val, dst[3]); case PIPE_BLENDFACTOR_DST_COLOR: return qir_FMUL(c, val, dst[channel]); case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: return qir_FMIN(c, src[3], qir_FSUB(c, qir_uniform_f(trans, 1.0), dst[3])); case PIPE_BLENDFACTOR_CONST_COLOR: return qir_FMUL(c, val, get_temp_for_uniform(trans, QUNIFORM_BLEND_CONST_COLOR, channel)); case PIPE_BLENDFACTOR_CONST_ALPHA: return qir_FMUL(c, val, get_temp_for_uniform(trans, QUNIFORM_BLEND_CONST_COLOR, 3)); case PIPE_BLENDFACTOR_ZERO: return qir_uniform_f(trans, 0.0); case PIPE_BLENDFACTOR_INV_SRC_COLOR: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(trans, 1.0), src[channel])); case PIPE_BLENDFACTOR_INV_SRC_ALPHA: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(trans, 1.0), src[3])); case PIPE_BLENDFACTOR_INV_DST_ALPHA: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(trans, 1.0), dst[3])); case PIPE_BLENDFACTOR_INV_DST_COLOR: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(trans, 1.0), dst[channel])); case PIPE_BLENDFACTOR_INV_CONST_COLOR: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(trans, 1.0), get_temp_for_uniform(trans, QUNIFORM_BLEND_CONST_COLOR, channel))); case PIPE_BLENDFACTOR_INV_CONST_ALPHA: return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(trans, 1.0), get_temp_for_uniform(trans, QUNIFORM_BLEND_CONST_COLOR, 3))); default: case PIPE_BLENDFACTOR_SRC1_COLOR: case PIPE_BLENDFACTOR_SRC1_ALPHA: case PIPE_BLENDFACTOR_INV_SRC1_COLOR: case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: /* Unsupported. */ fprintf(stderr, "Unknown blend factor %d\n", factor); return val; } } static struct qreg vc4_blend_func(struct tgsi_to_qir *trans, struct qreg src, struct qreg dst, unsigned func) { struct qcompile *c = trans->c; switch (func) { case PIPE_BLEND_ADD: return qir_FADD(c, src, dst); case PIPE_BLEND_SUBTRACT: return qir_FSUB(c, src, dst); case PIPE_BLEND_REVERSE_SUBTRACT: return qir_FSUB(c, dst, src); case PIPE_BLEND_MIN: return qir_FMIN(c, src, dst); case PIPE_BLEND_MAX: return qir_FMAX(c, src, dst); default: /* Unsupported. */ fprintf(stderr, "Unknown blend func %d\n", func); return src; } } /** * Implements fixed function blending in shader code. * * VC4 doesn't have any hardware support for blending. Instead, you read the * current contents of the destination from the tile buffer after having * waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do * math using your output color and that destination value, and update the * output color appropriately. */ static void vc4_blend(struct tgsi_to_qir *trans, struct qreg *result, struct qreg *dst_color, struct qreg *src_color) { struct pipe_rt_blend_state *blend = &trans->fs_key->blend; if (!blend->blend_enable) { for (int i = 0; i < 4; i++) result[i] = src_color[i]; return; } struct qreg src_blend[4], dst_blend[4]; for (int i = 0; i < 3; i++) { src_blend[i] = vc4_blend_channel(trans, dst_color, src_color, src_color[i], blend->rgb_src_factor, i); dst_blend[i] = vc4_blend_channel(trans, dst_color, src_color, dst_color[i], blend->rgb_dst_factor, i); } src_blend[3] = vc4_blend_channel(trans, dst_color, src_color, src_color[3], blend->alpha_src_factor, 3); dst_blend[3] = vc4_blend_channel(trans, dst_color, src_color, dst_color[3], blend->alpha_dst_factor, 3); for (int i = 0; i < 3; i++) { result[i] = vc4_blend_func(trans, src_blend[i], dst_blend[i], blend->rgb_func); } result[3] = vc4_blend_func(trans, src_blend[3], dst_blend[3], blend->alpha_func); } static void emit_frag_end(struct tgsi_to_qir *trans) { struct qcompile *c = trans->c; struct qreg t = qir_get_temp(c); const struct util_format_description *format_desc = util_format_description(trans->fs_key->color_format); struct qreg src_color[4] = { trans->outputs[0], trans->outputs[1], trans->outputs[2], trans->outputs[3], }; struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef }; if (trans->fs_key->blend.blend_enable || trans->fs_key->blend.colormask != 0xf) { qir_emit(c, qir_inst(QOP_TLB_COLOR_READ, c->undef, c->undef, c->undef)); for (int i = 0; i < 4; i++) { dst_color[i] = qir_R4_UNPACK(c, i); /* XXX: Swizzles? */ } } struct qreg blend_color[4]; vc4_blend(trans, blend_color, dst_color, src_color); /* If the bit isn't set in the color mask, then just return the * original dst color, instead. */ for (int i = 0; i < 4; i++) { if (!(trans->fs_key->blend.colormask & (1 << i))) { blend_color[i] = dst_color[i]; } } /* Debug: Sometimes you're getting a black output and just want to see * if the FS is getting executed at all. Spam magenta into the color * output. */ if (0) { blend_color[0] = qir_uniform_f(trans, 1.0); blend_color[1] = qir_uniform_f(trans, 0.0); blend_color[2] = qir_uniform_f(trans, 1.0); blend_color[3] = qir_uniform_f(trans, 0.5); } struct qreg swizzled_outputs[4]; for (int i = 0; i < 4; i++) { swizzled_outputs[i] = get_swizzled_channel(trans, blend_color, format_desc->swizzle[i]); } if (trans->fs_key->depth_enabled) { qir_emit(c, qir_inst(QOP_TLB_PASSTHROUGH_Z_WRITE, c->undef, c->undef, c->undef)); } qir_emit(c, qir_inst4(QOP_PACK_COLORS, t, swizzled_outputs[0], swizzled_outputs[1], swizzled_outputs[2], swizzled_outputs[3])); qir_emit(c, qir_inst(QOP_TLB_COLOR_WRITE, c->undef, t, c->undef)); } static void emit_scaled_viewport_write(struct tgsi_to_qir *trans, struct qreg rcp_w) { struct qcompile *c = trans->c; struct qreg xyi[2]; for (int i = 0; i < 2; i++) { struct qreg scale = add_uniform(trans, QUNIFORM_VIEWPORT_X_SCALE + i, 0); xyi[i] = qir_FTOI(c, qir_FMUL(c, qir_FMUL(c, trans->outputs[i], scale), rcp_w)); } qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1])); } static void emit_zs_write(struct tgsi_to_qir *trans, struct qreg rcp_w) { struct qcompile *c = trans->c; struct qreg zscale = add_uniform(trans, QUNIFORM_VIEWPORT_Z_SCALE, 0); struct qreg zoffset = add_uniform(trans, QUNIFORM_VIEWPORT_Z_OFFSET, 0); qir_VPM_WRITE(c, qir_FMUL(c, qir_FADD(c, qir_FMUL(c, trans->outputs[2], zscale), zoffset), rcp_w)); } static void emit_rcp_wc_write(struct tgsi_to_qir *trans, struct qreg rcp_w) { struct qcompile *c = trans->c; qir_VPM_WRITE(c, rcp_w); } static void emit_vert_end(struct tgsi_to_qir *trans) { struct qcompile *c = trans->c; struct qreg rcp_w = qir_RCP(c, trans->outputs[3]); emit_scaled_viewport_write(trans, rcp_w); emit_zs_write(trans, rcp_w); emit_rcp_wc_write(trans, rcp_w); for (int i = 4; i < trans->num_outputs; i++) { qir_VPM_WRITE(c, trans->outputs[i]); } } static void emit_coord_end(struct tgsi_to_qir *trans) { struct qcompile *c = trans->c; struct qreg rcp_w = qir_RCP(c, trans->outputs[3]); for (int i = 0; i < 4; i++) qir_VPM_WRITE(c, trans->outputs[i]); emit_scaled_viewport_write(trans, rcp_w); emit_zs_write(trans, rcp_w); emit_rcp_wc_write(trans, rcp_w); } static struct tgsi_to_qir * vc4_shader_tgsi_to_qir(struct vc4_compiled_shader *shader, enum qstage stage, struct vc4_key *key) { struct tgsi_to_qir *trans = CALLOC_STRUCT(tgsi_to_qir); struct qcompile *c; int ret; c = qir_compile_init(); c->stage = stage; memset(trans, 0, sizeof(*trans)); /* XXX sizing */ trans->temps = calloc(sizeof(struct qreg), 1024); trans->inputs = calloc(sizeof(struct qreg), 8 * 4); trans->outputs = calloc(sizeof(struct qreg), 1024); trans->uniforms = calloc(sizeof(struct qreg), 1024); trans->consts = calloc(sizeof(struct qreg), 1024); trans->uniform_data = calloc(sizeof(uint32_t), 1024); trans->uniform_contents = calloc(sizeof(enum quniform_contents), 1024); trans->shader_state = key->shader_state; trans->c = c; ret = tgsi_parse_init(&trans->parser, trans->shader_state->tokens); assert(ret == TGSI_PARSE_OK); if (vc4_debug & VC4_DEBUG_TGSI) { fprintf(stderr, "TGSI:\n"); tgsi_dump(trans->shader_state->tokens, 0); } trans->key = key; switch (stage) { case QSTAGE_FRAG: trans->fs_key = (struct vc4_fs_key *)key; if (trans->fs_key->is_points) { trans->point_x = emit_fragment_varying(trans, 0); trans->point_y = emit_fragment_varying(trans, 0); } else if (trans->fs_key->is_lines) { trans->line_x = emit_fragment_varying(trans, 0); } break; case QSTAGE_VERT: trans->vs_key = (struct vc4_vs_key *)key; break; case QSTAGE_COORD: trans->vs_key = (struct vc4_vs_key *)key; break; } while (!tgsi_parse_end_of_tokens(&trans->parser)) { tgsi_parse_token(&trans->parser); switch (trans->parser.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_DECLARATION: emit_tgsi_declaration(trans, &trans->parser.FullToken.FullDeclaration); break; case TGSI_TOKEN_TYPE_INSTRUCTION: emit_tgsi_instruction(trans, &trans->parser.FullToken.FullInstruction); break; case TGSI_TOKEN_TYPE_IMMEDIATE: parse_tgsi_immediate(trans, &trans->parser.FullToken.FullImmediate); break; } } switch (stage) { case QSTAGE_FRAG: emit_frag_end(trans); break; case QSTAGE_VERT: emit_vert_end(trans); break; case QSTAGE_COORD: emit_coord_end(trans); break; } tgsi_parse_free(&trans->parser); free(trans->temps); qir_optimize(c); if (vc4_debug & VC4_DEBUG_QIR) { fprintf(stderr, "QIR:\n"); qir_dump(c); } vc4_generate_code(c); if (vc4_debug & VC4_DEBUG_SHADERDB) { fprintf(stderr, "SHADER-DB: %s: %d instructions\n", qir_get_stage_name(c->stage), c->qpu_inst_count); fprintf(stderr, "SHADER-DB: %s: %d uniforms\n", qir_get_stage_name(c->stage), trans->num_uniforms); } return trans; } static void * vc4_shader_state_create(struct pipe_context *pctx, const struct pipe_shader_state *cso) { struct pipe_shader_state *so = CALLOC_STRUCT(pipe_shader_state); if (!so) return NULL; so->tokens = tgsi_dup_tokens(cso->tokens); return so; } static void copy_uniform_state_to_shader(struct vc4_compiled_shader *shader, int shader_index, struct tgsi_to_qir *trans) { int count = trans->num_uniforms; struct vc4_shader_uniform_info *uinfo = &shader->uniforms[shader_index]; uinfo->count = count; uinfo->data = malloc(count * sizeof(*uinfo->data)); memcpy(uinfo->data, trans->uniform_data, count * sizeof(*uinfo->data)); uinfo->contents = malloc(count * sizeof(*uinfo->contents)); memcpy(uinfo->contents, trans->uniform_contents, count * sizeof(*uinfo->contents)); uinfo->num_texture_samples = trans->num_texture_samples; } static void vc4_fs_compile(struct vc4_context *vc4, struct vc4_compiled_shader *shader, struct vc4_fs_key *key) { struct tgsi_to_qir *trans = vc4_shader_tgsi_to_qir(shader, QSTAGE_FRAG, &key->base); shader->num_inputs = trans->c->num_inputs; copy_uniform_state_to_shader(shader, 0, trans); shader->bo = vc4_bo_alloc_mem(vc4->screen, trans->c->qpu_insts, trans->c->qpu_inst_count * sizeof(uint64_t), "fs_code"); qir_compile_destroy(trans->c); free(trans); } static void vc4_vs_compile(struct vc4_context *vc4, struct vc4_compiled_shader *shader, struct vc4_vs_key *key) { struct tgsi_to_qir *vs_trans = vc4_shader_tgsi_to_qir(shader, QSTAGE_VERT, &key->base); copy_uniform_state_to_shader(shader, 0, vs_trans); struct tgsi_to_qir *cs_trans = vc4_shader_tgsi_to_qir(shader, QSTAGE_COORD, &key->base); copy_uniform_state_to_shader(shader, 1, cs_trans); uint32_t vs_size = vs_trans->c->qpu_inst_count * sizeof(uint64_t); uint32_t cs_size = cs_trans->c->qpu_inst_count * sizeof(uint64_t); shader->coord_shader_offset = vs_size; /* XXX: alignment? */ shader->bo = vc4_bo_alloc(vc4->screen, shader->coord_shader_offset + cs_size, "vs_code"); void *map = vc4_bo_map(shader->bo); memcpy(map, vs_trans->c->qpu_insts, vs_size); memcpy(map + shader->coord_shader_offset, cs_trans->c->qpu_insts, cs_size); qir_compile_destroy(vs_trans->c); qir_compile_destroy(cs_trans->c); } static void vc4_setup_shared_key(struct vc4_key *key, struct vc4_texture_stateobj *texstate) { for (int i = 0; i < texstate->num_textures; i++) { struct pipe_sampler_view *sampler = texstate->textures[i]; if (sampler) { struct pipe_resource *prsc = sampler->texture; key->tex_format[i] = prsc->format; } } } static void vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode) { struct vc4_fs_key local_key; struct vc4_fs_key *key = &local_key; memset(key, 0, sizeof(*key)); vc4_setup_shared_key(&key->base, &vc4->fragtex); key->base.shader_state = vc4->prog.bind_fs; key->is_points = (prim_mode == PIPE_PRIM_POINTS); key->is_lines = (prim_mode >= PIPE_PRIM_LINES && prim_mode <= PIPE_PRIM_LINE_STRIP); key->blend = vc4->blend->rt[0]; if (vc4->framebuffer.cbufs[0]) key->color_format = vc4->framebuffer.cbufs[0]->format; key->depth_enabled = vc4->zsa->base.depth.enabled; vc4->prog.fs = util_hash_table_get(vc4->fs_cache, key); if (vc4->prog.fs) return; key = malloc(sizeof(*key)); memcpy(key, &local_key, sizeof(*key)); struct vc4_compiled_shader *shader = CALLOC_STRUCT(vc4_compiled_shader); vc4_fs_compile(vc4, shader, key); util_hash_table_set(vc4->fs_cache, key, shader); vc4->prog.fs = shader; } static void vc4_update_compiled_vs(struct vc4_context *vc4) { struct vc4_vs_key local_key; struct vc4_vs_key *key = &local_key; memset(key, 0, sizeof(*key)); vc4_setup_shared_key(&key->base, &vc4->verttex); key->base.shader_state = vc4->prog.bind_vs; for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++) key->attr_formats[i] = vc4->vtx->pipe[i].src_format; vc4->prog.vs = util_hash_table_get(vc4->vs_cache, key); if (vc4->prog.vs) return; key = malloc(sizeof(*key)); memcpy(key, &local_key, sizeof(*key)); struct vc4_compiled_shader *shader = CALLOC_STRUCT(vc4_compiled_shader); vc4_vs_compile(vc4, shader, key); util_hash_table_set(vc4->vs_cache, key, shader); vc4->prog.vs = shader; } void vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode) { vc4_update_compiled_fs(vc4, prim_mode); vc4_update_compiled_vs(vc4); } static unsigned fs_cache_hash(void *key) { return util_hash_crc32(key, sizeof(struct vc4_fs_key)); } static unsigned vs_cache_hash(void *key) { return util_hash_crc32(key, sizeof(struct vc4_vs_key)); } static int fs_cache_compare(void *key1, void *key2) { return memcmp(key1, key2, sizeof(struct vc4_fs_key)); } static int vs_cache_compare(void *key1, void *key2) { return memcmp(key1, key2, sizeof(struct vc4_vs_key)); } struct delete_state { struct vc4_context *vc4; struct pipe_shader_state *shader_state; }; static enum pipe_error fs_delete_from_cache(void *in_key, void *in_value, void *data) { struct delete_state *del = data; struct vc4_fs_key *key = in_key; struct vc4_compiled_shader *shader = in_value; if (key->base.shader_state == data) { util_hash_table_remove(del->vc4->fs_cache, key); vc4_bo_unreference(&shader->bo); free(shader); } return 0; } static enum pipe_error vs_delete_from_cache(void *in_key, void *in_value, void *data) { struct delete_state *del = data; struct vc4_vs_key *key = in_key; struct vc4_compiled_shader *shader = in_value; if (key->base.shader_state == data) { util_hash_table_remove(del->vc4->vs_cache, key); vc4_bo_unreference(&shader->bo); free(shader); } return 0; } static void vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); struct pipe_shader_state *so = hwcso; struct delete_state del; del.vc4 = vc4; del.shader_state = so; util_hash_table_foreach(vc4->fs_cache, fs_delete_from_cache, &del); util_hash_table_foreach(vc4->vs_cache, vs_delete_from_cache, &del); free((void *)so->tokens); free(so); } static uint32_t translate_wrap(uint32_t p_wrap) { switch (p_wrap) { case PIPE_TEX_WRAP_REPEAT: return 0; case PIPE_TEX_WRAP_CLAMP: case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return 1; case PIPE_TEX_WRAP_MIRROR_REPEAT: return 2; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return 3; default: fprintf(stderr, "Unknown wrap mode %d\n", p_wrap); assert(!"not reached"); return 0; } } static void write_texture_p0(struct vc4_context *vc4, struct vc4_texture_stateobj *texstate, uint32_t tex_and_sampler) { uint32_t texi = (tex_and_sampler >> 0) & 0xff; struct pipe_sampler_view *texture = texstate->textures[texi]; struct vc4_resource *rsc = vc4_resource(texture->texture); cl_reloc(vc4, &vc4->uniforms, rsc->bo, rsc->slices[0].offset | texture->u.tex.last_level); } static void write_texture_p1(struct vc4_context *vc4, struct vc4_texture_stateobj *texstate, uint32_t tex_and_sampler) { uint32_t texi = (tex_and_sampler >> 0) & 0xff; uint32_t sampi = (tex_and_sampler >> 8) & 0xff; struct pipe_sampler_view *texture = texstate->textures[texi]; struct pipe_sampler_state *sampler = texstate->samplers[sampi]; static const uint32_t mipfilter_map[] = { [PIPE_TEX_MIPFILTER_NEAREST] = 2, [PIPE_TEX_MIPFILTER_LINEAR] = 4, [PIPE_TEX_MIPFILTER_NONE] = 0 }; static const uint32_t imgfilter_map[] = { [PIPE_TEX_FILTER_NEAREST] = 1, [PIPE_TEX_FILTER_LINEAR] = 0, }; cl_u32(&vc4->uniforms, (1 << 31) /* XXX: data type */| (texture->texture->height0 << 20) | (texture->texture->width0 << 8) | (imgfilter_map[sampler->mag_img_filter] << 7) | ((imgfilter_map[sampler->min_img_filter] + mipfilter_map[sampler->min_mip_filter]) << 4) | (translate_wrap(sampler->wrap_t) << 2) | (translate_wrap(sampler->wrap_s) << 0)); } static uint32_t get_texrect_scale(struct vc4_texture_stateobj *texstate, enum quniform_contents contents, uint32_t data) { struct pipe_sampler_view *texture = texstate->textures[data]; uint32_t dim; if (contents == QUNIFORM_TEXRECT_SCALE_X) dim = texture->texture->width0; else dim = texture->texture->height0; return fui(1.0f / dim); } void vc4_write_uniforms(struct vc4_context *vc4, struct vc4_compiled_shader *shader, struct vc4_constbuf_stateobj *cb, struct vc4_texture_stateobj *texstate, int shader_index) { struct vc4_shader_uniform_info *uinfo = &shader->uniforms[shader_index]; const uint32_t *gallium_uniforms = cb->cb[0].user_buffer; cl_start_shader_reloc(&vc4->uniforms, uinfo->num_texture_samples); for (int i = 0; i < uinfo->count; i++) { switch (uinfo->contents[i]) { case QUNIFORM_CONSTANT: cl_u32(&vc4->uniforms, uinfo->data[i]); break; case QUNIFORM_UNIFORM: cl_u32(&vc4->uniforms, gallium_uniforms[uinfo->data[i]]); break; case QUNIFORM_VIEWPORT_X_SCALE: cl_f(&vc4->uniforms, vc4->viewport.scale[0] * 16.0f); break; case QUNIFORM_VIEWPORT_Y_SCALE: cl_f(&vc4->uniforms, vc4->viewport.scale[1] * 16.0f); break; case QUNIFORM_VIEWPORT_Z_OFFSET: cl_f(&vc4->uniforms, vc4->viewport.translate[2]); break; case QUNIFORM_VIEWPORT_Z_SCALE: cl_f(&vc4->uniforms, vc4->viewport.scale[2]); break; case QUNIFORM_TEXTURE_CONFIG_P0: write_texture_p0(vc4, texstate, uinfo->data[i]); break; case QUNIFORM_TEXTURE_CONFIG_P1: write_texture_p1(vc4, texstate, uinfo->data[i]); break; case QUNIFORM_TEXRECT_SCALE_X: case QUNIFORM_TEXRECT_SCALE_Y: cl_u32(&vc4->uniforms, get_texrect_scale(texstate, uinfo->contents[i], uinfo->data[i])); break; case QUNIFORM_BLEND_CONST_COLOR: cl_f(&vc4->uniforms, vc4->blend_color.color[uinfo->data[i]]); break; } #if 0 uint32_t written_val = *(uint32_t *)(vc4->uniforms.next - 4); fprintf(stderr, "%p/%d: %d: 0x%08x (%f)\n", shader, shader_index, i, written_val, uif(written_val)); #endif } } static void vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); vc4->prog.bind_fs = hwcso; vc4->prog.dirty |= VC4_SHADER_DIRTY_FP; vc4->dirty |= VC4_DIRTY_PROG; } static void vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso) { struct vc4_context *vc4 = vc4_context(pctx); vc4->prog.bind_vs = hwcso; vc4->prog.dirty |= VC4_SHADER_DIRTY_VP; vc4->dirty |= VC4_DIRTY_PROG; } void vc4_program_init(struct pipe_context *pctx) { struct vc4_context *vc4 = vc4_context(pctx); pctx->create_vs_state = vc4_shader_state_create; pctx->delete_vs_state = vc4_shader_state_delete; pctx->create_fs_state = vc4_shader_state_create; pctx->delete_fs_state = vc4_shader_state_delete; pctx->bind_fs_state = vc4_fp_state_bind; pctx->bind_vs_state = vc4_vp_state_bind; vc4->fs_cache = util_hash_table_create(fs_cache_hash, fs_cache_compare); vc4->vs_cache = util_hash_table_create(vs_cache_hash, vs_cache_compare); }