/**************************************************************************** * Copyright (C) 2015 Intel Corporation. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. ***************************************************************************/ // llvm redefines DEBUG #pragma push_macro("DEBUG") #undef DEBUG #include "JitManager.h" #include "llvm-c/Core.h" #include "llvm/Support/CBindingWrapping.h" #pragma pop_macro("DEBUG") #include "state.h" #include "gen_state_llvm.h" #include "builder.h" #include "tgsi/tgsi_strings.h" #include "util/u_format.h" #include "util/u_prim.h" #include "gallivm/lp_bld_init.h" #include "gallivm/lp_bld_flow.h" #include "gallivm/lp_bld_struct.h" #include "gallivm/lp_bld_tgsi.h" #include "swr_context.h" #include "gen_swr_context_llvm.h" #include "swr_resource.h" #include "swr_state.h" #include "swr_screen.h" using namespace SwrJit; using namespace llvm; static unsigned locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info); bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs) { return !memcmp(&lhs, &rhs, sizeof(lhs)); } bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs) { return !memcmp(&lhs, &rhs, sizeof(lhs)); } bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs) { return !memcmp(&lhs, &rhs, sizeof(lhs)); } bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs) { return !memcmp(&lhs, &rhs, sizeof(lhs)); } static void swr_generate_sampler_key(const struct lp_tgsi_info &info, struct swr_context *ctx, enum pipe_shader_type shader_type, struct swr_jit_sampler_key &key) { key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1; for (unsigned i = 0; i < key.nr_samplers; i++) { if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) { lp_sampler_static_sampler_state( &key.sampler[i].sampler_state, ctx->samplers[shader_type][i]); } } /* * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes * are dx10-style? Can't really have mixed opcodes, at least not * if we want to skip the holes here (without rescanning tgsi). */ if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) { key.nr_sampler_views = info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1; for (unsigned i = 0; i < key.nr_sampler_views; i++) { if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) { const struct pipe_sampler_view *view = ctx->sampler_views[shader_type][i]; lp_sampler_static_texture_state( &key.sampler[i].texture_state, view); if (view) { struct swr_resource *swr_res = swr_resource(view->texture); const struct util_format_description *desc = util_format_description(view->format); if (swr_res->has_depth && swr_res->has_stencil && !util_format_has_depth(desc)) key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT; } } } } else { key.nr_sampler_views = key.nr_samplers; for (unsigned i = 0; i < key.nr_sampler_views; i++) { if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) { const struct pipe_sampler_view *view = ctx->sampler_views[shader_type][i]; lp_sampler_static_texture_state( &key.sampler[i].texture_state, view); if (view) { struct swr_resource *swr_res = swr_resource(view->texture); const struct util_format_description *desc = util_format_description(view->format); if (swr_res->has_depth && swr_res->has_stencil && !util_format_has_depth(desc)) key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT; } } } } } void swr_generate_fs_key(struct swr_jit_fs_key &key, struct swr_context *ctx, swr_fragment_shader *swr_fs) { memset(&key, 0, sizeof(key)); key.nr_cbufs = ctx->framebuffer.nr_cbufs; key.light_twoside = ctx->rasterizer->light_twoside; key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable; struct tgsi_shader_info *pPrevShader; if (ctx->gs) pPrevShader = &ctx->gs->info.base; else pPrevShader = &ctx->vs->info.base; memcpy(&key.vs_output_semantic_name, &pPrevShader->output_semantic_name, sizeof(key.vs_output_semantic_name)); memcpy(&key.vs_output_semantic_idx, &pPrevShader->output_semantic_index, sizeof(key.vs_output_semantic_idx)); swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key); key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable && ctx->poly_stipple.prim_is_poly; } void swr_generate_vs_key(struct swr_jit_vs_key &key, struct swr_context *ctx, swr_vertex_shader *swr_vs) { memset(&key, 0, sizeof(key)); key.clip_plane_mask = swr_vs->info.base.clipdist_writemask ? swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable : ctx->rasterizer->clip_plane_enable; swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key); } void swr_generate_fetch_key(struct swr_jit_fetch_key &key, struct swr_vertex_element_state *velems) { memset(&key, 0, sizeof(key)); key.fsState = velems->fsState; } void swr_generate_gs_key(struct swr_jit_gs_key &key, struct swr_context *ctx, swr_geometry_shader *swr_gs) { memset(&key, 0, sizeof(key)); struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base; memcpy(&key.vs_output_semantic_name, &pPrevShader->output_semantic_name, sizeof(key.vs_output_semantic_name)); memcpy(&key.vs_output_semantic_idx, &pPrevShader->output_semantic_index, sizeof(key.vs_output_semantic_idx)); swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key); } struct BuilderSWR : public Builder { BuilderSWR(JitManager *pJitMgr, const char *pName) : Builder(pJitMgr) { pJitMgr->SetupNewModule(); gallivm = gallivm_create(pName, wrap(&JM()->mContext)); pJitMgr->mpCurrentModule = unwrap(gallivm->module); } ~BuilderSWR() { gallivm_free_ir(gallivm); } void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel); struct gallivm_state *gallivm; PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key); PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key); PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key); LLVMValueRef swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface, struct lp_build_tgsi_context * bld_base, boolean is_vindex_indirect, LLVMValueRef vertex_index, boolean is_aindex_indirect, LLVMValueRef attrib_index, LLVMValueRef swizzle_index); void swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef (*outputs)[4], LLVMValueRef emitted_vertices_vec); void swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef verts_per_prim_vec, LLVMValueRef emitted_prims_vec); void swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef total_emitted_vertices_vec, LLVMValueRef emitted_prims_vec); }; struct swr_gs_llvm_iface { struct lp_build_tgsi_gs_iface base; struct tgsi_shader_info *info; BuilderSWR *pBuilder; Value *pGsCtx; SWR_GS_STATE *pGsState; uint32_t num_outputs; uint32_t num_verts_per_prim; Value *pVtxAttribMap; }; // trampoline functions so we can use the builder llvm construction methods static LLVMValueRef swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface, struct lp_build_tgsi_context * bld_base, boolean is_vindex_indirect, LLVMValueRef vertex_index, boolean is_aindex_indirect, LLVMValueRef attrib_index, LLVMValueRef swizzle_index) { swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface; return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base, is_vindex_indirect, vertex_index, is_aindex_indirect, attrib_index, swizzle_index); } static void swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef (*outputs)[4], LLVMValueRef emitted_vertices_vec) { swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base; iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base, outputs, emitted_vertices_vec); } static void swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef verts_per_prim_vec, LLVMValueRef emitted_prims_vec) { swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base; iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base, verts_per_prim_vec, emitted_prims_vec); } static void swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef total_emitted_vertices_vec, LLVMValueRef emitted_prims_vec) { swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base; iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base, total_emitted_vertices_vec, emitted_prims_vec); } LLVMValueRef BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface, struct lp_build_tgsi_context * bld_base, boolean is_vindex_indirect, LLVMValueRef vertex_index, boolean is_aindex_indirect, LLVMValueRef attrib_index, LLVMValueRef swizzle_index) { swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface; IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder))); assert(is_vindex_indirect == false && is_aindex_indirect == false); Value *attrib = LOAD(GEP(iface->pVtxAttribMap, {C(0), unwrap(attrib_index)})); Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts}); Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride}); Value *pVector = ADD(MUL(unwrap(vertex_index), pInputVertStride), attrib); Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)})); return wrap(pInput); } // GS output stream layout #define VERTEX_COUNT_SIZE 32 #define CONTROL_HEADER_SIZE (8*32) void BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef (*outputs)[4], LLVMValueRef emitted_vertices_vec) { swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base; IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder))); const uint32_t headerSize = VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE; const uint32_t attribSize = 4 * sizeof(float); const uint32_t vertSize = attribSize * SWR_VTX_NUM_SLOTS; Value *pVertexOffset = MUL(unwrap(emitted_vertices_vec), VIMMED1(vertSize)); Value *vMask = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_mask}); Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, mVWidth)); Value *pStack = STACKSAVE(); Value *pTmpPtr = ALLOCA(mFP32Ty, C(4)); // used for dummy write for lane masking for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) { uint32_t attribSlot = attrib; uint32_t sgvChannel = 0; if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) { attribSlot = VERTEX_SGV_SLOT; sgvChannel = VERTEX_SGV_POINT_SIZE_COMP; } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER) { attribSlot = VERTEX_SGV_SLOT; sgvChannel = VERTEX_SGV_RTAI_COMP; } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) { attribSlot = VERTEX_POSITION_SLOT; } else { attribSlot = VERTEX_ATTRIB_START_SLOT + attrib; if (iface->info->writes_position) { attribSlot--; } } Value *pOutputOffset = ADD(pVertexOffset, VIMMED1(headerSize + attribSize * attribSlot)); // + sgvChannel ? for (uint32_t lane = 0; lane < mVWidth; ++lane) { Value *pLaneOffset = VEXTRACT(pOutputOffset, C(lane)); Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane}); Value *pStreamOffset = GEP(pStream, pLaneOffset); pStreamOffset = BITCAST(pStreamOffset, mFP32PtrTy); Value *pLaneMask = VEXTRACT(vMask1, C(lane)); pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr); for (uint32_t channel = 0; channel < 4; ++channel) { Value *vData; if (attribSlot == VERTEX_SGV_SLOT) vData = LOAD(unwrap(outputs[attrib][0])); else vData = LOAD(unwrap(outputs[attrib][channel])); if (attribSlot != VERTEX_SGV_SLOT || sgvChannel == channel) { vData = VEXTRACT(vData, C(lane)); STORE(vData, pStreamOffset); } pStreamOffset = GEP(pStreamOffset, C(1)); } } } STACKRESTORE(pStack); } void BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef verts_per_prim_vec, LLVMValueRef emitted_prims_vec) { swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base; IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder))); Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask }); Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8)); uint32_t vertsPerPrim = iface->num_verts_per_prim; Value *vCount = ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)), unwrap(verts_per_prim_vec)); struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base); vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr)); struct lp_exec_mask *exec_mask = &bld->exec_mask; Value *mask = unwrap(lp_build_mask_value(bld->mask)); if (exec_mask->has_mask) mask = AND(mask, unwrap(exec_mask->exec_mask)); Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0))); mask = AND(mask, cmpMask); vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8)); vCount = SUB(vCount, VIMMED1(1)); Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), VIMMED1(VERTEX_COUNT_SIZE)); Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8))); vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8)); Value *pStack = STACKSAVE(); Value *pTmpPtr = ALLOCA(mInt8Ty, C(4)); // used for dummy read/write for lane masking for (uint32_t lane = 0; lane < mVWidth; ++lane) { Value *vLaneOffset = VEXTRACT(vOffset, C(lane)); Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane}); Value *pStreamOffset = GEP(pStream, vLaneOffset); Value *pLaneMask = VEXTRACT(vMask1, C(lane)); pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr); Value *vVal = LOAD(pStreamOffset); vVal = OR(vVal, VEXTRACT(vValue, C(lane))); STORE(vVal, pStreamOffset); } STACKRESTORE(pStack); } void BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base, struct lp_build_tgsi_context * bld_base, LLVMValueRef total_emitted_vertices_vec, LLVMValueRef emitted_prims_vec) { swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base; IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder))); // Store emit count to each output stream in the first DWORD for (uint32_t lane = 0; lane < mVWidth; ++lane) { Value* pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane}); pStream = BITCAST(pStream, mInt32PtrTy); Value* pLaneCount = VEXTRACT(unwrap(total_emitted_vertices_vec), C(lane)); STORE(pLaneCount, pStream); } } PFN_GS_FUNC BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key) { SWR_GS_STATE *pGS = &ctx->gs->gsState; struct tgsi_shader_info *info = &ctx->gs->info.base; memset(pGS, 0, sizeof(*pGS)); pGS->gsEnable = true; pGS->numInputAttribs = info->num_inputs; pGS->outputTopology = swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]); pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES]; pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS]; // XXX: single stream for now... pGS->isSingleStream = true; pGS->singleStreamID = 0; pGS->vertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize pGS->srcVertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize pGS->inputVertStride = pGS->numInputAttribs + pGS->vertexAttribOffset; pGS->outputVertexSize = SWR_VTX_NUM_SLOTS; pGS->controlDataSize = 8; // GS ouputs max of 8 32B units pGS->controlDataOffset = VERTEX_COUNT_SIZE; pGS->outputVertexOffset = pGS->controlDataOffset + CONTROL_HEADER_SIZE; pGS->allocationSize = VERTEX_COUNT_SIZE + // vertex count CONTROL_HEADER_SIZE + // control header (SWR_VTX_NUM_SLOTS * 16) * // sizeof vertex pGS->maxNumVerts; // num verts struct swr_geometry_shader *gs = ctx->gs; LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS]; LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS]; memset(outputs, 0, sizeof(outputs)); AttrBuilder attrBuilder; attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float)); std::vector gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0), PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)}; FunctionType *vsFuncType = FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false); // create new vertex shader function auto pFunction = Function::Create(vsFuncType, GlobalValue::ExternalLinkage, "GS", JM()->mpCurrentModule); #if HAVE_LLVM < 0x0500 AttributeSet attrSet = AttributeSet::get( JM()->mContext, AttributeSet::FunctionIndex, attrBuilder); pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet); #else pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder); #endif BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction); IRB()->SetInsertPoint(block); LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block)); auto argitr = pFunction->arg_begin(); Value *hPrivateData = &*argitr++; hPrivateData->setName("hPrivateData"); Value *pGsCtx = &*argitr++; pGsCtx->setName("gsCtx"); Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)}); consts_ptr->setName("gs_constants"); Value *const_sizes_ptr = GEP(hPrivateData, {0, swr_draw_context_num_constantsGS}); const_sizes_ptr->setName("num_gs_constants"); struct lp_build_sampler_soa *sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY); struct lp_bld_tgsi_system_values system_values; memset(&system_values, 0, sizeof(system_values)); system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID})); system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID})); std::vector mapConstants; Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS)); for (unsigned slot = 0; slot < info->num_inputs; slot++) { ubyte semantic_name = info->input_semantic_name[slot]; ubyte semantic_idx = info->input_semantic_index[slot]; unsigned vs_slot = locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base); vs_slot += VERTEX_ATTRIB_START_SLOT; if (ctx->vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION) vs_slot--; if (semantic_name == TGSI_SEMANTIC_POSITION) vs_slot = VERTEX_POSITION_SLOT; STORE(C(vs_slot), vtxAttribMap, {0, slot}); mapConstants.push_back(C(vs_slot)); } struct lp_build_mask_context mask; Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask"); lp_build_mask_begin(&mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(mask_val)); // zero out cut buffer so we can load/modify/store bits for (uint32_t lane = 0; lane < mVWidth; ++lane) { Value* pStream = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane}); MEMSET(pStream, C((char)0), VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE, sizeof(float) * KNOB_SIMD_WIDTH); } struct swr_gs_llvm_iface gs_iface; gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input; gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex; gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive; gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue; gs_iface.pBuilder = this; gs_iface.pGsCtx = pGsCtx; gs_iface.pGsState = pGS; gs_iface.num_outputs = gs->info.base.num_outputs; gs_iface.num_verts_per_prim = u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]); gs_iface.info = info; gs_iface.pVtxAttribMap = vtxAttribMap; lp_build_tgsi_soa(gallivm, gs->pipe.tokens, lp_type_float_vec(32, 32 * 8), &mask, wrap(consts_ptr), wrap(const_sizes_ptr), &system_values, inputs, outputs, wrap(hPrivateData), // (sampler context) NULL, // thread data sampler, &gs->info.base, &gs_iface.base); lp_build_mask_end(&mask); sampler->destroy(sampler); IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder))); RET_VOID(); gallivm_verify_function(gallivm, wrap(pFunction)); gallivm_compile_module(gallivm); PFN_GS_FUNC pFunc = (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction)); debug_printf("geom shader %p\n", pFunc); assert(pFunc && "Error: GeomShader = NULL"); JM()->mIsModuleFinalized = true; return pFunc; } PFN_GS_FUNC swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key) { BuilderSWR builder( reinterpret_cast(swr_screen(ctx->pipe.screen)->hJitMgr), "GS"); PFN_GS_FUNC func = builder.CompileGS(ctx, key); ctx->gs->map.insert(std::make_pair(key, make_unique(builder.gallivm, func))); return func; } void BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel) { #if USE_SIMD16_FRONTEND && !USE_SIMD16_SHADERS // interleave the simdvertex components into the dest simd16vertex // slot16offset = slot8offset * 2 // comp16offset = comp8offset * 2 + alternateOffset Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset }); Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } ); STORE(pVal, pOut, {channel * 2}); #else Value *pOut = GEP(pVtxOutput, {0, 0, slot}); STORE(pVal, pOut, {0, channel}); #endif } PFN_VERTEX_FUNC BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key) { struct swr_vertex_shader *swr_vs = ctx->vs; LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS]; LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS]; memset(outputs, 0, sizeof(outputs)); AttrBuilder attrBuilder; attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float)); std::vector vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0), PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)}; FunctionType *vsFuncType = FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false); // create new vertex shader function auto pFunction = Function::Create(vsFuncType, GlobalValue::ExternalLinkage, "VS", JM()->mpCurrentModule); #if HAVE_LLVM < 0x0500 AttributeSet attrSet = AttributeSet::get( JM()->mContext, AttributeSet::FunctionIndex, attrBuilder); pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet); #else pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder); #endif BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction); IRB()->SetInsertPoint(block); LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block)); auto argitr = pFunction->arg_begin(); Value *hPrivateData = &*argitr++; hPrivateData->setName("hPrivateData"); Value *pVsCtx = &*argitr++; pVsCtx->setName("vsCtx"); Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)}); consts_ptr->setName("vs_constants"); Value *const_sizes_ptr = GEP(hPrivateData, {0, swr_draw_context_num_constantsVS}); const_sizes_ptr->setName("num_vs_constants"); Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin}); #if USE_SIMD16_SHADERS vtxInput = BITCAST(vtxInput, PointerType::get(Gen_simd16vertex(JM()), 0)); #endif for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) { const unsigned mask = swr_vs->info.base.input_usage_mask[attrib]; for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) { if (mask & (1 << channel)) { inputs[attrib][channel] = wrap(LOAD(vtxInput, {0, 0, attrib, channel})); } } } struct lp_build_sampler_soa *sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX); struct lp_bld_tgsi_system_values system_values; memset(&system_values, 0, sizeof(system_values)); system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID})); system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID})); lp_build_tgsi_soa(gallivm, swr_vs->pipe.tokens, lp_type_float_vec(32, 32 * mVWidth), NULL, // mask wrap(consts_ptr), wrap(const_sizes_ptr), &system_values, inputs, outputs, wrap(hPrivateData), // (sampler context) NULL, // thread data sampler, // sampler &swr_vs->info.base, NULL); // geometry shader face sampler->destroy(sampler); IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder))); Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout}); #if USE_SIMD16_SHADERS vtxOutput = BITCAST(vtxOutput, PointerType::get(Gen_simd16vertex(JM()), 0)); #endif for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) { for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) { if (!outputs[attrib][channel]) continue; Value *val; uint32_t outSlot; if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) { if (channel != VERTEX_SGV_POINT_SIZE_COMP) continue; val = LOAD(unwrap(outputs[attrib][0])); outSlot = VERTEX_SGV_SLOT; } else if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) { val = LOAD(unwrap(outputs[attrib][channel])); outSlot = VERTEX_POSITION_SLOT; } else { val = LOAD(unwrap(outputs[attrib][channel])); outSlot = VERTEX_ATTRIB_START_SLOT + attrib; if (swr_vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION) outSlot--; } WriteVS(val, pVsCtx, vtxOutput, outSlot, channel); } } if (ctx->rasterizer->clip_plane_enable || swr_vs->info.base.culldist_writemask) { unsigned clip_mask = ctx->rasterizer->clip_plane_enable; unsigned cv = 0; if (swr_vs->info.base.writes_clipvertex) { cv = locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0, &swr_vs->info.base); } else { for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) { if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION && swr_vs->info.base.output_semantic_index[i] == 0) { cv = i; break; } } } LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], ""); LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], ""); LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], ""); LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], ""); for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) { // clip distance overrides user clip planes if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) || ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) { unsigned cv = locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1, &swr_vs->info.base); if (val < 4) { LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], ""); WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val); } else { LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], ""); WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4); } continue; } if (!(clip_mask & (1 << val))) continue; Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0})); Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1})); Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2})); Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3})); Value *dist = FADD(FMUL(unwrap(cx), VBROADCAST(px)), FADD(FMUL(unwrap(cy), VBROADCAST(py)), FADD(FMUL(unwrap(cz), VBROADCAST(pz)), FMUL(unwrap(cw), VBROADCAST(pw))))); if (val < 4) WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val); else WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4); } } RET_VOID(); gallivm_verify_function(gallivm, wrap(pFunction)); gallivm_compile_module(gallivm); // lp_debug_dump_value(func); PFN_VERTEX_FUNC pFunc = (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction)); debug_printf("vert shader %p\n", pFunc); assert(pFunc && "Error: VertShader = NULL"); JM()->mIsModuleFinalized = true; return pFunc; } PFN_VERTEX_FUNC swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key) { if (!ctx->vs->pipe.tokens) return NULL; BuilderSWR builder( #if USE_SIMD16_SHADERS reinterpret_cast(swr_screen(ctx->pipe.screen)->hJitMgr16), #else reinterpret_cast(swr_screen(ctx->pipe.screen)->hJitMgr), #endif "VS"); PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key); ctx->vs->map.insert(std::make_pair(key, make_unique(builder.gallivm, func))); return func; } unsigned swr_so_adjust_attrib(unsigned in_attrib, swr_vertex_shader *swr_vs) { ubyte semantic_name; unsigned attrib; attrib = in_attrib + VERTEX_ATTRIB_START_SLOT; if (swr_vs) { semantic_name = swr_vs->info.base.output_semantic_name[in_attrib]; if (semantic_name == TGSI_SEMANTIC_POSITION) { attrib = VERTEX_POSITION_SLOT; } else if (semantic_name == TGSI_SEMANTIC_PSIZE) { attrib = VERTEX_SGV_SLOT; } else if (semantic_name == TGSI_SEMANTIC_LAYER) { attrib = VERTEX_SGV_SLOT; } else { if (swr_vs->info.base.writes_position) { attrib--; } } } return attrib; } static unsigned locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info) { for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) { if ((info->output_semantic_name[i] == name) && (info->output_semantic_index[i] == index)) { return i; } } return 0xFFFFFFFF; } PFN_PIXEL_KERNEL BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key) { struct swr_fragment_shader *swr_fs = ctx->fs; struct tgsi_shader_info *pPrevShader; if (ctx->gs) pPrevShader = &ctx->gs->info.base; else pPrevShader = &ctx->vs->info.base; LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS]; LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS]; memset(inputs, 0, sizeof(inputs)); memset(outputs, 0, sizeof(outputs)); struct lp_build_sampler_soa *sampler = NULL; AttrBuilder attrBuilder; attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float)); std::vector fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0), PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)}; FunctionType *funcType = FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false); auto pFunction = Function::Create(funcType, GlobalValue::ExternalLinkage, "FS", JM()->mpCurrentModule); #if HAVE_LLVM < 0x0500 AttributeSet attrSet = AttributeSet::get( JM()->mContext, AttributeSet::FunctionIndex, attrBuilder); pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet); #else pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder); #endif BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction); IRB()->SetInsertPoint(block); LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block)); auto args = pFunction->arg_begin(); Value *hPrivateData = &*args++; hPrivateData->setName("hPrivateData"); Value *pPS = &*args++; pPS->setName("psCtx"); Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS}); consts_ptr->setName("fs_constants"); Value *const_sizes_ptr = GEP(hPrivateData, {0, swr_draw_context_num_constantsFS}); const_sizes_ptr->setName("num_fs_constants"); // load *pAttribs, *pPerspAttribs Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs"); Value *pPerspAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs"); swr_fs->constantMask = 0; swr_fs->flatConstantMask = 0; swr_fs->pointSpriteMask = 0; for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) { const unsigned mask = swr_fs->info.base.input_usage_mask[attrib]; const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib]; const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib]; if (!mask) continue; // load i,j Value *vi = nullptr, *vj = nullptr; switch (interpLoc) { case TGSI_INTERPOLATE_LOC_CENTER: vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i"); vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j"); break; case TGSI_INTERPOLATE_LOC_CENTROID: vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i"); vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j"); break; case TGSI_INTERPOLATE_LOC_SAMPLE: vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i"); vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j"); break; } // load/compute w Value *vw = nullptr, *pAttribs; if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE || interpMode == TGSI_INTERPOLATE_COLOR) { pAttribs = pPerspAttribs; switch (interpLoc) { case TGSI_INTERPOLATE_LOC_CENTER: vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center})); break; case TGSI_INTERPOLATE_LOC_CENTROID: vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid})); break; case TGSI_INTERPOLATE_LOC_SAMPLE: vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample})); break; } } else { pAttribs = pRawAttribs; vw = VIMMED1(1.f); } vw->setName("w"); ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib]; ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib]; if (semantic_name == TGSI_SEMANTIC_FACE) { Value *ff = UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty); ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f)); ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace"); inputs[attrib][0] = wrap(ff); inputs[attrib][1] = wrap(VIMMED1(0.0f)); inputs[attrib][2] = wrap(VIMMED1(0.0f)); inputs[attrib][3] = wrap(VIMMED1(1.0f)); continue; } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] == TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) { inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX")); inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY")); } else { inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX")); inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY")); } inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ")); inputs[attrib][3] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW")); continue; } unsigned linkedAttrib = locate_linkage(semantic_name, semantic_idx, pPrevShader) - 1; uint32_t extraAttribs = 0; if (semantic_name == TGSI_SEMANTIC_PRIMID && !ctx->gs) { /* non-gs generated primID - need to grab from swizzleMap override */ linkedAttrib = pPrevShader->num_outputs - 1; swr_fs->constantMask |= 1 << linkedAttrib; extraAttribs++; } else if (semantic_name == TGSI_SEMANTIC_GENERIC && key.sprite_coord_enable & (1 << semantic_idx)) { /* we add an extra attrib to the backendState in swr_update_derived. */ linkedAttrib = pPrevShader->num_outputs + extraAttribs - 1; swr_fs->pointSpriteMask |= (1 << linkedAttrib); extraAttribs++; } else if (linkedAttrib == 0xFFFFFFFF) { inputs[attrib][0] = wrap(VIMMED1(0.0f)); inputs[attrib][1] = wrap(VIMMED1(0.0f)); inputs[attrib][2] = wrap(VIMMED1(0.0f)); inputs[attrib][3] = wrap(VIMMED1(1.0f)); /* If we're reading in color and 2-sided lighting is enabled, we have * to keep going. */ if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside) continue; } else { if (interpMode == TGSI_INTERPOLATE_CONSTANT) { swr_fs->constantMask |= 1 << linkedAttrib; } else if (interpMode == TGSI_INTERPOLATE_COLOR) { swr_fs->flatConstantMask |= 1 << linkedAttrib; } } unsigned bcolorAttrib = 0xFFFFFFFF; Value *offset = NULL; if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) { bcolorAttrib = locate_linkage( TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader) - 1; /* Neither front nor back colors were available. Nothing to load. */ if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF) continue; /* If there is no front color, just always use the back color. */ if (linkedAttrib == 0xFFFFFFFF) linkedAttrib = bcolorAttrib; if (bcolorAttrib != 0xFFFFFFFF) { if (interpMode == TGSI_INTERPOLATE_CONSTANT) { swr_fs->constantMask |= 1 << bcolorAttrib; } else if (interpMode == TGSI_INTERPOLATE_COLOR) { swr_fs->flatConstantMask |= 1 << bcolorAttrib; } unsigned diff = 12 * (bcolorAttrib - linkedAttrib); if (diff) { Value *back = XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace"); offset = MUL(back, C(diff)); offset->setName("offset"); } } } for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) { if (mask & (1 << channel)) { Value *indexA = C(linkedAttrib * 12 + channel); Value *indexB = C(linkedAttrib * 12 + channel + 4); Value *indexC = C(linkedAttrib * 12 + channel + 8); if (offset) { indexA = ADD(indexA, offset); indexB = ADD(indexB, offset); indexC = ADD(indexC, offset); } Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA))); Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB))); Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC))); if (interpMode == TGSI_INTERPOLATE_CONSTANT) { inputs[attrib][channel] = wrap(va); } else { Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj); vc = FMUL(vk, vc); Value *interp = FMUL(va, vi); Value *interp1 = FMUL(vb, vj); interp = FADD(interp, interp1); interp = FADD(interp, vc); if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE || interpMode == TGSI_INTERPOLATE_COLOR) interp = FMUL(interp, vw); inputs[attrib][channel] = wrap(interp); } } } } sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT); struct lp_bld_tgsi_system_values system_values; memset(&system_values, 0, sizeof(system_values)); struct lp_build_mask_context mask; bool uses_mask = false; if (swr_fs->info.base.uses_kill || key.poly_stipple_enable) { Value *vActiveMask = NULL; if (swr_fs->info.base.uses_kill) { vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask"); } if (key.poly_stipple_enable) { // first get fragment xy coords and clip to stipple bounds Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}); Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}); Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty); Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty); // stipple pattern is 32x32, which means that one line of stipple // is stored in one word: // vXstipple is bit offset inside 32-bit stipple word // vYstipple is word index is stipple array Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1) Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1) // grab stipple pattern base address Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0}); stipplePtr = BITCAST(stipplePtr, mInt8PtrTy); // peform a gather to grab stipple words for each lane Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple, VIMMED1(0xffffffff), C((char)4)); // create a mask with one bit corresponding to the x stipple // and AND it with the pattern, to see if we have a bit Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple); Value *vStippleMask = AND(vStipple, vBitMask); vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0)); vStippleMask = VMASK(vStippleMask); if (swr_fs->info.base.uses_kill) { vActiveMask = AND(vActiveMask, vStippleMask); } else { vActiveMask = vStippleMask; } } lp_build_mask_begin( &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask)); uses_mask = true; } lp_build_tgsi_soa(gallivm, swr_fs->pipe.tokens, lp_type_float_vec(32, 32 * 8), uses_mask ? &mask : NULL, // mask wrap(consts_ptr), wrap(const_sizes_ptr), &system_values, inputs, outputs, wrap(hPrivateData), NULL, // thread data sampler, // sampler &swr_fs->info.base, NULL); // geometry shader face sampler->destroy(sampler); IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder))); for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs; attrib++) { switch (swr_fs->info.base.output_semantic_name[attrib]) { case TGSI_SEMANTIC_POSITION: { // write z LLVMValueRef outZ = LLVMBuildLoad(gallivm->builder, outputs[attrib][2], ""); STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ}); break; } case TGSI_SEMANTIC_COLOR: { for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) { if (!outputs[attrib][channel]) continue; LLVMValueRef out = LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], ""); if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] && swr_fs->info.base.output_semantic_index[attrib] == 0) { for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) { STORE(unwrap(out), pPS, {0, SWR_PS_CONTEXT_shaded, rt, channel}); } } else { STORE(unwrap(out), pPS, {0, SWR_PS_CONTEXT_shaded, swr_fs->info.base.output_semantic_index[attrib], channel}); } } break; } default: { fprintf(stderr, "unknown output from FS %s[%d]\n", tgsi_semantic_names[swr_fs->info.base .output_semantic_name[attrib]], swr_fs->info.base.output_semantic_index[attrib]); break; } } } LLVMValueRef mask_result = 0; if (uses_mask) { mask_result = lp_build_mask_end(&mask); } IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder))); if (uses_mask) { STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask}); } RET_VOID(); gallivm_verify_function(gallivm, wrap(pFunction)); gallivm_compile_module(gallivm); PFN_PIXEL_KERNEL kernel = (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction)); debug_printf("frag shader %p\n", kernel); assert(kernel && "Error: FragShader = NULL"); JM()->mIsModuleFinalized = true; return kernel; } PFN_PIXEL_KERNEL swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key) { if (!ctx->fs->pipe.tokens) return NULL; BuilderSWR builder( reinterpret_cast(swr_screen(ctx->pipe.screen)->hJitMgr), "FS"); PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key); ctx->fs->map.insert(std::make_pair(key, make_unique(builder.gallivm, func))); return func; }