/********************************************************** * Copyright 1998-2013 VMware, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, * modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * **********************************************************/ /** * @file svga_tgsi_vgpu10.c * * TGSI -> VGPU10 shader translation. * * \author Mingcheng Chen * \author Brian Paul */ #include "pipe/p_compiler.h" #include "pipe/p_shader_tokens.h" #include "pipe/p_defines.h" #include "tgsi/tgsi_build.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_info.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_scan.h" #include "tgsi/tgsi_two_side.h" #include "tgsi/tgsi_aa_point.h" #include "tgsi/tgsi_util.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_bitmask.h" #include "util/u_debug.h" #include "util/u_pstipple.h" #include "svga_context.h" #include "svga_debug.h" #include "svga_link.h" #include "svga_shader.h" #include "svga_tgsi.h" #include "VGPU10ShaderTokens.h" #define INVALID_INDEX 99999 #define MAX_INTERNAL_TEMPS 3 #define MAX_SYSTEM_VALUES 4 #define MAX_IMMEDIATE_COUNT \ (VGPU10_MAX_IMMEDIATE_CONSTANT_BUFFER_ELEMENT_COUNT/4) #define MAX_TEMP_ARRAYS 64 /* Enough? */ /** * Clipping is complicated. There's four different cases which we * handle during VS/GS shader translation: */ enum clipping_mode { CLIP_NONE, /**< No clipping enabled */ CLIP_LEGACY, /**< The shader has no clipping declarations or code but * one or more user-defined clip planes are enabled. We * generate extra code to emit clip distances. */ CLIP_DISTANCE, /**< The shader already declares clip distance output * registers and has code to write to them. */ CLIP_VERTEX /**< The shader declares a clip vertex output register and * has code that writes to the register. We convert the * clipvertex position into one or more clip distances. */ }; struct svga_shader_emitter_v10 { /* The token output buffer */ unsigned size; char *buf; char *ptr; /* Information about the shader and state (does not change) */ struct svga_compile_key key; struct tgsi_shader_info info; unsigned unit; unsigned inst_start_token; boolean discard_instruction; /**< throw away current instruction? */ union tgsi_immediate_data immediates[MAX_IMMEDIATE_COUNT][4]; unsigned num_immediates; /**< Number of immediates emitted */ unsigned common_immediate_pos[8]; /**< literals for common immediates */ unsigned num_common_immediates; boolean immediates_emitted; unsigned num_outputs; /**< include any extra outputs */ /** The first extra output is reserved for * non-adjusted vertex position for * stream output purpose */ /* Temporary Registers */ unsigned num_shader_temps; /**< num of temps used by original shader */ unsigned internal_temp_count; /**< currently allocated internal temps */ struct { unsigned start, size; } temp_arrays[MAX_TEMP_ARRAYS]; unsigned num_temp_arrays; /** Map TGSI temp registers to VGPU10 temp array IDs and indexes */ struct { unsigned arrayId, index; } temp_map[VGPU10_MAX_TEMPS]; /**< arrayId, element */ /** Number of constants used by original shader for each constant buffer. * The size should probably always match with that of svga_state.constbufs. */ unsigned num_shader_consts[SVGA_MAX_CONST_BUFS]; /* Samplers */ unsigned num_samplers; ubyte sampler_target[PIPE_MAX_SAMPLERS]; /**< TGSI_TEXTURE_x */ ubyte sampler_return_type[PIPE_MAX_SAMPLERS]; /**< TGSI_RETURN_TYPE_x */ /* Address regs (really implemented with temps) */ unsigned num_address_regs; unsigned address_reg_index[MAX_VGPU10_ADDR_REGS]; /* Output register usage masks */ ubyte output_usage_mask[PIPE_MAX_SHADER_OUTPUTS]; /* To map TGSI system value index to VGPU shader input indexes */ ubyte system_value_indexes[MAX_SYSTEM_VALUES]; struct { /* vertex position scale/translation */ unsigned out_index; /**< the real position output reg */ unsigned tmp_index; /**< the fake/temp position output reg */ unsigned so_index; /**< the non-adjusted position output reg */ unsigned prescale_scale_index, prescale_trans_index; boolean need_prescale; } vposition; /* For vertex shaders only */ struct { /* viewport constant */ unsigned viewport_index; /* temp index of adjusted vertex attributes */ unsigned adjusted_input[PIPE_MAX_SHADER_INPUTS]; } vs; /* For fragment shaders only */ struct { /* apha test */ unsigned color_out_index[PIPE_MAX_COLOR_BUFS]; /**< the real color output regs */ unsigned color_tmp_index; /**< fake/temp color output reg */ unsigned alpha_ref_index; /**< immediate constant for alpha ref */ /* front-face */ unsigned face_input_index; /**< real fragment shader face reg (bool) */ unsigned face_tmp_index; /**< temp face reg converted to -1 / +1 */ unsigned pstipple_sampler_unit; unsigned fragcoord_input_index; /**< real fragment position input reg */ unsigned fragcoord_tmp_index; /**< 1/w modified position temp reg */ } fs; /* For geometry shaders only */ struct { VGPU10_PRIMITIVE prim_type;/**< VGPU10 primitive type */ VGPU10_PRIMITIVE_TOPOLOGY prim_topology; /**< VGPU10 primitive topology */ unsigned input_size; /**< size of input arrays */ unsigned prim_id_index; /**< primitive id register index */ unsigned max_out_vertices; /**< maximum number of output vertices */ } gs; /* For vertex or geometry shaders */ enum clipping_mode clip_mode; unsigned clip_dist_out_index; /**< clip distance output register index */ unsigned clip_dist_tmp_index; /**< clip distance temporary register */ unsigned clip_dist_so_index; /**< clip distance shadow copy */ /** Index of temporary holding the clipvertex coordinate */ unsigned clip_vertex_out_index; /**< clip vertex output register index */ unsigned clip_vertex_tmp_index; /**< clip vertex temporary index */ /* user clip plane constant slot indexes */ unsigned clip_plane_const[PIPE_MAX_CLIP_PLANES]; unsigned num_output_writes; boolean constant_color_output; boolean uses_flat_interp; /* For all shaders: const reg index for RECT coord scaling */ unsigned texcoord_scale_index[PIPE_MAX_SAMPLERS]; /* For all shaders: const reg index for texture buffer size */ unsigned texture_buffer_size_index[PIPE_MAX_SAMPLERS]; /* VS/GS/FS Linkage info */ struct shader_linkage linkage; bool register_overflow; /**< Set if we exceed a VGPU10 register limit */ }; static boolean emit_post_helpers(struct svga_shader_emitter_v10 *emit); static boolean emit_vertex(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst); static char err_buf[128]; static boolean expand(struct svga_shader_emitter_v10 *emit) { char *new_buf; unsigned newsize = emit->size * 2; if (emit->buf != err_buf) new_buf = REALLOC(emit->buf, emit->size, newsize); else new_buf = NULL; if (!new_buf) { emit->ptr = err_buf; emit->buf = err_buf; emit->size = sizeof(err_buf); return FALSE; } emit->size = newsize; emit->ptr = new_buf + (emit->ptr - emit->buf); emit->buf = new_buf; return TRUE; } /** * Create and initialize a new svga_shader_emitter_v10 object. */ static struct svga_shader_emitter_v10 * alloc_emitter(void) { struct svga_shader_emitter_v10 *emit = CALLOC(1, sizeof(*emit)); if (!emit) return NULL; /* to initialize the output buffer */ emit->size = 512; if (!expand(emit)) { FREE(emit); return NULL; } return emit; } /** * Free an svga_shader_emitter_v10 object. */ static void free_emitter(struct svga_shader_emitter_v10 *emit) { assert(emit); FREE(emit->buf); /* will be NULL if translation succeeded */ FREE(emit); } static inline boolean reserve(struct svga_shader_emitter_v10 *emit, unsigned nr_dwords) { while (emit->ptr - emit->buf + nr_dwords * sizeof(uint32) >= emit->size) { if (!expand(emit)) return FALSE; } return TRUE; } static boolean emit_dword(struct svga_shader_emitter_v10 *emit, uint32 dword) { if (!reserve(emit, 1)) return FALSE; *(uint32 *)emit->ptr = dword; emit->ptr += sizeof dword; return TRUE; } static boolean emit_dwords(struct svga_shader_emitter_v10 *emit, const uint32 *dwords, unsigned nr) { if (!reserve(emit, nr)) return FALSE; memcpy(emit->ptr, dwords, nr * sizeof *dwords); emit->ptr += nr * sizeof *dwords; return TRUE; } /** Return the number of tokens in the emitter's buffer */ static unsigned emit_get_num_tokens(const struct svga_shader_emitter_v10 *emit) { return (emit->ptr - emit->buf) / sizeof(unsigned); } /** * Check for register overflow. If we overflow we'll set an * error flag. This function can be called for register declarations * or use as src/dst instruction operands. * \param type register type. One of VGPU10_OPERAND_TYPE_x or VGPU10_OPCODE_DCL_x * \param index the register index */ static void check_register_index(struct svga_shader_emitter_v10 *emit, unsigned operandType, unsigned index) { bool overflow_before = emit->register_overflow; switch (operandType) { case VGPU10_OPERAND_TYPE_TEMP: case VGPU10_OPERAND_TYPE_INDEXABLE_TEMP: case VGPU10_OPCODE_DCL_TEMPS: if (index >= VGPU10_MAX_TEMPS) { emit->register_overflow = TRUE; } break; case VGPU10_OPERAND_TYPE_CONSTANT_BUFFER: case VGPU10_OPCODE_DCL_CONSTANT_BUFFER: if (index >= VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT) { emit->register_overflow = TRUE; } break; case VGPU10_OPERAND_TYPE_INPUT: case VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID: case VGPU10_OPCODE_DCL_INPUT: case VGPU10_OPCODE_DCL_INPUT_SGV: case VGPU10_OPCODE_DCL_INPUT_SIV: case VGPU10_OPCODE_DCL_INPUT_PS: case VGPU10_OPCODE_DCL_INPUT_PS_SGV: case VGPU10_OPCODE_DCL_INPUT_PS_SIV: if ((emit->unit == PIPE_SHADER_VERTEX && index >= VGPU10_MAX_VS_INPUTS) || (emit->unit == PIPE_SHADER_GEOMETRY && index >= VGPU10_MAX_GS_INPUTS) || (emit->unit == PIPE_SHADER_FRAGMENT && index >= VGPU10_MAX_FS_INPUTS)) { emit->register_overflow = TRUE; } break; case VGPU10_OPERAND_TYPE_OUTPUT: case VGPU10_OPCODE_DCL_OUTPUT: case VGPU10_OPCODE_DCL_OUTPUT_SGV: case VGPU10_OPCODE_DCL_OUTPUT_SIV: if ((emit->unit == PIPE_SHADER_VERTEX && index >= VGPU10_MAX_VS_OUTPUTS) || (emit->unit == PIPE_SHADER_GEOMETRY && index >= VGPU10_MAX_GS_OUTPUTS) || (emit->unit == PIPE_SHADER_FRAGMENT && index >= VGPU10_MAX_FS_OUTPUTS)) { emit->register_overflow = TRUE; } break; case VGPU10_OPERAND_TYPE_SAMPLER: case VGPU10_OPCODE_DCL_SAMPLER: if (index >= VGPU10_MAX_SAMPLERS) { emit->register_overflow = TRUE; } break; case VGPU10_OPERAND_TYPE_RESOURCE: case VGPU10_OPCODE_DCL_RESOURCE: if (index >= VGPU10_MAX_RESOURCES) { emit->register_overflow = TRUE; } break; case VGPU10_OPERAND_TYPE_IMMEDIATE_CONSTANT_BUFFER: if (index >= MAX_IMMEDIATE_COUNT) { emit->register_overflow = TRUE; } break; default: assert(0); ; /* nothing */ } if (emit->register_overflow && !overflow_before) { debug_printf("svga: vgpu10 register overflow (reg %u, index %u)\n", operandType, index); } } /** * Examine misc state to determine the clipping mode. */ static void determine_clipping_mode(struct svga_shader_emitter_v10 *emit) { if (emit->info.num_written_clipdistance > 0) { emit->clip_mode = CLIP_DISTANCE; } else if (emit->info.writes_clipvertex) { emit->clip_mode = CLIP_VERTEX; } else if (emit->key.clip_plane_enable) { emit->clip_mode = CLIP_LEGACY; } else { emit->clip_mode = CLIP_NONE; } } /** * For clip distance register declarations and clip distance register * writes we need to mask the declaration usage or instruction writemask * (respectively) against the set of the really-enabled clipping planes. * * The piglit test spec/glsl-1.30/execution/clipping/vs-clip-distance-enables * has a VS that writes to all 8 clip distance registers, but the plane enable * flags are a subset of that. * * This function is used to apply the plane enable flags to the register * declaration or instruction writemask. * * \param writemask the declaration usage mask or instruction writemask * \param clip_reg_index which clip plane register is being declared/written. * The legal values are 0 and 1 (two clip planes per * register, for a total of 8 clip planes) */ static unsigned apply_clip_plane_mask(struct svga_shader_emitter_v10 *emit, unsigned writemask, unsigned clip_reg_index) { unsigned shift; assert(clip_reg_index < 2); /* four clip planes per clip register: */ shift = clip_reg_index * 4; writemask &= ((emit->key.clip_plane_enable >> shift) & 0xf); return writemask; } /** * Translate gallium shader type into VGPU10 type. */ static VGPU10_PROGRAM_TYPE translate_shader_type(unsigned type) { switch (type) { case PIPE_SHADER_VERTEX: return VGPU10_VERTEX_SHADER; case PIPE_SHADER_GEOMETRY: return VGPU10_GEOMETRY_SHADER; case PIPE_SHADER_FRAGMENT: return VGPU10_PIXEL_SHADER; default: assert(!"Unexpected shader type"); return VGPU10_VERTEX_SHADER; } } /** * Translate a TGSI_OPCODE_x into a VGPU10_OPCODE_x * Note: we only need to translate the opcodes for "simple" instructions, * as seen below. All other opcodes are handled/translated specially. */ static VGPU10_OPCODE_TYPE translate_opcode(unsigned opcode) { switch (opcode) { case TGSI_OPCODE_MOV: return VGPU10_OPCODE_MOV; case TGSI_OPCODE_MUL: return VGPU10_OPCODE_MUL; case TGSI_OPCODE_ADD: return VGPU10_OPCODE_ADD; case TGSI_OPCODE_DP3: return VGPU10_OPCODE_DP3; case TGSI_OPCODE_DP4: return VGPU10_OPCODE_DP4; case TGSI_OPCODE_MIN: return VGPU10_OPCODE_MIN; case TGSI_OPCODE_MAX: return VGPU10_OPCODE_MAX; case TGSI_OPCODE_MAD: return VGPU10_OPCODE_MAD; case TGSI_OPCODE_SQRT: return VGPU10_OPCODE_SQRT; case TGSI_OPCODE_FRC: return VGPU10_OPCODE_FRC; case TGSI_OPCODE_FLR: return VGPU10_OPCODE_ROUND_NI; case TGSI_OPCODE_FSEQ: return VGPU10_OPCODE_EQ; case TGSI_OPCODE_FSGE: return VGPU10_OPCODE_GE; case TGSI_OPCODE_FSNE: return VGPU10_OPCODE_NE; case TGSI_OPCODE_DDX: return VGPU10_OPCODE_DERIV_RTX; case TGSI_OPCODE_DDY: return VGPU10_OPCODE_DERIV_RTY; case TGSI_OPCODE_RET: return VGPU10_OPCODE_RET; case TGSI_OPCODE_DIV: return VGPU10_OPCODE_DIV; case TGSI_OPCODE_IDIV: return VGPU10_OPCODE_IDIV; case TGSI_OPCODE_DP2: return VGPU10_OPCODE_DP2; case TGSI_OPCODE_BRK: return VGPU10_OPCODE_BREAK; case TGSI_OPCODE_IF: return VGPU10_OPCODE_IF; case TGSI_OPCODE_ELSE: return VGPU10_OPCODE_ELSE; case TGSI_OPCODE_ENDIF: return VGPU10_OPCODE_ENDIF; case TGSI_OPCODE_CEIL: return VGPU10_OPCODE_ROUND_PI; case TGSI_OPCODE_I2F: return VGPU10_OPCODE_ITOF; case TGSI_OPCODE_NOT: return VGPU10_OPCODE_NOT; case TGSI_OPCODE_TRUNC: return VGPU10_OPCODE_ROUND_Z; case TGSI_OPCODE_SHL: return VGPU10_OPCODE_ISHL; case TGSI_OPCODE_AND: return VGPU10_OPCODE_AND; case TGSI_OPCODE_OR: return VGPU10_OPCODE_OR; case TGSI_OPCODE_XOR: return VGPU10_OPCODE_XOR; case TGSI_OPCODE_CONT: return VGPU10_OPCODE_CONTINUE; case TGSI_OPCODE_EMIT: return VGPU10_OPCODE_EMIT; case TGSI_OPCODE_ENDPRIM: return VGPU10_OPCODE_CUT; case TGSI_OPCODE_BGNLOOP: return VGPU10_OPCODE_LOOP; case TGSI_OPCODE_ENDLOOP: return VGPU10_OPCODE_ENDLOOP; case TGSI_OPCODE_ENDSUB: return VGPU10_OPCODE_RET; case TGSI_OPCODE_NOP: return VGPU10_OPCODE_NOP; case TGSI_OPCODE_BREAKC: return VGPU10_OPCODE_BREAKC; case TGSI_OPCODE_END: return VGPU10_OPCODE_RET; case TGSI_OPCODE_F2I: return VGPU10_OPCODE_FTOI; case TGSI_OPCODE_IMAX: return VGPU10_OPCODE_IMAX; case TGSI_OPCODE_IMIN: return VGPU10_OPCODE_IMIN; case TGSI_OPCODE_UDIV: case TGSI_OPCODE_UMOD: case TGSI_OPCODE_MOD: return VGPU10_OPCODE_UDIV; case TGSI_OPCODE_IMUL_HI: return VGPU10_OPCODE_IMUL; case TGSI_OPCODE_INEG: return VGPU10_OPCODE_INEG; case TGSI_OPCODE_ISHR: return VGPU10_OPCODE_ISHR; case TGSI_OPCODE_ISGE: return VGPU10_OPCODE_IGE; case TGSI_OPCODE_ISLT: return VGPU10_OPCODE_ILT; case TGSI_OPCODE_F2U: return VGPU10_OPCODE_FTOU; case TGSI_OPCODE_UADD: return VGPU10_OPCODE_IADD; case TGSI_OPCODE_U2F: return VGPU10_OPCODE_UTOF; case TGSI_OPCODE_UCMP: return VGPU10_OPCODE_MOVC; case TGSI_OPCODE_UMAD: return VGPU10_OPCODE_UMAD; case TGSI_OPCODE_UMAX: return VGPU10_OPCODE_UMAX; case TGSI_OPCODE_UMIN: return VGPU10_OPCODE_UMIN; case TGSI_OPCODE_UMUL: case TGSI_OPCODE_UMUL_HI: return VGPU10_OPCODE_UMUL; case TGSI_OPCODE_USEQ: return VGPU10_OPCODE_IEQ; case TGSI_OPCODE_USGE: return VGPU10_OPCODE_UGE; case TGSI_OPCODE_USHR: return VGPU10_OPCODE_USHR; case TGSI_OPCODE_USLT: return VGPU10_OPCODE_ULT; case TGSI_OPCODE_USNE: return VGPU10_OPCODE_INE; case TGSI_OPCODE_SWITCH: return VGPU10_OPCODE_SWITCH; case TGSI_OPCODE_CASE: return VGPU10_OPCODE_CASE; case TGSI_OPCODE_DEFAULT: return VGPU10_OPCODE_DEFAULT; case TGSI_OPCODE_ENDSWITCH: return VGPU10_OPCODE_ENDSWITCH; case TGSI_OPCODE_FSLT: return VGPU10_OPCODE_LT; case TGSI_OPCODE_ROUND: return VGPU10_OPCODE_ROUND_NE; default: assert(!"Unexpected TGSI opcode in translate_opcode()"); return VGPU10_OPCODE_NOP; } } /** * Translate a TGSI register file type into a VGPU10 operand type. * \param array is the TGSI_FILE_TEMPORARY register an array? */ static VGPU10_OPERAND_TYPE translate_register_file(enum tgsi_file_type file, boolean array) { switch (file) { case TGSI_FILE_CONSTANT: return VGPU10_OPERAND_TYPE_CONSTANT_BUFFER; case TGSI_FILE_INPUT: return VGPU10_OPERAND_TYPE_INPUT; case TGSI_FILE_OUTPUT: return VGPU10_OPERAND_TYPE_OUTPUT; case TGSI_FILE_TEMPORARY: return array ? VGPU10_OPERAND_TYPE_INDEXABLE_TEMP : VGPU10_OPERAND_TYPE_TEMP; case TGSI_FILE_IMMEDIATE: /* all immediates are 32-bit values at this time so * VGPU10_OPERAND_TYPE_IMMEDIATE64 is not possible at this time. */ return VGPU10_OPERAND_TYPE_IMMEDIATE_CONSTANT_BUFFER; case TGSI_FILE_SAMPLER: return VGPU10_OPERAND_TYPE_SAMPLER; case TGSI_FILE_SYSTEM_VALUE: return VGPU10_OPERAND_TYPE_INPUT; /* XXX TODO more cases to finish */ default: assert(!"Bad tgsi register file!"); return VGPU10_OPERAND_TYPE_NULL; } } /** * Emit a null dst register */ static void emit_null_dst_register(struct svga_shader_emitter_v10 *emit) { VGPU10OperandToken0 operand; operand.value = 0; operand.operandType = VGPU10_OPERAND_TYPE_NULL; operand.numComponents = VGPU10_OPERAND_0_COMPONENT; emit_dword(emit, operand.value); } /** * If the given register is a temporary, return the array ID. * Else return zero. */ static unsigned get_temp_array_id(const struct svga_shader_emitter_v10 *emit, unsigned file, unsigned index) { if (file == TGSI_FILE_TEMPORARY) { return emit->temp_map[index].arrayId; } else { return 0; } } /** * If the given register is a temporary, convert the index from a TGSI * TEMPORARY index to a VGPU10 temp index. */ static unsigned remap_temp_index(const struct svga_shader_emitter_v10 *emit, unsigned file, unsigned index) { if (file == TGSI_FILE_TEMPORARY) { return emit->temp_map[index].index; } else { return index; } } /** * Setup the operand0 fields related to indexing (1D, 2D, relative, etc). * Note: the operandType field must already be initialized. */ static VGPU10OperandToken0 setup_operand0_indexing(struct svga_shader_emitter_v10 *emit, VGPU10OperandToken0 operand0, unsigned file, boolean indirect, boolean index2D, unsigned tempArrayID) { unsigned indexDim, index0Rep, index1Rep = VGPU10_OPERAND_INDEX_0D; /* * Compute index dimensions */ if (operand0.operandType == VGPU10_OPERAND_TYPE_IMMEDIATE32 || operand0.operandType == VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID) { /* there's no swizzle for in-line immediates */ indexDim = VGPU10_OPERAND_INDEX_0D; assert(operand0.selectionMode == 0); } else { if (index2D || tempArrayID > 0 || operand0.operandType == VGPU10_OPERAND_TYPE_CONSTANT_BUFFER) { indexDim = VGPU10_OPERAND_INDEX_2D; } else { indexDim = VGPU10_OPERAND_INDEX_1D; } } /* * Compute index representations (immediate, relative, etc). */ if (tempArrayID > 0) { assert(file == TGSI_FILE_TEMPORARY); /* First index is the array ID, second index is the array element */ index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32; if (indirect) { index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE; } else { index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32; } } else if (indirect) { if (file == TGSI_FILE_CONSTANT) { /* index[0] indicates which constant buffer while index[1] indicates * the position in the constant buffer. */ index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32; index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE; } else { /* All other register files are 1-dimensional */ index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32_PLUS_RELATIVE; } } else { index0Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32; index1Rep = VGPU10_OPERAND_INDEX_IMMEDIATE32; } operand0.indexDimension = indexDim; operand0.index0Representation = index0Rep; operand0.index1Representation = index1Rep; return operand0; } /** * Emit the operand for expressing an address register for indirect indexing. * Note that the address register is really just a temp register. * \param addr_reg_index which address register to use */ static void emit_indirect_register(struct svga_shader_emitter_v10 *emit, unsigned addr_reg_index) { unsigned tmp_reg_index; VGPU10OperandToken0 operand0; assert(addr_reg_index < MAX_VGPU10_ADDR_REGS); tmp_reg_index = emit->address_reg_index[addr_reg_index]; /* operand0 is a simple temporary register, selecting one component */ operand0.value = 0; operand0.operandType = VGPU10_OPERAND_TYPE_TEMP; operand0.numComponents = VGPU10_OPERAND_4_COMPONENT; operand0.indexDimension = VGPU10_OPERAND_INDEX_1D; operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32; operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE; operand0.swizzleX = 0; operand0.swizzleY = 1; operand0.swizzleZ = 2; operand0.swizzleW = 3; emit_dword(emit, operand0.value); emit_dword(emit, remap_temp_index(emit, TGSI_FILE_TEMPORARY, tmp_reg_index)); } /** * Translate the dst register of a TGSI instruction and emit VGPU10 tokens. * \param emit the emitter context * \param reg the TGSI dst register to translate */ static void emit_dst_register(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_dst_register *reg) { unsigned file = reg->Register.File; unsigned index = reg->Register.Index; const unsigned sem_name = emit->info.output_semantic_name[index]; const unsigned sem_index = emit->info.output_semantic_index[index]; unsigned writemask = reg->Register.WriteMask; const unsigned indirect = reg->Register.Indirect; const unsigned tempArrayId = get_temp_array_id(emit, file, index); const unsigned index2d = reg->Register.Dimension; VGPU10OperandToken0 operand0; if (file == TGSI_FILE_OUTPUT) { if (emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY) { if (index == emit->vposition.out_index && emit->vposition.tmp_index != INVALID_INDEX) { /* replace OUTPUT[POS] with TEMP[POS]. We need to store the * vertex position result in a temporary so that we can modify * it in the post_helper() code. */ file = TGSI_FILE_TEMPORARY; index = emit->vposition.tmp_index; } else if (sem_name == TGSI_SEMANTIC_CLIPDIST && emit->clip_dist_tmp_index != INVALID_INDEX) { /* replace OUTPUT[CLIPDIST] with TEMP[CLIPDIST]. * We store the clip distance in a temporary first, then * we'll copy it to the shadow copy and to CLIPDIST with the * enabled planes mask in emit_clip_distance_instructions(). */ file = TGSI_FILE_TEMPORARY; index = emit->clip_dist_tmp_index + sem_index; } else if (sem_name == TGSI_SEMANTIC_CLIPVERTEX && emit->clip_vertex_tmp_index != INVALID_INDEX) { /* replace the CLIPVERTEX output register with a temporary */ assert(emit->clip_mode == CLIP_VERTEX); assert(sem_index == 0); file = TGSI_FILE_TEMPORARY; index = emit->clip_vertex_tmp_index; } } else if (emit->unit == PIPE_SHADER_FRAGMENT) { if (sem_name == TGSI_SEMANTIC_POSITION) { /* Fragment depth output register */ operand0.value = 0; operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT_DEPTH; operand0.indexDimension = VGPU10_OPERAND_INDEX_0D; operand0.numComponents = VGPU10_OPERAND_1_COMPONENT; emit_dword(emit, operand0.value); return; } else if (index == emit->fs.color_out_index[0] && emit->fs.color_tmp_index != INVALID_INDEX) { /* replace OUTPUT[COLOR] with TEMP[COLOR]. We need to store the * fragment color result in a temporary so that we can read it * it in the post_helper() code. */ file = TGSI_FILE_TEMPORARY; index = emit->fs.color_tmp_index; } else { /* Typically, for fragment shaders, the output register index * matches the color semantic index. But not when we write to * the fragment depth register. In that case, OUT[0] will be * fragdepth and OUT[1] will be the 0th color output. We need * to use the semantic index for color outputs. */ assert(sem_name == TGSI_SEMANTIC_COLOR); index = emit->info.output_semantic_index[index]; emit->num_output_writes++; } } } /* init operand tokens to all zero */ operand0.value = 0; operand0.numComponents = VGPU10_OPERAND_4_COMPONENT; /* the operand has a writemask */ operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE; /* Which of the four dest components to write to. Note that we can use a * simple assignment here since TGSI writemasks match VGPU10 writemasks. */ STATIC_ASSERT(TGSI_WRITEMASK_X == VGPU10_OPERAND_4_COMPONENT_MASK_X); operand0.mask = writemask; /* translate TGSI register file type to VGPU10 operand type */ operand0.operandType = translate_register_file(file, tempArrayId > 0); check_register_index(emit, operand0.operandType, index); operand0 = setup_operand0_indexing(emit, operand0, file, indirect, index2d, tempArrayId); /* Emit tokens */ emit_dword(emit, operand0.value); if (tempArrayId > 0) { emit_dword(emit, tempArrayId); } emit_dword(emit, remap_temp_index(emit, file, index)); if (indirect) { emit_indirect_register(emit, reg->Indirect.Index); } } /** * Translate a src register of a TGSI instruction and emit VGPU10 tokens. */ static void emit_src_register(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_src_register *reg) { unsigned file = reg->Register.File; unsigned index = reg->Register.Index; const unsigned indirect = reg->Register.Indirect; const unsigned tempArrayId = get_temp_array_id(emit, file, index); const unsigned index2d = reg->Register.Dimension; const unsigned swizzleX = reg->Register.SwizzleX; const unsigned swizzleY = reg->Register.SwizzleY; const unsigned swizzleZ = reg->Register.SwizzleZ; const unsigned swizzleW = reg->Register.SwizzleW; const unsigned absolute = reg->Register.Absolute; const unsigned negate = reg->Register.Negate; bool is_prim_id = FALSE; VGPU10OperandToken0 operand0; VGPU10OperandToken1 operand1; if (emit->unit == PIPE_SHADER_FRAGMENT && file == TGSI_FILE_INPUT) { if (index == emit->fs.face_input_index) { /* Replace INPUT[FACE] with TEMP[FACE] */ file = TGSI_FILE_TEMPORARY; index = emit->fs.face_tmp_index; } else if (index == emit->fs.fragcoord_input_index) { /* Replace INPUT[POSITION] with TEMP[POSITION] */ file = TGSI_FILE_TEMPORARY; index = emit->fs.fragcoord_tmp_index; } else { /* We remap fragment shader inputs to that FS input indexes * match up with VS/GS output indexes. */ index = emit->linkage.input_map[index]; } } else if (emit->unit == PIPE_SHADER_GEOMETRY && file == TGSI_FILE_INPUT) { is_prim_id = (index == emit->gs.prim_id_index); index = emit->linkage.input_map[index]; } else if (emit->unit == PIPE_SHADER_VERTEX) { if (file == TGSI_FILE_INPUT) { /* if input is adjusted... */ if ((emit->key.vs.adjust_attrib_w_1 | emit->key.vs.adjust_attrib_itof | emit->key.vs.adjust_attrib_utof | emit->key.vs.attrib_is_bgra | emit->key.vs.attrib_puint_to_snorm | emit->key.vs.attrib_puint_to_uscaled | emit->key.vs.attrib_puint_to_sscaled) & (1 << index)) { file = TGSI_FILE_TEMPORARY; index = emit->vs.adjusted_input[index]; } } else if (file == TGSI_FILE_SYSTEM_VALUE) { assert(index < ARRAY_SIZE(emit->system_value_indexes)); index = emit->system_value_indexes[index]; } } operand0.value = operand1.value = 0; if (is_prim_id) { operand0.numComponents = VGPU10_OPERAND_0_COMPONENT; operand0.operandType = VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID; } else { operand0.numComponents = VGPU10_OPERAND_4_COMPONENT; operand0.operandType = translate_register_file(file, tempArrayId > 0); } operand0 = setup_operand0_indexing(emit, operand0, file, indirect, index2d, tempArrayId); if (operand0.operandType != VGPU10_OPERAND_TYPE_IMMEDIATE32 && operand0.operandType != VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID) { /* there's no swizzle for in-line immediates */ if (swizzleX == swizzleY && swizzleX == swizzleZ && swizzleX == swizzleW) { operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE; } else { operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE; } operand0.swizzleX = swizzleX; operand0.swizzleY = swizzleY; operand0.swizzleZ = swizzleZ; operand0.swizzleW = swizzleW; if (absolute || negate) { operand0.extended = 1; operand1.extendedOperandType = VGPU10_EXTENDED_OPERAND_MODIFIER; if (absolute && !negate) operand1.operandModifier = VGPU10_OPERAND_MODIFIER_ABS; if (!absolute && negate) operand1.operandModifier = VGPU10_OPERAND_MODIFIER_NEG; if (absolute && negate) operand1.operandModifier = VGPU10_OPERAND_MODIFIER_ABSNEG; } } /* Emit the operand tokens */ emit_dword(emit, operand0.value); if (operand0.extended) emit_dword(emit, operand1.value); if (operand0.operandType == VGPU10_OPERAND_TYPE_IMMEDIATE32) { /* Emit the four float/int in-line immediate values */ unsigned *c; assert(index < ARRAY_SIZE(emit->immediates)); assert(file == TGSI_FILE_IMMEDIATE); assert(swizzleX < 4); assert(swizzleY < 4); assert(swizzleZ < 4); assert(swizzleW < 4); c = (unsigned *) emit->immediates[index]; emit_dword(emit, c[swizzleX]); emit_dword(emit, c[swizzleY]); emit_dword(emit, c[swizzleZ]); emit_dword(emit, c[swizzleW]); } else if (operand0.indexDimension >= VGPU10_OPERAND_INDEX_1D) { /* Emit the register index(es) */ if (index2d || operand0.operandType == VGPU10_OPERAND_TYPE_CONSTANT_BUFFER) { emit_dword(emit, reg->Dimension.Index); } if (tempArrayId > 0) { emit_dword(emit, tempArrayId); } emit_dword(emit, remap_temp_index(emit, file, index)); if (indirect) { emit_indirect_register(emit, reg->Indirect.Index); } } } /** * Emit a resource operand (for use with a SAMPLE instruction). */ static void emit_resource_register(struct svga_shader_emitter_v10 *emit, unsigned resource_number) { VGPU10OperandToken0 operand0; check_register_index(emit, VGPU10_OPERAND_TYPE_RESOURCE, resource_number); /* init */ operand0.value = 0; operand0.operandType = VGPU10_OPERAND_TYPE_RESOURCE; operand0.indexDimension = VGPU10_OPERAND_INDEX_1D; operand0.numComponents = VGPU10_OPERAND_4_COMPONENT; operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE; operand0.swizzleX = VGPU10_COMPONENT_X; operand0.swizzleY = VGPU10_COMPONENT_Y; operand0.swizzleZ = VGPU10_COMPONENT_Z; operand0.swizzleW = VGPU10_COMPONENT_W; emit_dword(emit, operand0.value); emit_dword(emit, resource_number); } /** * Emit a sampler operand (for use with a SAMPLE instruction). */ static void emit_sampler_register(struct svga_shader_emitter_v10 *emit, unsigned sampler_number) { VGPU10OperandToken0 operand0; check_register_index(emit, VGPU10_OPERAND_TYPE_SAMPLER, sampler_number); /* init */ operand0.value = 0; operand0.operandType = VGPU10_OPERAND_TYPE_SAMPLER; operand0.indexDimension = VGPU10_OPERAND_INDEX_1D; emit_dword(emit, operand0.value); emit_dword(emit, sampler_number); } /** * Emit an operand which reads the IS_FRONT_FACING register. */ static void emit_face_register(struct svga_shader_emitter_v10 *emit) { VGPU10OperandToken0 operand0; unsigned index = emit->linkage.input_map[emit->fs.face_input_index]; /* init */ operand0.value = 0; operand0.operandType = VGPU10_OPERAND_TYPE_INPUT; operand0.indexDimension = VGPU10_OPERAND_INDEX_1D; operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SELECT_1_MODE; operand0.numComponents = VGPU10_OPERAND_4_COMPONENT; operand0.swizzleX = VGPU10_COMPONENT_X; operand0.swizzleY = VGPU10_COMPONENT_X; operand0.swizzleZ = VGPU10_COMPONENT_X; operand0.swizzleW = VGPU10_COMPONENT_X; emit_dword(emit, operand0.value); emit_dword(emit, index); } /** * Emit the token for a VGPU10 opcode. * \param saturate clamp result to [0,1]? */ static void emit_opcode(struct svga_shader_emitter_v10 *emit, unsigned vgpu10_opcode, boolean saturate) { VGPU10OpcodeToken0 token0; token0.value = 0; /* init all fields to zero */ token0.opcodeType = vgpu10_opcode; token0.instructionLength = 0; /* Filled in by end_emit_instruction() */ token0.saturate = saturate; emit_dword(emit, token0.value); } /** * Emit the token for a VGPU10 resinfo instruction. * \param modifier return type modifier, _uint or _rcpFloat. * TODO: We may want to remove this parameter if it will * only ever be used as _uint. */ static void emit_opcode_resinfo(struct svga_shader_emitter_v10 *emit, VGPU10_RESINFO_RETURN_TYPE modifier) { VGPU10OpcodeToken0 token0; token0.value = 0; /* init all fields to zero */ token0.opcodeType = VGPU10_OPCODE_RESINFO; token0.instructionLength = 0; /* Filled in by end_emit_instruction() */ token0.resinfoReturnType = modifier; emit_dword(emit, token0.value); } /** * Emit opcode tokens for a texture sample instruction. Texture instructions * can be rather complicated (texel offsets, etc) so we have this specialized * function. */ static void emit_sample_opcode(struct svga_shader_emitter_v10 *emit, unsigned vgpu10_opcode, boolean saturate, const int offsets[3]) { VGPU10OpcodeToken0 token0; VGPU10OpcodeToken1 token1; token0.value = 0; /* init all fields to zero */ token0.opcodeType = vgpu10_opcode; token0.instructionLength = 0; /* Filled in by end_emit_instruction() */ token0.saturate = saturate; if (offsets[0] || offsets[1] || offsets[2]) { assert(offsets[0] >= VGPU10_MIN_TEXEL_FETCH_OFFSET); assert(offsets[1] >= VGPU10_MIN_TEXEL_FETCH_OFFSET); assert(offsets[2] >= VGPU10_MIN_TEXEL_FETCH_OFFSET); assert(offsets[0] <= VGPU10_MAX_TEXEL_FETCH_OFFSET); assert(offsets[1] <= VGPU10_MAX_TEXEL_FETCH_OFFSET); assert(offsets[2] <= VGPU10_MAX_TEXEL_FETCH_OFFSET); token0.extended = 1; token1.value = 0; token1.opcodeType = VGPU10_EXTENDED_OPCODE_SAMPLE_CONTROLS; token1.offsetU = offsets[0]; token1.offsetV = offsets[1]; token1.offsetW = offsets[2]; } emit_dword(emit, token0.value); if (token0.extended) { emit_dword(emit, token1.value); } } /** * Emit a DISCARD opcode token. * If nonzero is set, we'll discard the fragment if the X component is not 0. * Otherwise, we'll discard the fragment if the X component is 0. */ static void emit_discard_opcode(struct svga_shader_emitter_v10 *emit, boolean nonzero) { VGPU10OpcodeToken0 opcode0; opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DISCARD; if (nonzero) opcode0.testBoolean = VGPU10_INSTRUCTION_TEST_NONZERO; emit_dword(emit, opcode0.value); } /** * We need to call this before we begin emitting a VGPU10 instruction. */ static void begin_emit_instruction(struct svga_shader_emitter_v10 *emit) { assert(emit->inst_start_token == 0); /* Save location of the instruction's VGPU10OpcodeToken0 token. * Note, we can't save a pointer because it would become invalid if * we have to realloc the output buffer. */ emit->inst_start_token = emit_get_num_tokens(emit); } /** * We need to call this after we emit the last token of a VGPU10 instruction. * This function patches in the opcode token's instructionLength field. */ static void end_emit_instruction(struct svga_shader_emitter_v10 *emit) { VGPU10OpcodeToken0 *tokens = (VGPU10OpcodeToken0 *) emit->buf; unsigned inst_length; assert(emit->inst_start_token > 0); if (emit->discard_instruction) { /* Back up the emit->ptr to where this instruction started so * that we discard the current instruction. */ emit->ptr = (char *) (tokens + emit->inst_start_token); } else { /* Compute instruction length and patch that into the start of * the instruction. */ inst_length = emit_get_num_tokens(emit) - emit->inst_start_token; assert(inst_length > 0); tokens[emit->inst_start_token].instructionLength = inst_length; } emit->inst_start_token = 0; /* reset to zero for error checking */ emit->discard_instruction = FALSE; } /** * Return index for a free temporary register. */ static unsigned get_temp_index(struct svga_shader_emitter_v10 *emit) { assert(emit->internal_temp_count < MAX_INTERNAL_TEMPS); return emit->num_shader_temps + emit->internal_temp_count++; } /** * Release the temporaries which were generated by get_temp_index(). */ static void free_temp_indexes(struct svga_shader_emitter_v10 *emit) { emit->internal_temp_count = 0; } /** * Create a tgsi_full_src_register. */ static struct tgsi_full_src_register make_src_reg(unsigned file, unsigned index) { struct tgsi_full_src_register reg; memset(®, 0, sizeof(reg)); reg.Register.File = file; reg.Register.Index = index; reg.Register.SwizzleX = TGSI_SWIZZLE_X; reg.Register.SwizzleY = TGSI_SWIZZLE_Y; reg.Register.SwizzleZ = TGSI_SWIZZLE_Z; reg.Register.SwizzleW = TGSI_SWIZZLE_W; return reg; } /** * Create a tgsi_full_src_register for a temporary. */ static struct tgsi_full_src_register make_src_temp_reg(unsigned index) { return make_src_reg(TGSI_FILE_TEMPORARY, index); } /** * Create a tgsi_full_src_register for a constant. */ static struct tgsi_full_src_register make_src_const_reg(unsigned index) { return make_src_reg(TGSI_FILE_CONSTANT, index); } /** * Create a tgsi_full_src_register for an immediate constant. */ static struct tgsi_full_src_register make_src_immediate_reg(unsigned index) { return make_src_reg(TGSI_FILE_IMMEDIATE, index); } /** * Create a tgsi_full_dst_register. */ static struct tgsi_full_dst_register make_dst_reg(unsigned file, unsigned index) { struct tgsi_full_dst_register reg; memset(®, 0, sizeof(reg)); reg.Register.File = file; reg.Register.Index = index; reg.Register.WriteMask = TGSI_WRITEMASK_XYZW; return reg; } /** * Create a tgsi_full_dst_register for a temporary. */ static struct tgsi_full_dst_register make_dst_temp_reg(unsigned index) { return make_dst_reg(TGSI_FILE_TEMPORARY, index); } /** * Create a tgsi_full_dst_register for an output. */ static struct tgsi_full_dst_register make_dst_output_reg(unsigned index) { return make_dst_reg(TGSI_FILE_OUTPUT, index); } /** * Create negated tgsi_full_src_register. */ static struct tgsi_full_src_register negate_src(const struct tgsi_full_src_register *reg) { struct tgsi_full_src_register neg = *reg; neg.Register.Negate = !reg->Register.Negate; return neg; } /** * Create absolute value of a tgsi_full_src_register. */ static struct tgsi_full_src_register absolute_src(const struct tgsi_full_src_register *reg) { struct tgsi_full_src_register absolute = *reg; absolute.Register.Absolute = 1; return absolute; } /** Return the named swizzle term from the src register */ static inline unsigned get_swizzle(const struct tgsi_full_src_register *reg, unsigned term) { switch (term) { case TGSI_SWIZZLE_X: return reg->Register.SwizzleX; case TGSI_SWIZZLE_Y: return reg->Register.SwizzleY; case TGSI_SWIZZLE_Z: return reg->Register.SwizzleZ; case TGSI_SWIZZLE_W: return reg->Register.SwizzleW; default: assert(!"Bad swizzle"); return TGSI_SWIZZLE_X; } } /** * Create swizzled tgsi_full_src_register. */ static struct tgsi_full_src_register swizzle_src(const struct tgsi_full_src_register *reg, unsigned swizzleX, unsigned swizzleY, unsigned swizzleZ, unsigned swizzleW) { struct tgsi_full_src_register swizzled = *reg; /* Note: we swizzle the current swizzle */ swizzled.Register.SwizzleX = get_swizzle(reg, swizzleX); swizzled.Register.SwizzleY = get_swizzle(reg, swizzleY); swizzled.Register.SwizzleZ = get_swizzle(reg, swizzleZ); swizzled.Register.SwizzleW = get_swizzle(reg, swizzleW); return swizzled; } /** * Create swizzled tgsi_full_src_register where all the swizzle * terms are the same. */ static struct tgsi_full_src_register scalar_src(const struct tgsi_full_src_register *reg, unsigned swizzle) { struct tgsi_full_src_register swizzled = *reg; /* Note: we swizzle the current swizzle */ swizzled.Register.SwizzleX = swizzled.Register.SwizzleY = swizzled.Register.SwizzleZ = swizzled.Register.SwizzleW = get_swizzle(reg, swizzle); return swizzled; } /** * Create new tgsi_full_dst_register with writemask. * \param mask bitmask of TGSI_WRITEMASK_[XYZW] */ static struct tgsi_full_dst_register writemask_dst(const struct tgsi_full_dst_register *reg, unsigned mask) { struct tgsi_full_dst_register masked = *reg; masked.Register.WriteMask = mask; return masked; } /** * Check if the register's swizzle is XXXX, YYYY, ZZZZ, or WWWW. */ static boolean same_swizzle_terms(const struct tgsi_full_src_register *reg) { return (reg->Register.SwizzleX == reg->Register.SwizzleY && reg->Register.SwizzleY == reg->Register.SwizzleZ && reg->Register.SwizzleZ == reg->Register.SwizzleW); } /** * Search the vector for the value 'x' and return its position. */ static int find_imm_in_vec4(const union tgsi_immediate_data vec[4], union tgsi_immediate_data x) { unsigned i; for (i = 0; i < 4; i++) { if (vec[i].Int == x.Int) return i; } return -1; } /** * Helper used by make_immediate_reg(), make_immediate_reg_4(). */ static int find_immediate(struct svga_shader_emitter_v10 *emit, union tgsi_immediate_data x, unsigned startIndex) { const unsigned endIndex = emit->num_immediates; unsigned i; assert(emit->immediates_emitted); /* Search immediates for x, y, z, w */ for (i = startIndex; i < endIndex; i++) { if (x.Int == emit->immediates[i][0].Int || x.Int == emit->immediates[i][1].Int || x.Int == emit->immediates[i][2].Int || x.Int == emit->immediates[i][3].Int) { return i; } } /* Should never try to use an immediate value that wasn't pre-declared */ assert(!"find_immediate() failed!"); return -1; } /** * Return a tgsi_full_src_register for an immediate/literal * union tgsi_immediate_data[4] value. * Note: the values must have been previously declared/allocated in * emit_pre_helpers(). And, all of x,y,z,w must be located in the same * vec4 immediate. */ static struct tgsi_full_src_register make_immediate_reg_4(struct svga_shader_emitter_v10 *emit, const union tgsi_immediate_data imm[4]) { struct tgsi_full_src_register reg; unsigned i; for (i = 0; i < emit->num_common_immediates; i++) { /* search for first component value */ int immpos = find_immediate(emit, imm[0], i); int x, y, z, w; assert(immpos >= 0); /* find remaining components within the immediate vector */ x = find_imm_in_vec4(emit->immediates[immpos], imm[0]); y = find_imm_in_vec4(emit->immediates[immpos], imm[1]); z = find_imm_in_vec4(emit->immediates[immpos], imm[2]); w = find_imm_in_vec4(emit->immediates[immpos], imm[3]); if (x >=0 && y >= 0 && z >= 0 && w >= 0) { /* found them all */ memset(®, 0, sizeof(reg)); reg.Register.File = TGSI_FILE_IMMEDIATE; reg.Register.Index = immpos; reg.Register.SwizzleX = x; reg.Register.SwizzleY = y; reg.Register.SwizzleZ = z; reg.Register.SwizzleW = w; return reg; } /* else, keep searching */ } assert(!"Failed to find immediate register!"); /* Just return IMM[0].xxxx */ memset(®, 0, sizeof(reg)); reg.Register.File = TGSI_FILE_IMMEDIATE; return reg; } /** * Return a tgsi_full_src_register for an immediate/literal * union tgsi_immediate_data value of the form {value, value, value, value}. * \sa make_immediate_reg_4() regarding allowed values. */ static struct tgsi_full_src_register make_immediate_reg(struct svga_shader_emitter_v10 *emit, union tgsi_immediate_data value) { struct tgsi_full_src_register reg; int immpos = find_immediate(emit, value, 0); assert(immpos >= 0); memset(®, 0, sizeof(reg)); reg.Register.File = TGSI_FILE_IMMEDIATE; reg.Register.Index = immpos; reg.Register.SwizzleX = reg.Register.SwizzleY = reg.Register.SwizzleZ = reg.Register.SwizzleW = find_imm_in_vec4(emit->immediates[immpos], value); return reg; } /** * Return a tgsi_full_src_register for an immediate/literal float[4] value. * \sa make_immediate_reg_4() regarding allowed values. */ static struct tgsi_full_src_register make_immediate_reg_float4(struct svga_shader_emitter_v10 *emit, float x, float y, float z, float w) { union tgsi_immediate_data imm[4]; imm[0].Float = x; imm[1].Float = y; imm[2].Float = z; imm[3].Float = w; return make_immediate_reg_4(emit, imm); } /** * Return a tgsi_full_src_register for an immediate/literal float value * of the form {value, value, value, value}. * \sa make_immediate_reg_4() regarding allowed values. */ static struct tgsi_full_src_register make_immediate_reg_float(struct svga_shader_emitter_v10 *emit, float value) { union tgsi_immediate_data imm; imm.Float = value; return make_immediate_reg(emit, imm); } /** * Return a tgsi_full_src_register for an immediate/literal int[4] vector. */ static struct tgsi_full_src_register make_immediate_reg_int4(struct svga_shader_emitter_v10 *emit, int x, int y, int z, int w) { union tgsi_immediate_data imm[4]; imm[0].Int = x; imm[1].Int = y; imm[2].Int = z; imm[3].Int = w; return make_immediate_reg_4(emit, imm); } /** * Return a tgsi_full_src_register for an immediate/literal int value * of the form {value, value, value, value}. * \sa make_immediate_reg_4() regarding allowed values. */ static struct tgsi_full_src_register make_immediate_reg_int(struct svga_shader_emitter_v10 *emit, int value) { union tgsi_immediate_data imm; imm.Int = value; return make_immediate_reg(emit, imm); } /** * Allocate space for a union tgsi_immediate_data[4] immediate. * \return the index/position of the immediate. */ static unsigned alloc_immediate_4(struct svga_shader_emitter_v10 *emit, const union tgsi_immediate_data imm[4]) { unsigned n = emit->num_immediates++; assert(!emit->immediates_emitted); assert(n < ARRAY_SIZE(emit->immediates)); emit->immediates[n][0] = imm[0]; emit->immediates[n][1] = imm[1]; emit->immediates[n][2] = imm[2]; emit->immediates[n][3] = imm[3]; return n; } /** * Allocate space for a float[4] immediate. * \return the index/position of the immediate. */ static unsigned alloc_immediate_float4(struct svga_shader_emitter_v10 *emit, float x, float y, float z, float w) { union tgsi_immediate_data imm[4]; imm[0].Float = x; imm[1].Float = y; imm[2].Float = z; imm[3].Float = w; return alloc_immediate_4(emit, imm); } /** * Allocate space for a int[4] immediate. * \return the index/position of the immediate. */ static unsigned alloc_immediate_int4(struct svga_shader_emitter_v10 *emit, int x, int y, int z, int w) { union tgsi_immediate_data imm[4]; imm[0].Int = x; imm[1].Int = y; imm[2].Int = z; imm[3].Int = w; return alloc_immediate_4(emit, imm); } /** * Allocate a shader input to store a system value. */ static unsigned alloc_system_value_index(struct svga_shader_emitter_v10 *emit, unsigned index) { const unsigned n = emit->info.file_max[TGSI_FILE_INPUT] + 1 + index; assert(index < ARRAY_SIZE(emit->system_value_indexes)); emit->system_value_indexes[index] = n; return n; } /** * Translate a TGSI immediate value (union tgsi_immediate_data[4]) to VGPU10. */ static boolean emit_vgpu10_immediate(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_immediate *imm) { /* We don't actually emit any code here. We just save the * immediate values and emit them later. */ alloc_immediate_4(emit, imm->u); return TRUE; } /** * Emit a VGPU10_CUSTOMDATA_DCL_IMMEDIATE_CONSTANT_BUFFER block * containing all the immediate values previously allocated * with alloc_immediate_4(). */ static boolean emit_vgpu10_immediates_block(struct svga_shader_emitter_v10 *emit) { VGPU10OpcodeToken0 token; assert(!emit->immediates_emitted); token.value = 0; token.opcodeType = VGPU10_OPCODE_CUSTOMDATA; token.customDataClass = VGPU10_CUSTOMDATA_DCL_IMMEDIATE_CONSTANT_BUFFER; /* Note: no begin/end_emit_instruction() calls */ emit_dword(emit, token.value); emit_dword(emit, 2 + 4 * emit->num_immediates); emit_dwords(emit, (unsigned *) emit->immediates, 4 * emit->num_immediates); emit->immediates_emitted = TRUE; return TRUE; } /** * Translate a fragment shader's TGSI_INTERPOLATE_x mode to a vgpu10 * interpolation mode. * \return a VGPU10_INTERPOLATION_x value */ static unsigned translate_interpolation(const struct svga_shader_emitter_v10 *emit, unsigned interp, unsigned interpolate_loc) { if (interp == TGSI_INTERPOLATE_COLOR) { interp = emit->key.fs.flatshade ? TGSI_INTERPOLATE_CONSTANT : TGSI_INTERPOLATE_PERSPECTIVE; } switch (interp) { case TGSI_INTERPOLATE_CONSTANT: return VGPU10_INTERPOLATION_CONSTANT; case TGSI_INTERPOLATE_LINEAR: return interpolate_loc == TGSI_INTERPOLATE_LOC_CENTROID ? VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE_CENTROID : VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE; case TGSI_INTERPOLATE_PERSPECTIVE: return interpolate_loc == TGSI_INTERPOLATE_LOC_CENTROID ? VGPU10_INTERPOLATION_LINEAR_CENTROID : VGPU10_INTERPOLATION_LINEAR; default: assert(!"Unexpected interpolation mode"); return VGPU10_INTERPOLATION_CONSTANT; } } /** * Translate a TGSI property to VGPU10. * Don't emit any instructions yet, only need to gather the primitive property information. * The output primitive topology might be changed later. The final property instructions * will be emitted as part of the pre-helper code. */ static boolean emit_vgpu10_property(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_property *prop) { static const VGPU10_PRIMITIVE primType[] = { VGPU10_PRIMITIVE_POINT, /* PIPE_PRIM_POINTS */ VGPU10_PRIMITIVE_LINE, /* PIPE_PRIM_LINES */ VGPU10_PRIMITIVE_LINE, /* PIPE_PRIM_LINE_LOOP */ VGPU10_PRIMITIVE_LINE, /* PIPE_PRIM_LINE_STRIP */ VGPU10_PRIMITIVE_TRIANGLE, /* PIPE_PRIM_TRIANGLES */ VGPU10_PRIMITIVE_TRIANGLE, /* PIPE_PRIM_TRIANGLE_STRIP */ VGPU10_PRIMITIVE_TRIANGLE, /* PIPE_PRIM_TRIANGLE_FAN */ VGPU10_PRIMITIVE_UNDEFINED, /* PIPE_PRIM_QUADS */ VGPU10_PRIMITIVE_UNDEFINED, /* PIPE_PRIM_QUAD_STRIP */ VGPU10_PRIMITIVE_UNDEFINED, /* PIPE_PRIM_POLYGON */ VGPU10_PRIMITIVE_LINE_ADJ, /* PIPE_PRIM_LINES_ADJACENCY */ VGPU10_PRIMITIVE_LINE_ADJ, /* PIPE_PRIM_LINE_STRIP_ADJACENCY */ VGPU10_PRIMITIVE_TRIANGLE_ADJ, /* PIPE_PRIM_TRIANGLES_ADJACENCY */ VGPU10_PRIMITIVE_TRIANGLE_ADJ /* PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY */ }; static const VGPU10_PRIMITIVE_TOPOLOGY primTopology[] = { VGPU10_PRIMITIVE_TOPOLOGY_POINTLIST, /* PIPE_PRIM_POINTS */ VGPU10_PRIMITIVE_TOPOLOGY_LINELIST, /* PIPE_PRIM_LINES */ VGPU10_PRIMITIVE_TOPOLOGY_LINELIST, /* PIPE_PRIM_LINE_LOOP */ VGPU10_PRIMITIVE_TOPOLOGY_LINESTRIP, /* PIPE_PRIM_LINE_STRIP */ VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLELIST, /* PIPE_PRIM_TRIANGLES */ VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, /* PIPE_PRIM_TRIANGLE_STRIP */ VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, /* PIPE_PRIM_TRIANGLE_FAN */ VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED, /* PIPE_PRIM_QUADS */ VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED, /* PIPE_PRIM_QUAD_STRIP */ VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED, /* PIPE_PRIM_POLYGON */ VGPU10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ, /* PIPE_PRIM_LINES_ADJACENCY */ VGPU10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ, /* PIPE_PRIM_LINE_STRIP_ADJACENCY */ VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ, /* PIPE_PRIM_TRIANGLES_ADJACENCY */ VGPU10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ /* PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY */ }; static const unsigned inputArraySize[] = { 0, /* VGPU10_PRIMITIVE_UNDEFINED */ 1, /* VGPU10_PRIMITIVE_POINT */ 2, /* VGPU10_PRIMITIVE_LINE */ 3, /* VGPU10_PRIMITIVE_TRIANGLE */ 0, 0, 4, /* VGPU10_PRIMITIVE_LINE_ADJ */ 6 /* VGPU10_PRIMITIVE_TRIANGLE_ADJ */ }; switch (prop->Property.PropertyName) { case TGSI_PROPERTY_GS_INPUT_PRIM: assert(prop->u[0].Data < ARRAY_SIZE(primType)); emit->gs.prim_type = primType[prop->u[0].Data]; assert(emit->gs.prim_type != VGPU10_PRIMITIVE_UNDEFINED); emit->gs.input_size = inputArraySize[emit->gs.prim_type]; break; case TGSI_PROPERTY_GS_OUTPUT_PRIM: assert(prop->u[0].Data < ARRAY_SIZE(primTopology)); emit->gs.prim_topology = primTopology[prop->u[0].Data]; assert(emit->gs.prim_topology != VGPU10_PRIMITIVE_TOPOLOGY_UNDEFINED); break; case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES: emit->gs.max_out_vertices = prop->u[0].Data; break; default: break; } return TRUE; } static void emit_property_instruction(struct svga_shader_emitter_v10 *emit, VGPU10OpcodeToken0 opcode0, unsigned nData, unsigned data) { begin_emit_instruction(emit); emit_dword(emit, opcode0.value); if (nData) emit_dword(emit, data); end_emit_instruction(emit); } /** * Emit property instructions */ static void emit_property_instructions(struct svga_shader_emitter_v10 *emit) { VGPU10OpcodeToken0 opcode0; assert(emit->unit == PIPE_SHADER_GEOMETRY); /* emit input primitive type declaration */ opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_GS_INPUT_PRIMITIVE; opcode0.primitive = emit->gs.prim_type; emit_property_instruction(emit, opcode0, 0, 0); /* emit output primitive topology declaration */ opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_GS_OUTPUT_PRIMITIVE_TOPOLOGY; opcode0.primitiveTopology = emit->gs.prim_topology; emit_property_instruction(emit, opcode0, 0, 0); /* emit max output vertices */ opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_MAX_OUTPUT_VERTEX_COUNT; emit_property_instruction(emit, opcode0, 1, emit->gs.max_out_vertices); } /** * Emit a vgpu10 declaration "instruction". * \param index the register index * \param size array size of the operand. In most cases, it is 1, * but for inputs to geometry shader, the array size varies * depending on the primitive type. */ static void emit_decl_instruction(struct svga_shader_emitter_v10 *emit, VGPU10OpcodeToken0 opcode0, VGPU10OperandToken0 operand0, VGPU10NameToken name_token, unsigned index, unsigned size) { assert(opcode0.opcodeType); assert(operand0.mask); begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_dword(emit, operand0.value); if (operand0.indexDimension == VGPU10_OPERAND_INDEX_1D) { /* Next token is the index of the register to declare */ emit_dword(emit, index); } else if (operand0.indexDimension >= VGPU10_OPERAND_INDEX_2D) { /* Next token is the size of the register */ emit_dword(emit, size); /* Followed by the index of the register */ emit_dword(emit, index); } if (name_token.value) { emit_dword(emit, name_token.value); } end_emit_instruction(emit); } /** * Emit the declaration for a shader input. * \param opcodeType opcode type, one of VGPU10_OPCODE_DCL_INPUTx * \param operandType operand type, one of VGPU10_OPERAND_TYPE_INPUT_x * \param dim index dimension * \param index the input register index * \param size array size of the operand. In most cases, it is 1, * but for inputs to geometry shader, the array size varies * depending on the primitive type. * \param name one of VGPU10_NAME_x * \parma numComp number of components * \param selMode component selection mode * \param usageMask bitfield of VGPU10_OPERAND_4_COMPONENT_MASK_x values * \param interpMode interpolation mode */ static void emit_input_declaration(struct svga_shader_emitter_v10 *emit, unsigned opcodeType, unsigned operandType, unsigned dim, unsigned index, unsigned size, unsigned name, unsigned numComp, unsigned selMode, unsigned usageMask, unsigned interpMode) { VGPU10OpcodeToken0 opcode0; VGPU10OperandToken0 operand0; VGPU10NameToken name_token; assert(usageMask <= VGPU10_OPERAND_4_COMPONENT_MASK_ALL); assert(opcodeType == VGPU10_OPCODE_DCL_INPUT || opcodeType == VGPU10_OPCODE_DCL_INPUT_SIV || opcodeType == VGPU10_OPCODE_DCL_INPUT_PS || opcodeType == VGPU10_OPCODE_DCL_INPUT_PS_SGV); assert(operandType == VGPU10_OPERAND_TYPE_INPUT || operandType == VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID); assert(numComp <= VGPU10_OPERAND_4_COMPONENT); assert(selMode <= VGPU10_OPERAND_4_COMPONENT_MASK_MODE); assert(dim <= VGPU10_OPERAND_INDEX_3D); assert(name == VGPU10_NAME_UNDEFINED || name == VGPU10_NAME_POSITION || name == VGPU10_NAME_INSTANCE_ID || name == VGPU10_NAME_VERTEX_ID || name == VGPU10_NAME_PRIMITIVE_ID || name == VGPU10_NAME_IS_FRONT_FACE); assert(interpMode == VGPU10_INTERPOLATION_UNDEFINED || interpMode == VGPU10_INTERPOLATION_CONSTANT || interpMode == VGPU10_INTERPOLATION_LINEAR || interpMode == VGPU10_INTERPOLATION_LINEAR_CENTROID || interpMode == VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE || interpMode == VGPU10_INTERPOLATION_LINEAR_NOPERSPECTIVE_CENTROID); check_register_index(emit, opcodeType, index); opcode0.value = operand0.value = name_token.value = 0; opcode0.opcodeType = opcodeType; opcode0.interpolationMode = interpMode; operand0.operandType = operandType; operand0.numComponents = numComp; operand0.selectionMode = selMode; operand0.mask = usageMask; operand0.indexDimension = dim; operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32; if (dim == VGPU10_OPERAND_INDEX_2D) operand0.index1Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32; name_token.name = name; emit_decl_instruction(emit, opcode0, operand0, name_token, index, size); } /** * Emit the declaration for a shader output. * \param type one of VGPU10_OPCODE_DCL_OUTPUTx * \param index the output register index * \param name one of VGPU10_NAME_x * \param usageMask bitfield of VGPU10_OPERAND_4_COMPONENT_MASK_x values */ static void emit_output_declaration(struct svga_shader_emitter_v10 *emit, unsigned type, unsigned index, unsigned name, unsigned usageMask) { VGPU10OpcodeToken0 opcode0; VGPU10OperandToken0 operand0; VGPU10NameToken name_token; assert(usageMask <= VGPU10_OPERAND_4_COMPONENT_MASK_ALL); assert(type == VGPU10_OPCODE_DCL_OUTPUT || type == VGPU10_OPCODE_DCL_OUTPUT_SGV || type == VGPU10_OPCODE_DCL_OUTPUT_SIV); assert(name == VGPU10_NAME_UNDEFINED || name == VGPU10_NAME_POSITION || name == VGPU10_NAME_PRIMITIVE_ID || name == VGPU10_NAME_RENDER_TARGET_ARRAY_INDEX || name == VGPU10_NAME_CLIP_DISTANCE); check_register_index(emit, type, index); opcode0.value = operand0.value = name_token.value = 0; opcode0.opcodeType = type; operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT; operand0.numComponents = VGPU10_OPERAND_4_COMPONENT; operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE; operand0.mask = usageMask; operand0.indexDimension = VGPU10_OPERAND_INDEX_1D; operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32; name_token.name = name; emit_decl_instruction(emit, opcode0, operand0, name_token, index, 1); } /** * Emit the declaration for the fragment depth output. */ static void emit_fragdepth_output_declaration(struct svga_shader_emitter_v10 *emit) { VGPU10OpcodeToken0 opcode0; VGPU10OperandToken0 operand0; VGPU10NameToken name_token; assert(emit->unit == PIPE_SHADER_FRAGMENT); opcode0.value = operand0.value = name_token.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_OUTPUT; operand0.operandType = VGPU10_OPERAND_TYPE_OUTPUT_DEPTH; operand0.numComponents = VGPU10_OPERAND_1_COMPONENT; operand0.indexDimension = VGPU10_OPERAND_INDEX_0D; operand0.mask = VGPU10_OPERAND_4_COMPONENT_MASK_ALL; emit_decl_instruction(emit, opcode0, operand0, name_token, 0, 1); } /** * Emit the declaration for a system value input/output. */ static void emit_system_value_declaration(struct svga_shader_emitter_v10 *emit, unsigned semantic_name, unsigned index) { switch (semantic_name) { case TGSI_SEMANTIC_INSTANCEID: index = alloc_system_value_index(emit, index); emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT_SIV, VGPU10_OPERAND_TYPE_INPUT, VGPU10_OPERAND_INDEX_1D, index, 1, VGPU10_NAME_INSTANCE_ID, VGPU10_OPERAND_4_COMPONENT, VGPU10_OPERAND_4_COMPONENT_MASK_MODE, VGPU10_OPERAND_4_COMPONENT_MASK_X, VGPU10_INTERPOLATION_UNDEFINED); break; case TGSI_SEMANTIC_VERTEXID: index = alloc_system_value_index(emit, index); emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT_SIV, VGPU10_OPERAND_TYPE_INPUT, VGPU10_OPERAND_INDEX_1D, index, 1, VGPU10_NAME_VERTEX_ID, VGPU10_OPERAND_4_COMPONENT, VGPU10_OPERAND_4_COMPONENT_MASK_MODE, VGPU10_OPERAND_4_COMPONENT_MASK_X, VGPU10_INTERPOLATION_UNDEFINED); break; default: ; /* XXX */ } } /** * Translate a TGSI declaration to VGPU10. */ static boolean emit_vgpu10_declaration(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_declaration *decl) { switch (decl->Declaration.File) { case TGSI_FILE_INPUT: /* do nothing - see emit_input_declarations() */ return TRUE; case TGSI_FILE_OUTPUT: assert(decl->Range.First == decl->Range.Last); emit->output_usage_mask[decl->Range.First] = decl->Declaration.UsageMask; return TRUE; case TGSI_FILE_TEMPORARY: /* Don't declare the temps here. Just keep track of how many * and emit the declaration later. */ if (decl->Declaration.Array) { /* Indexed temporary array. Save the start index of the array * and the size of the array. */ const unsigned arrayID = MIN2(decl->Array.ArrayID, MAX_TEMP_ARRAYS); unsigned i; assert(arrayID < ARRAY_SIZE(emit->temp_arrays)); /* Save this array so we can emit the declaration for it later */ emit->temp_arrays[arrayID].start = decl->Range.First; emit->temp_arrays[arrayID].size = decl->Range.Last - decl->Range.First + 1; emit->num_temp_arrays = MAX2(emit->num_temp_arrays, arrayID + 1); assert(emit->num_temp_arrays <= MAX_TEMP_ARRAYS); emit->num_temp_arrays = MIN2(emit->num_temp_arrays, MAX_TEMP_ARRAYS); /* Fill in the temp_map entries for this array */ for (i = decl->Range.First; i <= decl->Range.Last; i++) { emit->temp_map[i].arrayId = arrayID; emit->temp_map[i].index = i - decl->Range.First; } } /* for all temps, indexed or not, keep track of highest index */ emit->num_shader_temps = MAX2(emit->num_shader_temps, decl->Range.Last + 1); return TRUE; case TGSI_FILE_CONSTANT: /* Don't declare constants here. Just keep track and emit later. */ { unsigned constbuf = 0, num_consts; if (decl->Declaration.Dimension) { constbuf = decl->Dim.Index2D; } /* We throw an assertion here when, in fact, the shader should never * have linked due to constbuf index out of bounds, so we shouldn't * have reached here. */ assert(constbuf < ARRAY_SIZE(emit->num_shader_consts)); num_consts = MAX2(emit->num_shader_consts[constbuf], decl->Range.Last + 1); if (num_consts > VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT) { debug_printf("Warning: constant buffer is declared to size [%u]" " but [%u] is the limit.\n", num_consts, VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT); } /* The linker doesn't enforce the max UBO size so we clamp here */ emit->num_shader_consts[constbuf] = MIN2(num_consts, VGPU10_MAX_CONSTANT_BUFFER_ELEMENT_COUNT); } return TRUE; case TGSI_FILE_IMMEDIATE: assert(!"TGSI_FILE_IMMEDIATE not handled yet!"); return FALSE; case TGSI_FILE_SYSTEM_VALUE: emit_system_value_declaration(emit, decl->Semantic.Name, decl->Range.First); return TRUE; case TGSI_FILE_SAMPLER: /* Don't declare samplers here. Just keep track and emit later. */ emit->num_samplers = MAX2(emit->num_samplers, decl->Range.Last + 1); return TRUE; #if 0 case TGSI_FILE_RESOURCE: /*opcode0.opcodeType = VGPU10_OPCODE_DCL_RESOURCE;*/ /* XXX more, VGPU10_RETURN_TYPE_FLOAT */ assert(!"TGSI_FILE_RESOURCE not handled yet"); return FALSE; #endif case TGSI_FILE_ADDRESS: emit->num_address_regs = MAX2(emit->num_address_regs, decl->Range.Last + 1); return TRUE; case TGSI_FILE_SAMPLER_VIEW: { unsigned unit = decl->Range.First; assert(decl->Range.First == decl->Range.Last); emit->sampler_target[unit] = decl->SamplerView.Resource; /* Note: we can ignore YZW return types for now */ emit->sampler_return_type[unit] = decl->SamplerView.ReturnTypeX; } return TRUE; default: assert(!"Unexpected type of declaration"); return FALSE; } } /** * Emit all input declarations. */ static boolean emit_input_declarations(struct svga_shader_emitter_v10 *emit) { unsigned i; if (emit->unit == PIPE_SHADER_FRAGMENT) { for (i = 0; i < emit->linkage.num_inputs; i++) { unsigned semantic_name = emit->info.input_semantic_name[i]; unsigned usage_mask = emit->info.input_usage_mask[i]; unsigned index = emit->linkage.input_map[i]; unsigned type, interpolationMode, name; if (usage_mask == 0) continue; /* register is not actually used */ if (semantic_name == TGSI_SEMANTIC_POSITION) { /* fragment position input */ type = VGPU10_OPCODE_DCL_INPUT_PS_SGV; interpolationMode = VGPU10_INTERPOLATION_LINEAR; name = VGPU10_NAME_POSITION; if (usage_mask & TGSI_WRITEMASK_W) { /* we need to replace use of 'w' with '1/w' */ emit->fs.fragcoord_input_index = i; } } else if (semantic_name == TGSI_SEMANTIC_FACE) { /* fragment front-facing input */ type = VGPU10_OPCODE_DCL_INPUT_PS_SGV; interpolationMode = VGPU10_INTERPOLATION_CONSTANT; name = VGPU10_NAME_IS_FRONT_FACE; emit->fs.face_input_index = i; } else if (semantic_name == TGSI_SEMANTIC_PRIMID) { /* primitive ID */ type = VGPU10_OPCODE_DCL_INPUT_PS_SGV; interpolationMode = VGPU10_INTERPOLATION_CONSTANT; name = VGPU10_NAME_PRIMITIVE_ID; } else { /* general fragment input */ type = VGPU10_OPCODE_DCL_INPUT_PS; interpolationMode = translate_interpolation(emit, emit->info.input_interpolate[i], emit->info.input_interpolate_loc[i]); /* keeps track if flat interpolation mode is being used */ emit->uses_flat_interp = emit->uses_flat_interp || (interpolationMode == VGPU10_INTERPOLATION_CONSTANT); name = VGPU10_NAME_UNDEFINED; } emit_input_declaration(emit, type, VGPU10_OPERAND_TYPE_INPUT, VGPU10_OPERAND_INDEX_1D, index, 1, name, VGPU10_OPERAND_4_COMPONENT, VGPU10_OPERAND_4_COMPONENT_MASK_MODE, VGPU10_OPERAND_4_COMPONENT_MASK_ALL, interpolationMode); } } else if (emit->unit == PIPE_SHADER_GEOMETRY) { for (i = 0; i < emit->info.num_inputs; i++) { unsigned semantic_name = emit->info.input_semantic_name[i]; unsigned usage_mask = emit->info.input_usage_mask[i]; unsigned index = emit->linkage.input_map[i]; unsigned opcodeType, operandType; unsigned numComp, selMode; unsigned name; unsigned dim; if (usage_mask == 0) continue; /* register is not actually used */ opcodeType = VGPU10_OPCODE_DCL_INPUT; operandType = VGPU10_OPERAND_TYPE_INPUT; numComp = VGPU10_OPERAND_4_COMPONENT; selMode = VGPU10_OPERAND_4_COMPONENT_MASK_MODE; name = VGPU10_NAME_UNDEFINED; /* all geometry shader inputs are two dimensional except gl_PrimitiveID */ dim = VGPU10_OPERAND_INDEX_2D; if (semantic_name == TGSI_SEMANTIC_PRIMID) { /* Primitive ID */ operandType = VGPU10_OPERAND_TYPE_INPUT_PRIMITIVEID; dim = VGPU10_OPERAND_INDEX_0D; numComp = VGPU10_OPERAND_0_COMPONENT; selMode = 0; /* also save the register index so we can check for * primitive id when emit src register. We need to modify the * operand type, index dimension when emit primitive id src reg. */ emit->gs.prim_id_index = i; } else if (semantic_name == TGSI_SEMANTIC_POSITION) { /* vertex position input */ opcodeType = VGPU10_OPCODE_DCL_INPUT_SIV; name = VGPU10_NAME_POSITION; } emit_input_declaration(emit, opcodeType, operandType, dim, index, emit->gs.input_size, name, numComp, selMode, VGPU10_OPERAND_4_COMPONENT_MASK_ALL, VGPU10_INTERPOLATION_UNDEFINED); } } else { assert(emit->unit == PIPE_SHADER_VERTEX); for (i = 0; i < emit->info.file_max[TGSI_FILE_INPUT] + 1; i++) { unsigned usage_mask = emit->info.input_usage_mask[i]; unsigned index = i; if (usage_mask == 0) continue; /* register is not actually used */ emit_input_declaration(emit, VGPU10_OPCODE_DCL_INPUT, VGPU10_OPERAND_TYPE_INPUT, VGPU10_OPERAND_INDEX_1D, index, 1, VGPU10_NAME_UNDEFINED, VGPU10_OPERAND_4_COMPONENT, VGPU10_OPERAND_4_COMPONENT_MASK_MODE, VGPU10_OPERAND_4_COMPONENT_MASK_ALL, VGPU10_INTERPOLATION_UNDEFINED); } } return TRUE; } /** * Emit all output declarations. */ static boolean emit_output_declarations(struct svga_shader_emitter_v10 *emit) { unsigned i; for (i = 0; i < emit->info.num_outputs; i++) { /*const unsigned usage_mask = emit->info.output_usage_mask[i];*/ const unsigned semantic_name = emit->info.output_semantic_name[i]; const unsigned semantic_index = emit->info.output_semantic_index[i]; unsigned index = i; if (emit->unit == PIPE_SHADER_FRAGMENT) { if (semantic_name == TGSI_SEMANTIC_COLOR) { assert(semantic_index < ARRAY_SIZE(emit->fs.color_out_index)); emit->fs.color_out_index[semantic_index] = index; /* The semantic index is the shader's color output/buffer index */ emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT, semantic_index, VGPU10_NAME_UNDEFINED, VGPU10_OPERAND_4_COMPONENT_MASK_ALL); if (semantic_index == 0) { if (emit->key.fs.write_color0_to_n_cbufs > 1) { /* Emit declarations for the additional color outputs * for broadcasting. */ unsigned j; for (j = 1; j < emit->key.fs.write_color0_to_n_cbufs; j++) { /* Allocate a new output index */ unsigned idx = emit->info.num_outputs + j - 1; emit->fs.color_out_index[j] = idx; emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT, idx, VGPU10_NAME_UNDEFINED, VGPU10_OPERAND_4_COMPONENT_MASK_ALL); emit->info.output_semantic_index[idx] = j; } } } else { assert(!emit->key.fs.write_color0_to_n_cbufs); } } else if (semantic_name == TGSI_SEMANTIC_POSITION) { /* Fragment depth output */ emit_fragdepth_output_declaration(emit); } else { assert(!"Bad output semantic name"); } } else { /* VS or GS */ unsigned name, type; unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_ALL; switch (semantic_name) { case TGSI_SEMANTIC_POSITION: assert(emit->unit != PIPE_SHADER_FRAGMENT); type = VGPU10_OPCODE_DCL_OUTPUT_SIV; name = VGPU10_NAME_POSITION; /* Save the index of the vertex position output register */ emit->vposition.out_index = index; break; case TGSI_SEMANTIC_CLIPDIST: type = VGPU10_OPCODE_DCL_OUTPUT_SIV; name = VGPU10_NAME_CLIP_DISTANCE; /* save the starting index of the clip distance output register */ if (semantic_index == 0) emit->clip_dist_out_index = index; writemask = emit->output_usage_mask[index]; writemask = apply_clip_plane_mask(emit, writemask, semantic_index); if (writemask == 0x0) { continue; /* discard this do-nothing declaration */ } break; case TGSI_SEMANTIC_PRIMID: assert(emit->unit == PIPE_SHADER_GEOMETRY); type = VGPU10_OPCODE_DCL_OUTPUT_SGV; name = VGPU10_NAME_PRIMITIVE_ID; break; case TGSI_SEMANTIC_LAYER: assert(emit->unit == PIPE_SHADER_GEOMETRY); type = VGPU10_OPCODE_DCL_OUTPUT_SGV; name = VGPU10_NAME_RENDER_TARGET_ARRAY_INDEX; break; case TGSI_SEMANTIC_CLIPVERTEX: type = VGPU10_OPCODE_DCL_OUTPUT; name = VGPU10_NAME_UNDEFINED; emit->clip_vertex_out_index = index; break; default: /* generic output */ type = VGPU10_OPCODE_DCL_OUTPUT; name = VGPU10_NAME_UNDEFINED; } emit_output_declaration(emit, type, index, name, writemask); } } if (emit->vposition.so_index != INVALID_INDEX && emit->vposition.out_index != INVALID_INDEX) { assert(emit->unit != PIPE_SHADER_FRAGMENT); /* Emit the declaration for the non-adjusted vertex position * for stream output purpose */ emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT, emit->vposition.so_index, VGPU10_NAME_UNDEFINED, VGPU10_OPERAND_4_COMPONENT_MASK_ALL); } if (emit->clip_dist_so_index != INVALID_INDEX && emit->clip_dist_out_index != INVALID_INDEX) { assert(emit->unit != PIPE_SHADER_FRAGMENT); /* Emit the declaration for the clip distance shadow copy which * will be used for stream output purpose and for clip distance * varying variable */ emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT, emit->clip_dist_so_index, VGPU10_NAME_UNDEFINED, emit->output_usage_mask[emit->clip_dist_out_index]); if (emit->info.num_written_clipdistance > 4) { /* for the second clip distance register, each handles 4 planes */ emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT, emit->clip_dist_so_index + 1, VGPU10_NAME_UNDEFINED, emit->output_usage_mask[emit->clip_dist_out_index+1]); } } return TRUE; } /** * Emit the declaration for the temporary registers. */ static boolean emit_temporaries_declaration(struct svga_shader_emitter_v10 *emit) { unsigned total_temps, reg, i; total_temps = emit->num_shader_temps; /* Allocate extra temps for specially-implemented instructions, * such as LIT. */ total_temps += MAX_INTERNAL_TEMPS; if (emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY) { if (emit->vposition.need_prescale || emit->key.vs.undo_viewport || emit->key.clip_plane_enable || emit->vposition.so_index != INVALID_INDEX) { emit->vposition.tmp_index = total_temps; total_temps += 1; } if (emit->unit == PIPE_SHADER_VERTEX) { unsigned attrib_mask = (emit->key.vs.adjust_attrib_w_1 | emit->key.vs.adjust_attrib_itof | emit->key.vs.adjust_attrib_utof | emit->key.vs.attrib_is_bgra | emit->key.vs.attrib_puint_to_snorm | emit->key.vs.attrib_puint_to_uscaled | emit->key.vs.attrib_puint_to_sscaled); while (attrib_mask) { unsigned index = u_bit_scan(&attrib_mask); emit->vs.adjusted_input[index] = total_temps++; } } if (emit->clip_mode == CLIP_DISTANCE) { /* We need to write the clip distance to a temporary register * first. Then it will be copied to the shadow copy for * the clip distance varying variable and stream output purpose. * It will also be copied to the actual CLIPDIST register * according to the enabled clip planes */ emit->clip_dist_tmp_index = total_temps++; if (emit->info.num_written_clipdistance > 4) total_temps++; /* second clip register */ } else if (emit->clip_mode == CLIP_VERTEX) { /* We need to convert the TGSI CLIPVERTEX output to one or more * clip distances. Allocate a temp reg for the clipvertex here. */ assert(emit->info.writes_clipvertex > 0); emit->clip_vertex_tmp_index = total_temps; total_temps++; } } else if (emit->unit == PIPE_SHADER_FRAGMENT) { if (emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS || emit->key.fs.white_fragments || emit->key.fs.write_color0_to_n_cbufs > 1) { /* Allocate a temp to hold the output color */ emit->fs.color_tmp_index = total_temps; total_temps += 1; } if (emit->fs.face_input_index != INVALID_INDEX) { /* Allocate a temp for the +/-1 face register */ emit->fs.face_tmp_index = total_temps; total_temps += 1; } if (emit->fs.fragcoord_input_index != INVALID_INDEX) { /* Allocate a temp for modified fragment position register */ emit->fs.fragcoord_tmp_index = total_temps; total_temps += 1; } } for (i = 0; i < emit->num_address_regs; i++) { emit->address_reg_index[i] = total_temps++; } /* Initialize the temp_map array which maps TGSI temp indexes to VGPU10 * temp indexes. Basically, we compact all the non-array temp register * indexes into a consecutive series. * * Before, we may have some TGSI declarations like: * DCL TEMP[0..1], LOCAL * DCL TEMP[2..4], ARRAY(1), LOCAL * DCL TEMP[5..7], ARRAY(2), LOCAL * plus, some extra temps, like TEMP[8], TEMP[9] for misc things * * After, we'll have a map like this: * temp_map[0] = { array 0, index 0 } * temp_map[1] = { array 0, index 1 } * temp_map[2] = { array 1, index 0 } * temp_map[3] = { array 1, index 1 } * temp_map[4] = { array 1, index 2 } * temp_map[5] = { array 2, index 0 } * temp_map[6] = { array 2, index 1 } * temp_map[7] = { array 2, index 2 } * temp_map[8] = { array 0, index 2 } * temp_map[9] = { array 0, index 3 } * * We'll declare two arrays of 3 elements, plus a set of four non-indexed * temps numbered 0..3 * * Any time we emit a temporary register index, we'll have to use the * temp_map[] table to convert the TGSI index to the VGPU10 index. * * Finally, we recompute the total_temps value here. */ reg = 0; for (i = 0; i < total_temps; i++) { if (emit->temp_map[i].arrayId == 0) { emit->temp_map[i].index = reg++; } } total_temps = reg; if (0) { debug_printf("total_temps %u\n", total_temps); for (i = 0; i < 30; i++) { debug_printf("temp %u -> array %u index %u\n", i, emit->temp_map[i].arrayId, emit->temp_map[i].index); } } /* Emit declaration of ordinary temp registers */ if (total_temps > 0) { VGPU10OpcodeToken0 opcode0; opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_TEMPS; begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_dword(emit, total_temps); end_emit_instruction(emit); } /* Emit declarations for indexable temp arrays. Skip 0th entry since * it's unused. */ for (i = 1; i < emit->num_temp_arrays; i++) { unsigned num_temps = emit->temp_arrays[i].size; if (num_temps > 0) { VGPU10OpcodeToken0 opcode0; opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_INDEXABLE_TEMP; begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_dword(emit, i); /* which array */ emit_dword(emit, num_temps); emit_dword(emit, 4); /* num components */ end_emit_instruction(emit); total_temps += num_temps; } } /* Check that the grand total of all regular and indexed temps is * under the limit. */ check_register_index(emit, VGPU10_OPCODE_DCL_TEMPS, total_temps - 1); return TRUE; } static boolean emit_constant_declaration(struct svga_shader_emitter_v10 *emit) { VGPU10OpcodeToken0 opcode0; VGPU10OperandToken0 operand0; unsigned total_consts, i; opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_CONSTANT_BUFFER; opcode0.accessPattern = VGPU10_CB_IMMEDIATE_INDEXED; /* XXX or, access pattern = VGPU10_CB_DYNAMIC_INDEXED */ operand0.value = 0; operand0.numComponents = VGPU10_OPERAND_4_COMPONENT; operand0.indexDimension = VGPU10_OPERAND_INDEX_2D; operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32; operand0.index1Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32; operand0.operandType = VGPU10_OPERAND_TYPE_CONSTANT_BUFFER; operand0.selectionMode = VGPU10_OPERAND_4_COMPONENT_SWIZZLE_MODE; operand0.swizzleX = 0; operand0.swizzleY = 1; operand0.swizzleZ = 2; operand0.swizzleW = 3; /** * Emit declaration for constant buffer [0]. We also allocate * room for the extra constants here. */ total_consts = emit->num_shader_consts[0]; /* Now, allocate constant slots for the "extra" constants */ /* Vertex position scale/translation */ if (emit->vposition.need_prescale) { emit->vposition.prescale_scale_index = total_consts++; emit->vposition.prescale_trans_index = total_consts++; } if (emit->unit == PIPE_SHADER_VERTEX) { if (emit->key.vs.undo_viewport) { emit->vs.viewport_index = total_consts++; } } /* user-defined clip planes */ if (emit->key.clip_plane_enable) { unsigned n = util_bitcount(emit->key.clip_plane_enable); assert(emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY); for (i = 0; i < n; i++) { emit->clip_plane_const[i] = total_consts++; } } /* Texcoord scale factors for RECT textures */ { for (i = 0; i < emit->num_samplers; i++) { if (emit->key.tex[i].unnormalized) { emit->texcoord_scale_index[i] = total_consts++; } } } /* Texture buffer sizes */ for (i = 0; i < emit->num_samplers; i++) { if (emit->sampler_target[i] == TGSI_TEXTURE_BUFFER) { emit->texture_buffer_size_index[i] = total_consts++; } } if (total_consts > 0) { begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_dword(emit, operand0.value); emit_dword(emit, 0); /* which const buffer slot */ emit_dword(emit, total_consts); end_emit_instruction(emit); } /* Declare remaining constant buffers (UBOs) */ for (i = 1; i < ARRAY_SIZE(emit->num_shader_consts); i++) { if (emit->num_shader_consts[i] > 0) { begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_dword(emit, operand0.value); emit_dword(emit, i); /* which const buffer slot */ emit_dword(emit, emit->num_shader_consts[i]); end_emit_instruction(emit); } } return TRUE; } /** * Emit declarations for samplers. */ static boolean emit_sampler_declarations(struct svga_shader_emitter_v10 *emit) { unsigned i; for (i = 0; i < emit->num_samplers; i++) { VGPU10OpcodeToken0 opcode0; VGPU10OperandToken0 operand0; opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_SAMPLER; opcode0.samplerMode = VGPU10_SAMPLER_MODE_DEFAULT; operand0.value = 0; operand0.numComponents = VGPU10_OPERAND_0_COMPONENT; operand0.operandType = VGPU10_OPERAND_TYPE_SAMPLER; operand0.indexDimension = VGPU10_OPERAND_INDEX_1D; operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32; begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_dword(emit, operand0.value); emit_dword(emit, i); end_emit_instruction(emit); } return TRUE; } /** * Translate TGSI_TEXTURE_x to VGAPU10_RESOURCE_DIMENSION_x. */ static unsigned tgsi_texture_to_resource_dimension(unsigned target, boolean is_array) { switch (target) { case TGSI_TEXTURE_BUFFER: return VGPU10_RESOURCE_DIMENSION_BUFFER; case TGSI_TEXTURE_1D: return VGPU10_RESOURCE_DIMENSION_TEXTURE1D; case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: return VGPU10_RESOURCE_DIMENSION_TEXTURE2D; case TGSI_TEXTURE_3D: return VGPU10_RESOURCE_DIMENSION_TEXTURE3D; case TGSI_TEXTURE_CUBE: return VGPU10_RESOURCE_DIMENSION_TEXTURECUBE; case TGSI_TEXTURE_SHADOW1D: return VGPU10_RESOURCE_DIMENSION_TEXTURE1D; case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: return VGPU10_RESOURCE_DIMENSION_TEXTURE2D; case TGSI_TEXTURE_1D_ARRAY: case TGSI_TEXTURE_SHADOW1D_ARRAY: return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE1DARRAY : VGPU10_RESOURCE_DIMENSION_TEXTURE1D; case TGSI_TEXTURE_2D_ARRAY: case TGSI_TEXTURE_SHADOW2D_ARRAY: return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE2DARRAY : VGPU10_RESOURCE_DIMENSION_TEXTURE2D; case TGSI_TEXTURE_SHADOWCUBE: return VGPU10_RESOURCE_DIMENSION_TEXTURECUBE; case TGSI_TEXTURE_2D_MSAA: return VGPU10_RESOURCE_DIMENSION_TEXTURE2DMS; case TGSI_TEXTURE_2D_ARRAY_MSAA: return is_array ? VGPU10_RESOURCE_DIMENSION_TEXTURE2DMSARRAY : VGPU10_RESOURCE_DIMENSION_TEXTURE2DMS; case TGSI_TEXTURE_CUBE_ARRAY: return VGPU10_RESOURCE_DIMENSION_TEXTURECUBEARRAY; default: assert(!"Unexpected resource type"); return VGPU10_RESOURCE_DIMENSION_TEXTURE2D; } } /** * Given a tgsi_return_type, return true iff it is an integer type. */ static boolean is_integer_type(enum tgsi_return_type type) { switch (type) { case TGSI_RETURN_TYPE_SINT: case TGSI_RETURN_TYPE_UINT: return TRUE; case TGSI_RETURN_TYPE_FLOAT: case TGSI_RETURN_TYPE_UNORM: case TGSI_RETURN_TYPE_SNORM: return FALSE; case TGSI_RETURN_TYPE_COUNT: default: assert(!"is_integer_type: Unknown tgsi_return_type"); return FALSE; } } /** * Emit declarations for resources. * XXX When we're sure that all TGSI shaders will be generated with * sampler view declarations (Ex: DCL SVIEW[n], 2D, UINT) we may * rework this code. */ static boolean emit_resource_declarations(struct svga_shader_emitter_v10 *emit) { unsigned i; /* Emit resource decl for each sampler */ for (i = 0; i < emit->num_samplers; i++) { VGPU10OpcodeToken0 opcode0; VGPU10OperandToken0 operand0; VGPU10ResourceReturnTypeToken return_type; VGPU10_RESOURCE_RETURN_TYPE rt; opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_DCL_RESOURCE; opcode0.resourceDimension = tgsi_texture_to_resource_dimension(emit->sampler_target[i], emit->key.tex[i].is_array); operand0.value = 0; operand0.numComponents = VGPU10_OPERAND_0_COMPONENT; operand0.operandType = VGPU10_OPERAND_TYPE_RESOURCE; operand0.indexDimension = VGPU10_OPERAND_INDEX_1D; operand0.index0Representation = VGPU10_OPERAND_INDEX_IMMEDIATE32; #if 1 /* convert TGSI_RETURN_TYPE_x to VGPU10_RETURN_TYPE_x */ STATIC_ASSERT(VGPU10_RETURN_TYPE_UNORM == TGSI_RETURN_TYPE_UNORM + 1); STATIC_ASSERT(VGPU10_RETURN_TYPE_SNORM == TGSI_RETURN_TYPE_SNORM + 1); STATIC_ASSERT(VGPU10_RETURN_TYPE_SINT == TGSI_RETURN_TYPE_SINT + 1); STATIC_ASSERT(VGPU10_RETURN_TYPE_UINT == TGSI_RETURN_TYPE_UINT + 1); STATIC_ASSERT(VGPU10_RETURN_TYPE_FLOAT == TGSI_RETURN_TYPE_FLOAT + 1); assert(emit->sampler_return_type[i] <= TGSI_RETURN_TYPE_FLOAT); rt = emit->sampler_return_type[i] + 1; #else switch (emit->sampler_return_type[i]) { case TGSI_RETURN_TYPE_UNORM: rt = VGPU10_RETURN_TYPE_UNORM; break; case TGSI_RETURN_TYPE_SNORM: rt = VGPU10_RETURN_TYPE_SNORM; break; case TGSI_RETURN_TYPE_SINT: rt = VGPU10_RETURN_TYPE_SINT; break; case TGSI_RETURN_TYPE_UINT: rt = VGPU10_RETURN_TYPE_UINT; break; case TGSI_RETURN_TYPE_FLOAT: rt = VGPU10_RETURN_TYPE_FLOAT; break; case TGSI_RETURN_TYPE_COUNT: default: rt = VGPU10_RETURN_TYPE_FLOAT; assert(!"emit_resource_declarations: Unknown tgsi_return_type"); } #endif return_type.value = 0; return_type.component0 = rt; return_type.component1 = rt; return_type.component2 = rt; return_type.component3 = rt; begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_dword(emit, operand0.value); emit_dword(emit, i); emit_dword(emit, return_type.value); end_emit_instruction(emit); } return TRUE; } static void emit_instruction_op1(struct svga_shader_emitter_v10 *emit, unsigned opcode, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src, boolean saturate) { begin_emit_instruction(emit); emit_opcode(emit, opcode, saturate); emit_dst_register(emit, dst); emit_src_register(emit, src); end_emit_instruction(emit); } static void emit_instruction_op2(struct svga_shader_emitter_v10 *emit, unsigned opcode, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src1, const struct tgsi_full_src_register *src2, boolean saturate) { begin_emit_instruction(emit); emit_opcode(emit, opcode, saturate); emit_dst_register(emit, dst); emit_src_register(emit, src1); emit_src_register(emit, src2); end_emit_instruction(emit); } static void emit_instruction_op3(struct svga_shader_emitter_v10 *emit, unsigned opcode, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src1, const struct tgsi_full_src_register *src2, const struct tgsi_full_src_register *src3, boolean saturate) { begin_emit_instruction(emit); emit_opcode(emit, opcode, saturate); emit_dst_register(emit, dst); emit_src_register(emit, src1); emit_src_register(emit, src2); emit_src_register(emit, src3); end_emit_instruction(emit); } /** * Emit the actual clip distance instructions to be used for clipping * by copying the clip distance from the temporary registers to the * CLIPDIST registers written with the enabled planes mask. * Also copy the clip distance from the temporary to the clip distance * shadow copy register which will be referenced by the input shader */ static void emit_clip_distance_instructions(struct svga_shader_emitter_v10 *emit) { struct tgsi_full_src_register tmp_clip_dist_src; struct tgsi_full_dst_register clip_dist_dst; unsigned i; unsigned clip_plane_enable = emit->key.clip_plane_enable; unsigned clip_dist_tmp_index = emit->clip_dist_tmp_index; int num_written_clipdist = emit->info.num_written_clipdistance; assert(emit->clip_dist_out_index != INVALID_INDEX); assert(emit->clip_dist_tmp_index != INVALID_INDEX); /** * Temporary reset the temporary clip dist register index so * that the copy to the real clip dist register will not * attempt to copy to the temporary register again */ emit->clip_dist_tmp_index = INVALID_INDEX; for (i = 0; i < 2 && num_written_clipdist > 0; i++, num_written_clipdist-=4) { tmp_clip_dist_src = make_src_temp_reg(clip_dist_tmp_index + i); /** * copy to the shadow copy for use by varying variable and * stream output. All clip distances * will be written regardless of the enabled clipping planes. */ clip_dist_dst = make_dst_reg(TGSI_FILE_OUTPUT, emit->clip_dist_so_index + i); /* MOV clip_dist_so, tmp_clip_dist */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &clip_dist_dst, &tmp_clip_dist_src, FALSE); /** * copy those clip distances to enabled clipping planes * to CLIPDIST registers for clipping */ if (clip_plane_enable & 0xf) { clip_dist_dst = make_dst_reg(TGSI_FILE_OUTPUT, emit->clip_dist_out_index + i); clip_dist_dst = writemask_dst(&clip_dist_dst, clip_plane_enable & 0xf); /* MOV CLIPDIST, tmp_clip_dist */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &clip_dist_dst, &tmp_clip_dist_src, FALSE); } /* four clip planes per clip register */ clip_plane_enable >>= 4; } /** * set the temporary clip dist register index back to the * temporary index for the next vertex */ emit->clip_dist_tmp_index = clip_dist_tmp_index; } /* Declare clip distance output registers for user-defined clip planes * or the TGSI_CLIPVERTEX output. */ static void emit_clip_distance_declarations(struct svga_shader_emitter_v10 *emit) { unsigned num_clip_planes = util_bitcount(emit->key.clip_plane_enable); unsigned index = emit->num_outputs; unsigned plane_mask; assert(emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY); assert(num_clip_planes <= 8); if (emit->clip_mode != CLIP_LEGACY && emit->clip_mode != CLIP_VERTEX) { return; } if (num_clip_planes == 0) return; /* Declare one or two clip output registers. The number of components * in the mask reflects the number of clip planes. For example, if 5 * clip planes are needed, we'll declare outputs similar to: * dcl_output_siv o2.xyzw, clip_distance * dcl_output_siv o3.x, clip_distance */ emit->clip_dist_out_index = index; /* save the starting clip dist reg index */ plane_mask = (1 << num_clip_planes) - 1; if (plane_mask & 0xf) { unsigned cmask = plane_mask & VGPU10_OPERAND_4_COMPONENT_MASK_ALL; emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT_SIV, index, VGPU10_NAME_CLIP_DISTANCE, cmask); emit->num_outputs++; } if (plane_mask & 0xf0) { unsigned cmask = (plane_mask >> 4) & VGPU10_OPERAND_4_COMPONENT_MASK_ALL; emit_output_declaration(emit, VGPU10_OPCODE_DCL_OUTPUT_SIV, index + 1, VGPU10_NAME_CLIP_DISTANCE, cmask); emit->num_outputs++; } } /** * Emit the instructions for writing to the clip distance registers * to handle legacy/automatic clip planes. * For each clip plane, the distance is the dot product of the vertex * position (found in TEMP[vpos_tmp_index]) and the clip plane coefficients. * This is not used when the shader has an explicit CLIPVERTEX or CLIPDISTANCE * output registers already declared. */ static void emit_clip_distance_from_vpos(struct svga_shader_emitter_v10 *emit, unsigned vpos_tmp_index) { unsigned i, num_clip_planes = util_bitcount(emit->key.clip_plane_enable); assert(emit->clip_mode == CLIP_LEGACY); assert(num_clip_planes <= 8); assert(emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY); for (i = 0; i < num_clip_planes; i++) { struct tgsi_full_dst_register dst; struct tgsi_full_src_register plane_src, vpos_src; unsigned reg_index = emit->clip_dist_out_index + i / 4; unsigned comp = i % 4; unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_X << comp; /* create dst, src regs */ dst = make_dst_reg(TGSI_FILE_OUTPUT, reg_index); dst = writemask_dst(&dst, writemask); plane_src = make_src_const_reg(emit->clip_plane_const[i]); vpos_src = make_src_temp_reg(vpos_tmp_index); /* DP4 clip_dist, plane, vpos */ emit_instruction_op2(emit, VGPU10_OPCODE_DP4, &dst, &plane_src, &vpos_src, FALSE); } } /** * Emit the instructions for computing the clip distance results from * the clip vertex temporary. * For each clip plane, the distance is the dot product of the clip vertex * position (found in a temp reg) and the clip plane coefficients. */ static void emit_clip_vertex_instructions(struct svga_shader_emitter_v10 *emit) { const unsigned num_clip = util_bitcount(emit->key.clip_plane_enable); unsigned i; struct tgsi_full_dst_register dst; struct tgsi_full_src_register clipvert_src; const unsigned clip_vertex_tmp = emit->clip_vertex_tmp_index; assert(emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY); assert(emit->clip_mode == CLIP_VERTEX); clipvert_src = make_src_temp_reg(clip_vertex_tmp); for (i = 0; i < num_clip; i++) { struct tgsi_full_src_register plane_src; unsigned reg_index = emit->clip_dist_out_index + i / 4; unsigned comp = i % 4; unsigned writemask = VGPU10_OPERAND_4_COMPONENT_MASK_X << comp; /* create dst, src regs */ dst = make_dst_reg(TGSI_FILE_OUTPUT, reg_index); dst = writemask_dst(&dst, writemask); plane_src = make_src_const_reg(emit->clip_plane_const[i]); /* DP4 clip_dist, plane, vpos */ emit_instruction_op2(emit, VGPU10_OPCODE_DP4, &dst, &plane_src, &clipvert_src, FALSE); } /* copy temporary clip vertex register to the clip vertex register */ assert(emit->clip_vertex_out_index != INVALID_INDEX); /** * temporary reset the temporary clip vertex register index so * that copy to the clip vertex register will not attempt * to copy to the temporary register again */ emit->clip_vertex_tmp_index = INVALID_INDEX; /* MOV clip_vertex, clip_vertex_tmp */ dst = make_dst_reg(TGSI_FILE_OUTPUT, emit->clip_vertex_out_index); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst, &clipvert_src, FALSE); /** * set the temporary clip vertex register index back to the * temporary index for the next vertex */ emit->clip_vertex_tmp_index = clip_vertex_tmp; } /** * Emit code to convert RGBA to BGRA */ static void emit_swap_r_b(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src) { struct tgsi_full_src_register bgra_src = swizzle_src(src, TGSI_SWIZZLE_Z, TGSI_SWIZZLE_Y, TGSI_SWIZZLE_X, TGSI_SWIZZLE_W); begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE); emit_dst_register(emit, dst); emit_src_register(emit, &bgra_src); end_emit_instruction(emit); } /** Convert from 10_10_10_2 normalized to 10_10_10_2_snorm */ static void emit_puint_to_snorm(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src) { struct tgsi_full_src_register half = make_immediate_reg_float(emit, 0.5f); struct tgsi_full_src_register two = make_immediate_reg_float4(emit, 2.0f, 2.0f, 2.0f, 3.0f); struct tgsi_full_src_register neg_two = make_immediate_reg_float4(emit, -2.0f, -2.0f, -2.0f, -1.66666f); unsigned val_tmp = get_temp_index(emit); struct tgsi_full_dst_register val_dst = make_dst_temp_reg(val_tmp); struct tgsi_full_src_register val_src = make_src_temp_reg(val_tmp); unsigned bias_tmp = get_temp_index(emit); struct tgsi_full_dst_register bias_dst = make_dst_temp_reg(bias_tmp); struct tgsi_full_src_register bias_src = make_src_temp_reg(bias_tmp); /* val = src * 2.0 */ emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &val_dst, src, &two, FALSE); /* bias = src > 0.5 */ emit_instruction_op2(emit, VGPU10_OPCODE_GE, &bias_dst, src, &half, FALSE); /* bias = bias & -2.0 */ emit_instruction_op2(emit, VGPU10_OPCODE_AND, &bias_dst, &bias_src, &neg_two, FALSE); /* dst = val + bias */ emit_instruction_op2(emit, VGPU10_OPCODE_ADD, dst, &val_src, &bias_src, FALSE); free_temp_indexes(emit); } /** Convert from 10_10_10_2_unorm to 10_10_10_2_uscaled */ static void emit_puint_to_uscaled(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src) { struct tgsi_full_src_register scale = make_immediate_reg_float4(emit, 1023.0f, 1023.0f, 1023.0f, 3.0f); /* dst = src * scale */ emit_instruction_op2(emit, VGPU10_OPCODE_MUL, dst, src, &scale, FALSE); } /** Convert from R32_UINT to 10_10_10_2_sscaled */ static void emit_puint_to_sscaled(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src) { struct tgsi_full_src_register lshift = make_immediate_reg_int4(emit, 22, 12, 2, 0); struct tgsi_full_src_register rshift = make_immediate_reg_int4(emit, 22, 22, 22, 30); struct tgsi_full_src_register src_xxxx = scalar_src(src, TGSI_SWIZZLE_X); unsigned tmp = get_temp_index(emit); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); /* * r = (pixel << 22) >> 22; # signed int in [511, -512] * g = (pixel << 12) >> 22; # signed int in [511, -512] * b = (pixel << 2) >> 22; # signed int in [511, -512] * a = (pixel << 0) >> 30; # signed int in [1, -2] * dst = i_to_f(r,g,b,a); # convert to float */ emit_instruction_op2(emit, VGPU10_OPCODE_ISHL, &tmp_dst, &src_xxxx, &lshift, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_ISHR, &tmp_dst, &tmp_src, &rshift, FALSE); emit_instruction_op1(emit, VGPU10_OPCODE_ITOF, dst, &tmp_src, FALSE); free_temp_indexes(emit); } /** * Emit code for TGSI_OPCODE_ABS instruction. */ static boolean emit_abs(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = ABS(s0): * dst = abs(s0) * Translates into: * MOV dst, abs(s0) */ struct tgsi_full_src_register abs_src0 = absolute_src(&inst->Src[0]); /* MOV dst, abs(s0) */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &abs_src0, inst->Instruction.Saturate); return TRUE; } /** * Emit code for TGSI_OPCODE_ARL or TGSI_OPCODE_UARL instruction. */ static boolean emit_arl_uarl(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { unsigned index = inst->Dst[0].Register.Index; struct tgsi_full_dst_register dst; unsigned opcode; assert(index < MAX_VGPU10_ADDR_REGS); dst = make_dst_temp_reg(emit->address_reg_index[index]); /* ARL dst, s0 * Translates into: * FTOI address_tmp, s0 * * UARL dst, s0 * Translates into: * MOV address_tmp, s0 */ if (inst->Instruction.Opcode == TGSI_OPCODE_ARL) opcode = VGPU10_OPCODE_FTOI; else opcode = VGPU10_OPCODE_MOV; emit_instruction_op1(emit, opcode, &dst, &inst->Src[0], FALSE); return TRUE; } /** * Emit code for TGSI_OPCODE_CAL instruction. */ static boolean emit_cal(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { unsigned label = inst->Label.Label; VGPU10OperandToken0 operand; operand.value = 0; operand.operandType = VGPU10_OPERAND_TYPE_LABEL; begin_emit_instruction(emit); emit_dword(emit, operand.value); emit_dword(emit, label); end_emit_instruction(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_IABS instruction. */ static boolean emit_iabs(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst.x = (src0.x < 0) ? -src0.x : src0.x * dst.y = (src0.y < 0) ? -src0.y : src0.y * dst.z = (src0.z < 0) ? -src0.z : src0.z * dst.w = (src0.w < 0) ? -src0.w : src0.w * * Translates into * IMAX dst, src, neg(src) */ struct tgsi_full_src_register neg_src = negate_src(&inst->Src[0]); emit_instruction_op2(emit, VGPU10_OPCODE_IMAX, &inst->Dst[0], &inst->Src[0], &neg_src, FALSE); return TRUE; } /** * Emit code for TGSI_OPCODE_CMP instruction. */ static boolean emit_cmp(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst.x = (src0.x < 0) ? src1.x : src2.x * dst.y = (src0.y < 0) ? src1.y : src2.y * dst.z = (src0.z < 0) ? src1.z : src2.z * dst.w = (src0.w < 0) ? src1.w : src2.w * * Translates into * LT tmp, src0, 0.0 * MOVC dst, tmp, src1, src2 */ struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[0], &zero, FALSE); emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src, &inst->Src[1], &inst->Src[2], inst->Instruction.Saturate); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_DP2A instruction. */ static boolean emit_dp2a(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst.x = src0.x * src1.x + src0.y * src1.y + src2.x * dst.y = src0.x * src1.x + src0.y * src1.y + src2.x * dst.z = src0.x * src1.x + src0.y * src1.y + src2.x * dst.w = src0.x * src1.x + src0.y * src1.y + src2.x * Translate into * MAD tmp.x, s0.y, s1.y, s2.x * MAD tmp.x, s0.x, s1.x, tmp.x * MOV dst.xyzw, tmp.xxxx */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register tmp_src_xxxx = scalar_src(&tmp_src, TGSI_SWIZZLE_X); struct tgsi_full_dst_register tmp_dst_x = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X); struct tgsi_full_src_register src0_xxxx = scalar_src(&inst->Src[0], TGSI_SWIZZLE_X); struct tgsi_full_src_register src0_yyyy = scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y); struct tgsi_full_src_register src1_xxxx = scalar_src(&inst->Src[1], TGSI_SWIZZLE_X); struct tgsi_full_src_register src1_yyyy = scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y); struct tgsi_full_src_register src2_xxxx = scalar_src(&inst->Src[2], TGSI_SWIZZLE_X); emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &tmp_dst_x, &src0_yyyy, &src1_yyyy, &src2_xxxx, FALSE); emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &tmp_dst_x, &src0_xxxx, &src1_xxxx, &tmp_src_xxxx, FALSE); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &tmp_src_xxxx, inst->Instruction.Saturate); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_DPH instruction. */ static boolean emit_dph(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* * DP3 tmp, s0, s1 * ADD dst, tmp, s1.wwww */ struct tgsi_full_src_register s1_wwww = swizzle_src(&inst->Src[1], TGSI_SWIZZLE_W, TGSI_SWIZZLE_W, TGSI_SWIZZLE_W, TGSI_SWIZZLE_W); unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); /* DP3 tmp, s0, s1 */ emit_instruction_op2(emit, VGPU10_OPCODE_DP3, &tmp_dst, &inst->Src[0], &inst->Src[1], FALSE); /* ADD dst, tmp, s1.wwww */ emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &inst->Dst[0], &tmp_src, &s1_wwww, inst->Instruction.Saturate); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_DST instruction. */ static boolean emit_dst(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* * dst.x = 1 * dst.y = src0.y * src1.y * dst.z = src0.z * dst.w = src1.w */ struct tgsi_full_src_register s0_yyyy = scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y); struct tgsi_full_src_register s0_zzzz = scalar_src(&inst->Src[0], TGSI_SWIZZLE_Z); struct tgsi_full_src_register s1_yyyy = scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y); struct tgsi_full_src_register s1_wwww = scalar_src(&inst->Src[1], TGSI_SWIZZLE_W); /* * If dst and either src0 and src1 are the same we need * to create a temporary for it and insert a extra move. */ unsigned tmp_move = get_temp_index(emit); struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move); struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move); /* MOV dst.x, 1.0 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { struct tgsi_full_dst_register dst_x = writemask_dst(&move_dst, TGSI_WRITEMASK_X); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &one, FALSE); } /* MUL dst.y, s0.y, s1.y */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { struct tgsi_full_dst_register dst_y = writemask_dst(&move_dst, TGSI_WRITEMASK_Y); emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &dst_y, &s0_yyyy, &s1_yyyy, inst->Instruction.Saturate); } /* MOV dst.z, s0.z */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { struct tgsi_full_dst_register dst_z = writemask_dst(&move_dst, TGSI_WRITEMASK_Z); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_z, &s0_zzzz, inst->Instruction.Saturate); } /* MOV dst.w, s1.w */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { struct tgsi_full_dst_register dst_w = writemask_dst(&move_dst, TGSI_WRITEMASK_W); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &s1_wwww, inst->Instruction.Saturate); } emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_ENDPRIM (GS only) */ static boolean emit_endprim(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { assert(emit->unit == PIPE_SHADER_GEOMETRY); /* We can't use emit_simple() because the TGSI instruction has one * operand (vertex stream number) which we must ignore for VGPU10. */ begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_CUT, FALSE); end_emit_instruction(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_EX2 (2^x) instruction. */ static boolean emit_ex2(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* Note that TGSI_OPCODE_EX2 computes only one value from src.x * while VGPU10 computes four values. * * dst = EX2(src): * dst.xyzw = 2.0 ^ src.x */ struct tgsi_full_src_register src_xxxx = swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X); /* EXP tmp, s0.xxxx */ emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &inst->Dst[0], &src_xxxx, inst->Instruction.Saturate); return TRUE; } /** * Emit code for TGSI_OPCODE_EXP instruction. */ static boolean emit_exp(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* * dst.x = 2 ^ floor(s0.x) * dst.y = s0.x - floor(s0.x) * dst.z = 2 ^ s0.x * dst.w = 1.0 */ struct tgsi_full_src_register src_xxxx = scalar_src(&inst->Src[0], TGSI_SWIZZLE_X); unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); /* * If dst and src are the same we need to create * a temporary for it and insert a extra move. */ unsigned tmp_move = get_temp_index(emit); struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move); struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move); /* only use X component of temp reg */ tmp_dst = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X); tmp_src = scalar_src(&tmp_src, TGSI_SWIZZLE_X); /* ROUND_NI tmp.x, s0.x */ emit_instruction_op1(emit, VGPU10_OPCODE_ROUND_NI, &tmp_dst, &src_xxxx, FALSE); /* round to -infinity */ /* EXP dst.x, tmp.x */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { struct tgsi_full_dst_register dst_x = writemask_dst(&move_dst, TGSI_WRITEMASK_X); emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &dst_x, &tmp_src, inst->Instruction.Saturate); } /* ADD dst.y, s0.x, -tmp */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { struct tgsi_full_dst_register dst_y = writemask_dst(&move_dst, TGSI_WRITEMASK_Y); struct tgsi_full_src_register neg_tmp_src = negate_src(&tmp_src); emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &dst_y, &src_xxxx, &neg_tmp_src, inst->Instruction.Saturate); } /* EXP dst.z, s0.x */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { struct tgsi_full_dst_register dst_z = writemask_dst(&move_dst, TGSI_WRITEMASK_Z); emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &dst_z, &src_xxxx, inst->Instruction.Saturate); } /* MOV dst.w, 1.0 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { struct tgsi_full_dst_register dst_w = writemask_dst(&move_dst, TGSI_WRITEMASK_W); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one, FALSE); } emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_IF instruction. */ static boolean emit_if(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { VGPU10OpcodeToken0 opcode0; /* The src register should be a scalar */ assert(inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleY && inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleZ && inst->Src[0].Register.SwizzleX == inst->Src[0].Register.SwizzleW); /* The only special thing here is that we need to set the * VGPU10_INSTRUCTION_TEST_NONZERO flag since we want to test if * src.x is non-zero. */ opcode0.value = 0; opcode0.opcodeType = VGPU10_OPCODE_IF; opcode0.testBoolean = VGPU10_INSTRUCTION_TEST_NONZERO; begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_src_register(emit, &inst->Src[0]); end_emit_instruction(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_KILL_IF instruction (kill fragment if any of * the register components are negative). */ static boolean emit_kill_if(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_dst_register tmp_dst_x = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X); struct tgsi_full_src_register tmp_src_xxxx = scalar_src(&tmp_src, TGSI_SWIZZLE_X); /* tmp = src[0] < 0.0 */ emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[0], &zero, FALSE); if (!same_swizzle_terms(&inst->Src[0])) { /* If the swizzle is not XXXX, YYYY, ZZZZ or WWWW we need to * logically OR the swizzle terms. Most uses of KILL_IF only * test one channel so it's good to avoid these extra steps. */ struct tgsi_full_src_register tmp_src_yyyy = scalar_src(&tmp_src, TGSI_SWIZZLE_Y); struct tgsi_full_src_register tmp_src_zzzz = scalar_src(&tmp_src, TGSI_SWIZZLE_Z); struct tgsi_full_src_register tmp_src_wwww = scalar_src(&tmp_src, TGSI_SWIZZLE_W); emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx, &tmp_src_yyyy, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx, &tmp_src_zzzz, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_OR, &tmp_dst_x, &tmp_src_xxxx, &tmp_src_wwww, FALSE); } begin_emit_instruction(emit); emit_discard_opcode(emit, TRUE); /* discard if src0.x is non-zero */ emit_src_register(emit, &tmp_src_xxxx); end_emit_instruction(emit); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_KILL instruction (unconditional discard). */ static boolean emit_kill(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); /* DISCARD if 0.0 is zero */ begin_emit_instruction(emit); emit_discard_opcode(emit, FALSE); emit_src_register(emit, &zero); end_emit_instruction(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_LG2 instruction. */ static boolean emit_lg2(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* Note that TGSI_OPCODE_LG2 computes only one value from src.x * while VGPU10 computes four values. * * dst = LG2(src): * dst.xyzw = log2(src.x) */ struct tgsi_full_src_register src_xxxx = swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X); /* LOG tmp, s0.xxxx */ emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &inst->Dst[0], &src_xxxx, inst->Instruction.Saturate); return TRUE; } /** * Emit code for TGSI_OPCODE_LIT instruction. */ static boolean emit_lit(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); /* * If dst and src are the same we need to create * a temporary for it and insert a extra move. */ unsigned tmp_move = get_temp_index(emit); struct tgsi_full_src_register move_src = make_src_temp_reg(tmp_move); struct tgsi_full_dst_register move_dst = make_dst_temp_reg(tmp_move); /* * dst.x = 1 * dst.y = max(src.x, 0) * dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 * dst.w = 1 */ /* MOV dst.x, 1.0 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { struct tgsi_full_dst_register dst_x = writemask_dst(&move_dst, TGSI_WRITEMASK_X); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &one, FALSE); } /* MOV dst.w, 1.0 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { struct tgsi_full_dst_register dst_w = writemask_dst(&move_dst, TGSI_WRITEMASK_W); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one, FALSE); } /* MAX dst.y, src.x, 0.0 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { struct tgsi_full_dst_register dst_y = writemask_dst(&move_dst, TGSI_WRITEMASK_Y); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register src_xxxx = swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X); emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &dst_y, &src_xxxx, &zero, inst->Instruction.Saturate); } /* * tmp1 = clamp(src.w, -128, 128); * MAX tmp1, src.w, -128 * MIN tmp1, tmp1, 128 * * tmp2 = max(tmp2, 0); * MAX tmp2, src.y, 0 * * tmp1 = pow(tmp2, tmp1); * LOG tmp2, tmp2 * MUL tmp1, tmp2, tmp1 * EXP tmp1, tmp1 * * tmp1 = (src.w == 0) ? 1 : tmp1; * EQ tmp2, 0, src.w * MOVC tmp1, tmp2, 1.0, tmp1 * * dst.z = (0 < src.x) ? tmp1 : 0; * LT tmp2, 0, src.x * MOVC dst.z, tmp2, tmp1, 0.0 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { struct tgsi_full_dst_register dst_z = writemask_dst(&move_dst, TGSI_WRITEMASK_Z); unsigned tmp1 = get_temp_index(emit); struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1); struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1); unsigned tmp2 = get_temp_index(emit); struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2); struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2); struct tgsi_full_src_register src_xxxx = scalar_src(&inst->Src[0], TGSI_SWIZZLE_X); struct tgsi_full_src_register src_yyyy = scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y); struct tgsi_full_src_register src_wwww = scalar_src(&inst->Src[0], TGSI_SWIZZLE_W); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register lowerbound = make_immediate_reg_float(emit, -128.0f); struct tgsi_full_src_register upperbound = make_immediate_reg_float(emit, 128.0f); emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &tmp1_dst, &src_wwww, &lowerbound, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_MIN, &tmp1_dst, &tmp1_src, &upperbound, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_MAX, &tmp2_dst, &src_yyyy, &zero, FALSE); /* POW tmp1, tmp2, tmp1 */ /* LOG tmp2, tmp2 */ emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp2_dst, &tmp2_src, FALSE); /* MUL tmp1, tmp2, tmp1 */ emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &tmp2_src, &tmp1_src, FALSE); /* EXP tmp1, tmp1 */ emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &tmp1_dst, &tmp1_src, FALSE); /* EQ tmp2, 0, src.w */ emit_instruction_op2(emit, VGPU10_OPCODE_EQ, &tmp2_dst, &zero, &src_wwww, FALSE); /* MOVC tmp1.z, tmp2, tmp1, 1.0 */ emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &tmp1_dst, &tmp2_src, &one, &tmp1_src, FALSE); /* LT tmp2, 0, src.x */ emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp2_dst, &zero, &src_xxxx, FALSE); /* MOVC dst.z, tmp2, tmp1, 0.0 */ emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &dst_z, &tmp2_src, &tmp1_src, &zero, FALSE); } emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &move_src, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_LOG instruction. */ static boolean emit_log(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* * dst.x = floor(lg2(abs(s0.x))) * dst.y = abs(s0.x) / (2 ^ floor(lg2(abs(s0.x)))) * dst.z = lg2(abs(s0.x)) * dst.w = 1.0 */ struct tgsi_full_src_register src_xxxx = scalar_src(&inst->Src[0], TGSI_SWIZZLE_X); unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register abs_src_xxxx = absolute_src(&src_xxxx); /* only use X component of temp reg */ tmp_dst = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X); tmp_src = scalar_src(&tmp_src, TGSI_SWIZZLE_X); /* LOG tmp.x, abs(s0.x) */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) { emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp_dst, &abs_src_xxxx, FALSE); } /* MOV dst.z, tmp.x */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { struct tgsi_full_dst_register dst_z = writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Z); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_z, &tmp_src, inst->Instruction.Saturate); } /* FLR tmp.x, tmp.x */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) { emit_instruction_op1(emit, VGPU10_OPCODE_ROUND_NI, &tmp_dst, &tmp_src, FALSE); } /* MOV dst.x, tmp.x */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { struct tgsi_full_dst_register dst_x = writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_X); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_x, &tmp_src, inst->Instruction.Saturate); } /* EXP tmp.x, tmp.x */ /* DIV dst.y, abs(s0.x), tmp.x */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { struct tgsi_full_dst_register dst_y = writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Y); emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &tmp_dst, &tmp_src, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &dst_y, &abs_src_xxxx, &tmp_src, inst->Instruction.Saturate); } /* MOV dst.w, 1.0 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { struct tgsi_full_dst_register dst_w = writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_W); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_w, &one, FALSE); } free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_LRP instruction. */ static boolean emit_lrp(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = LRP(s0, s1, s2): * dst = s0 * (s1 - s2) + s2 * Translates into: * SUB tmp, s1, s2; tmp = s1 - s2 * MAD dst, s0, tmp, s2; dst = s0 * t1 + s2 */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register src_tmp = make_src_temp_reg(tmp); struct tgsi_full_dst_register dst_tmp = make_dst_temp_reg(tmp); struct tgsi_full_src_register neg_src2 = negate_src(&inst->Src[2]); /* ADD tmp, s1, -s2 */ emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &dst_tmp, &inst->Src[1], &neg_src2, FALSE); /* MAD dst, s1, tmp, s3 */ emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &inst->Dst[0], &inst->Src[0], &src_tmp, &inst->Src[2], inst->Instruction.Saturate); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_POW instruction. */ static boolean emit_pow(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* Note that TGSI_OPCODE_POW computes only one value from src0.x and * src1.x while VGPU10 computes four values. * * dst = POW(src0, src1): * dst.xyzw = src0.x ^ src1.x */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register src0_xxxx = swizzle_src(&inst->Src[0], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X); struct tgsi_full_src_register src1_xxxx = swizzle_src(&inst->Src[1], TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X, TGSI_SWIZZLE_X); /* LOG tmp, s0.xxxx */ emit_instruction_op1(emit, VGPU10_OPCODE_LOG, &tmp_dst, &src0_xxxx, FALSE); /* MUL tmp, tmp, s1.xxxx */ emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_dst, &tmp_src, &src1_xxxx, FALSE); /* EXP tmp, s0.xxxx */ emit_instruction_op1(emit, VGPU10_OPCODE_EXP, &inst->Dst[0], &tmp_src, inst->Instruction.Saturate); /* free tmp */ free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_RCP (reciprocal) instruction. */ static boolean emit_rcp(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst_x = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X); struct tgsi_full_src_register tmp_src_xxxx = scalar_src(&tmp_src, TGSI_SWIZZLE_X); /* DIV tmp.x, 1.0, s0 */ emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &tmp_dst_x, &one, &inst->Src[0], FALSE); /* MOV dst, tmp.xxxx */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &tmp_src_xxxx, inst->Instruction.Saturate); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_RSQ instruction. */ static boolean emit_rsq(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = RSQ(src): * dst.xyzw = 1 / sqrt(src.x) * Translates into: * RSQ tmp, src.x * MOV dst, tmp.xxxx */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst_x = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X); struct tgsi_full_src_register tmp_src_xxxx = scalar_src(&tmp_src, TGSI_SWIZZLE_X); /* RSQ tmp, src.x */ emit_instruction_op1(emit, VGPU10_OPCODE_RSQ, &tmp_dst_x, &inst->Src[0], FALSE); /* MOV dst, tmp.xxxx */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &tmp_src_xxxx, inst->Instruction.Saturate); /* free tmp */ free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SCS instruction. */ static boolean emit_scs(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst.x = cos(src.x) * dst.y = sin(src.x) * dst.z = 0.0 * dst.w = 1.0 */ struct tgsi_full_dst_register dst_x = writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_X); struct tgsi_full_dst_register dst_y = writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_Y); struct tgsi_full_dst_register dst_zw = writemask_dst(&inst->Dst[0], TGSI_WRITEMASK_ZW); struct tgsi_full_src_register zero_one = make_immediate_reg_float4(emit, 0.0f, 0.0f, 0.0f, 1.0f); begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_SINCOS, inst->Instruction.Saturate); emit_dst_register(emit, &dst_y); emit_dst_register(emit, &dst_x); emit_src_register(emit, &inst->Src[0]); end_emit_instruction(emit); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst_zw, &zero_one, inst->Instruction.Saturate); return TRUE; } /** * Emit code for TGSI_OPCODE_SEQ (Set Equal) instruction. */ static boolean emit_seq(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = SEQ(s0, s1): * dst = s0 == s1 ? 1.0 : 0.0 (per component) * Translates into: * EQ tmp, s0, s1; tmp = s0 == s1 : 0xffffffff : 0 (per comp) * MOVC dst, tmp, 1.0, 0.0; dst = tmp ? 1.0 : 0.0 (per component) */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); /* EQ tmp, s0, s1 */ emit_instruction_op2(emit, VGPU10_OPCODE_EQ, &tmp_dst, &inst->Src[0], &inst->Src[1], FALSE); /* MOVC dst, tmp, one, zero */ emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src, &one, &zero, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SGE (Set Greater than or Equal) instruction. */ static boolean emit_sge(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = SGE(s0, s1): * dst = s0 >= s1 ? 1.0 : 0.0 (per component) * Translates into: * GE tmp, s0, s1; tmp = s0 >= s1 : 0xffffffff : 0 (per comp) * MOVC dst, tmp, 1.0, 0.0; dst = tmp ? 1.0 : 0.0 (per component) */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); /* GE tmp, s0, s1 */ emit_instruction_op2(emit, VGPU10_OPCODE_GE, &tmp_dst, &inst->Src[0], &inst->Src[1], FALSE); /* MOVC dst, tmp, one, zero */ emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src, &one, &zero, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SGT (Set Greater than) instruction. */ static boolean emit_sgt(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = SGT(s0, s1): * dst = s0 > s1 ? 1.0 : 0.0 (per component) * Translates into: * LT tmp, s1, s0; tmp = s1 < s0 ? 0xffffffff : 0 (per comp) * MOVC dst, tmp, 1.0, 0.0; dst = tmp ? 1.0 : 0.0 (per component) */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); /* LT tmp, s1, s0 */ emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[1], &inst->Src[0], FALSE); /* MOVC dst, tmp, one, zero */ emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src, &one, &zero, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SIN and TGSI_OPCODE_COS instructions. */ static boolean emit_sincos(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register tmp_src_xxxx = scalar_src(&tmp_src, TGSI_SWIZZLE_X); struct tgsi_full_dst_register tmp_dst_x = writemask_dst(&tmp_dst, TGSI_WRITEMASK_X); begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_SINCOS, FALSE); if(inst->Instruction.Opcode == TGSI_OPCODE_SIN) { emit_dst_register(emit, &tmp_dst_x); /* first destination register */ emit_null_dst_register(emit); /* second destination register */ } else { emit_null_dst_register(emit); emit_dst_register(emit, &tmp_dst_x); } emit_src_register(emit, &inst->Src[0]); end_emit_instruction(emit); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &tmp_src_xxxx, inst->Instruction.Saturate); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SLE (Set Less than or Equal) instruction. */ static boolean emit_sle(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = SLE(s0, s1): * dst = s0 <= s1 ? 1.0 : 0.0 (per component) * Translates into: * GE tmp, s1, s0; tmp = s1 >= s0 : 0xffffffff : 0 (per comp) * MOVC dst, tmp, 1.0, 0.0; dst = tmp ? 1.0 : 0.0 (per component) */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); /* GE tmp, s1, s0 */ emit_instruction_op2(emit, VGPU10_OPCODE_GE, &tmp_dst, &inst->Src[1], &inst->Src[0], FALSE); /* MOVC dst, tmp, one, zero */ emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src, &one, &zero, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SLT (Set Less than) instruction. */ static boolean emit_slt(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = SLT(s0, s1): * dst = s0 < s1 ? 1.0 : 0.0 (per component) * Translates into: * LT tmp, s0, s1; tmp = s0 < s1 ? 0xffffffff : 0 (per comp) * MOVC dst, tmp, 1.0, 0.0; dst = tmp ? 1.0 : 0.0 (per component) */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); /* LT tmp, s0, s1 */ emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp_dst, &inst->Src[0], &inst->Src[1], FALSE); /* MOVC dst, tmp, one, zero */ emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src, &one, &zero, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SNE (Set Not Equal) instruction. */ static boolean emit_sne(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = SNE(s0, s1): * dst = s0 != s1 ? 1.0 : 0.0 (per component) * Translates into: * EQ tmp, s0, s1; tmp = s0 == s1 : 0xffffffff : 0 (per comp) * MOVC dst, tmp, 1.0, 0.0; dst = tmp ? 1.0 : 0.0 (per component) */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); /* NE tmp, s0, s1 */ emit_instruction_op2(emit, VGPU10_OPCODE_NE, &tmp_dst, &inst->Src[0], &inst->Src[1], FALSE); /* MOVC dst, tmp, one, zero */ emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp_src, &one, &zero, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SSG (Set Sign) instruction. */ static boolean emit_ssg(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst.x = (src.x > 0.0) ? 1.0 : (src.x < 0.0) ? -1.0 : 0.0 * dst.y = (src.y > 0.0) ? 1.0 : (src.y < 0.0) ? -1.0 : 0.0 * dst.z = (src.z > 0.0) ? 1.0 : (src.z < 0.0) ? -1.0 : 0.0 * dst.w = (src.w > 0.0) ? 1.0 : (src.w < 0.0) ? -1.0 : 0.0 * Translates into: * LT tmp1, src, zero; tmp1 = src < zero ? 0xffffffff : 0 (per comp) * MOVC tmp2, tmp1, -1.0, 0.0; tmp2 = tmp1 ? -1.0 : 0.0 (per component) * LT tmp1, zero, src; tmp1 = zero < src ? 0xffffffff : 0 (per comp) * MOVC dst, tmp1, 1.0, tmp2; dst = tmp1 ? 1.0 : tmp2 (per component) */ struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); struct tgsi_full_src_register neg_one = make_immediate_reg_float(emit, -1.0f); unsigned tmp1 = get_temp_index(emit); struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1); struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1); unsigned tmp2 = get_temp_index(emit); struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2); struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2); emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp1_dst, &inst->Src[0], &zero, FALSE); emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &tmp2_dst, &tmp1_src, &neg_one, &zero, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_LT, &tmp1_dst, &zero, &inst->Src[0], FALSE); emit_instruction_op3(emit, VGPU10_OPCODE_MOVC, &inst->Dst[0], &tmp1_src, &one, &tmp2_src, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_ISSG (Integer Set Sign) instruction. */ static boolean emit_issg(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0 * dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0 * dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0 * dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0 * Translates into: * ILT tmp1, src, 0 tmp1 = src < 0 ? -1 : 0 (per component) * ILT tmp2, 0, src tmp2 = 0 < src ? -1 : 0 (per component) * IADD dst, tmp1, neg(tmp2) dst = tmp1 - tmp2 (per component) */ struct tgsi_full_src_register zero = make_immediate_reg_float(emit, 0.0f); unsigned tmp1 = get_temp_index(emit); struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1); struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1); unsigned tmp2 = get_temp_index(emit); struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2); struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2); struct tgsi_full_src_register neg_tmp2 = negate_src(&tmp2_src); emit_instruction_op2(emit, VGPU10_OPCODE_ILT, &tmp1_dst, &inst->Src[0], &zero, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_ILT, &tmp2_dst, &zero, &inst->Src[0], FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_IADD, &inst->Dst[0], &tmp1_src, &neg_tmp2, FALSE); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_SUB instruction. */ static boolean emit_sub(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst = SUB(s0, s1): * dst = s0 - s1 * Translates into: * ADD dst, s0, neg(s1) */ struct tgsi_full_src_register neg_src1 = negate_src(&inst->Src[1]); /* ADD dst, s0, neg(s1) */ emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &inst->Dst[0], &inst->Src[0], &neg_src1, inst->Instruction.Saturate); return TRUE; } /** * Emit a comparison instruction. The dest register will get * 0 or ~0 values depending on the outcome of comparing src0 to src1. */ static void emit_comparison(struct svga_shader_emitter_v10 *emit, SVGA3dCmpFunc func, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src0, const struct tgsi_full_src_register *src1) { struct tgsi_full_src_register immediate; VGPU10OpcodeToken0 opcode0; boolean swapSrc = FALSE; /* Sanity checks for svga vs. gallium enums */ STATIC_ASSERT(SVGA3D_CMP_LESS == (PIPE_FUNC_LESS + 1)); STATIC_ASSERT(SVGA3D_CMP_GREATEREQUAL == (PIPE_FUNC_GEQUAL + 1)); opcode0.value = 0; switch (func) { case SVGA3D_CMP_NEVER: immediate = make_immediate_reg_int(emit, 0); /* MOV dst, {0} */ begin_emit_instruction(emit); emit_dword(emit, VGPU10_OPCODE_MOV); emit_dst_register(emit, dst); emit_src_register(emit, &immediate); end_emit_instruction(emit); return; case SVGA3D_CMP_ALWAYS: immediate = make_immediate_reg_int(emit, -1); /* MOV dst, {-1} */ begin_emit_instruction(emit); emit_dword(emit, VGPU10_OPCODE_MOV); emit_dst_register(emit, dst); emit_src_register(emit, &immediate); end_emit_instruction(emit); return; case SVGA3D_CMP_LESS: opcode0.opcodeType = VGPU10_OPCODE_LT; break; case SVGA3D_CMP_EQUAL: opcode0.opcodeType = VGPU10_OPCODE_EQ; break; case SVGA3D_CMP_LESSEQUAL: opcode0.opcodeType = VGPU10_OPCODE_GE; swapSrc = TRUE; break; case SVGA3D_CMP_GREATER: opcode0.opcodeType = VGPU10_OPCODE_LT; swapSrc = TRUE; break; case SVGA3D_CMP_NOTEQUAL: opcode0.opcodeType = VGPU10_OPCODE_NE; break; case SVGA3D_CMP_GREATEREQUAL: opcode0.opcodeType = VGPU10_OPCODE_GE; break; default: assert(!"Unexpected comparison mode"); opcode0.opcodeType = VGPU10_OPCODE_EQ; } begin_emit_instruction(emit); emit_dword(emit, opcode0.value); emit_dst_register(emit, dst); if (swapSrc) { emit_src_register(emit, src1); emit_src_register(emit, src0); } else { emit_src_register(emit, src0); emit_src_register(emit, src1); } end_emit_instruction(emit); } /** * Get texel/address offsets for a texture instruction. */ static void get_texel_offsets(const struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst, int offsets[3]) { if (inst->Texture.NumOffsets == 1) { /* According to OpenGL Shader Language spec the offsets are only * fetched from a previously-declared immediate/literal. */ const struct tgsi_texture_offset *off = inst->TexOffsets; const unsigned index = off[0].Index; const unsigned swizzleX = off[0].SwizzleX; const unsigned swizzleY = off[0].SwizzleY; const unsigned swizzleZ = off[0].SwizzleZ; const union tgsi_immediate_data *imm = emit->immediates[index]; assert(inst->TexOffsets[0].File == TGSI_FILE_IMMEDIATE); offsets[0] = imm[swizzleX].Int; offsets[1] = imm[swizzleY].Int; offsets[2] = imm[swizzleZ].Int; } else { offsets[0] = offsets[1] = offsets[2] = 0; } } /** * Set up the coordinate register for texture sampling. * When we're sampling from a RECT texture we have to scale the * unnormalized coordinate to a normalized coordinate. * We do that by multiplying the coordinate by an "extra" constant. * An alternative would be to use the RESINFO instruction to query the * texture's size. */ static struct tgsi_full_src_register setup_texcoord(struct svga_shader_emitter_v10 *emit, unsigned unit, const struct tgsi_full_src_register *coord) { if (emit->key.tex[unit].unnormalized) { unsigned scale_index = emit->texcoord_scale_index[unit]; unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register scale_src = make_src_const_reg(scale_index); /* MUL tmp, coord, const[] */ emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_dst, coord, &scale_src, FALSE); return tmp_src; } else { /* use texcoord as-is */ return *coord; } } /** * For SAMPLE_C instructions, emit the extra src register which indicates * the reference/comparision value. */ static void emit_tex_compare_refcoord(struct svga_shader_emitter_v10 *emit, unsigned target, const struct tgsi_full_src_register *coord) { struct tgsi_full_src_register coord_src_ref; unsigned component; assert(tgsi_is_shadow_target(target)); assert(target != TGSI_TEXTURE_SHADOWCUBE_ARRAY); /* XXX not implemented */ if (target == TGSI_TEXTURE_SHADOW2D_ARRAY || target == TGSI_TEXTURE_SHADOWCUBE) component = TGSI_SWIZZLE_W; else component = TGSI_SWIZZLE_Z; coord_src_ref = scalar_src(coord, component); emit_src_register(emit, &coord_src_ref); } /** * Info for implementing texture swizzles. * The begin_tex_swizzle(), get_tex_swizzle_dst() and end_tex_swizzle() * functions use this to encapsulate the extra steps needed to perform * a texture swizzle, or shadow/depth comparisons. * The shadow/depth comparison is only done here if for the cases where * there's no VGPU10 opcode (like texture bias lookup w/ shadow compare). */ struct tex_swizzle_info { boolean swizzled; boolean shadow_compare; unsigned unit; unsigned texture_target; /**< TGSI_TEXTURE_x */ struct tgsi_full_src_register tmp_src; struct tgsi_full_dst_register tmp_dst; const struct tgsi_full_dst_register *inst_dst; const struct tgsi_full_src_register *coord_src; }; /** * Do setup for handling texture swizzles or shadow compares. * \param unit the texture unit * \param inst the TGSI texture instruction * \param shadow_compare do shadow/depth comparison? * \param swz returns the swizzle info */ static void begin_tex_swizzle(struct svga_shader_emitter_v10 *emit, unsigned unit, const struct tgsi_full_instruction *inst, boolean shadow_compare, struct tex_swizzle_info *swz) { swz->swizzled = (emit->key.tex[unit].swizzle_r != TGSI_SWIZZLE_X || emit->key.tex[unit].swizzle_g != TGSI_SWIZZLE_Y || emit->key.tex[unit].swizzle_b != TGSI_SWIZZLE_Z || emit->key.tex[unit].swizzle_a != TGSI_SWIZZLE_W); swz->shadow_compare = shadow_compare; swz->texture_target = inst->Texture.Texture; if (swz->swizzled || shadow_compare) { /* Allocate temp register for the result of the SAMPLE instruction * and the source of the MOV/compare/swizzle instructions. */ unsigned tmp = get_temp_index(emit); swz->tmp_src = make_src_temp_reg(tmp); swz->tmp_dst = make_dst_temp_reg(tmp); swz->unit = unit; } swz->inst_dst = &inst->Dst[0]; swz->coord_src = &inst->Src[0]; } /** * Returns the register to put the SAMPLE instruction results into. * This will either be the original instruction dst reg (if no swizzle * and no shadow comparison) or a temporary reg if there is a swizzle. */ static const struct tgsi_full_dst_register * get_tex_swizzle_dst(const struct tex_swizzle_info *swz) { return (swz->swizzled || swz->shadow_compare) ? &swz->tmp_dst : swz->inst_dst; } /** * This emits the MOV instruction that actually implements a texture swizzle * and/or shadow comparison. */ static void end_tex_swizzle(struct svga_shader_emitter_v10 *emit, const struct tex_swizzle_info *swz) { if (swz->shadow_compare) { /* Emit extra instructions to compare the fetched texel value against * a texture coordinate component. The result of the comparison * is 0.0 or 1.0. */ struct tgsi_full_src_register coord_src; struct tgsi_full_src_register texel_src = scalar_src(&swz->tmp_src, TGSI_SWIZZLE_X); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); /* convert gallium comparison func to SVGA comparison func */ SVGA3dCmpFunc compare_func = emit->key.tex[swz->unit].compare_func + 1; assert(emit->unit == PIPE_SHADER_FRAGMENT); switch (swz->texture_target) { case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: case TGSI_TEXTURE_SHADOW1D_ARRAY: coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Z); break; case TGSI_TEXTURE_SHADOW1D: coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Y); break; case TGSI_TEXTURE_SHADOWCUBE: case TGSI_TEXTURE_SHADOW2D_ARRAY: coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_W); break; default: assert(!"Unexpected texture target in end_tex_swizzle()"); coord_src = scalar_src(swz->coord_src, TGSI_SWIZZLE_Z); } /* COMPARE tmp, coord, texel */ /* XXX it would seem that the texel and coord arguments should * be transposed here, but piglit tests indicate otherwise. */ emit_comparison(emit, compare_func, &swz->tmp_dst, &texel_src, &coord_src); /* AND dest, tmp, {1.0} */ begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_AND, FALSE); if (swz->swizzled) { emit_dst_register(emit, &swz->tmp_dst); } else { emit_dst_register(emit, swz->inst_dst); } emit_src_register(emit, &swz->tmp_src); emit_src_register(emit, &one); end_emit_instruction(emit); } if (swz->swizzled) { unsigned swz_r = emit->key.tex[swz->unit].swizzle_r; unsigned swz_g = emit->key.tex[swz->unit].swizzle_g; unsigned swz_b = emit->key.tex[swz->unit].swizzle_b; unsigned swz_a = emit->key.tex[swz->unit].swizzle_a; unsigned writemask_0 = 0, writemask_1 = 0; boolean int_tex = is_integer_type(emit->sampler_return_type[swz->unit]); /* Swizzle w/out zero/one terms */ struct tgsi_full_src_register src_swizzled = swizzle_src(&swz->tmp_src, swz_r < PIPE_SWIZZLE_0 ? swz_r : PIPE_SWIZZLE_X, swz_g < PIPE_SWIZZLE_0 ? swz_g : PIPE_SWIZZLE_Y, swz_b < PIPE_SWIZZLE_0 ? swz_b : PIPE_SWIZZLE_Z, swz_a < PIPE_SWIZZLE_0 ? swz_a : PIPE_SWIZZLE_W); /* MOV dst, color(tmp). */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, swz->inst_dst, &src_swizzled, FALSE); /* handle swizzle zero terms */ writemask_0 = (((swz_r == PIPE_SWIZZLE_0) << 0) | ((swz_g == PIPE_SWIZZLE_0) << 1) | ((swz_b == PIPE_SWIZZLE_0) << 2) | ((swz_a == PIPE_SWIZZLE_0) << 3)); if (writemask_0) { struct tgsi_full_src_register zero = int_tex ? make_immediate_reg_int(emit, 0) : make_immediate_reg_float(emit, 0.0f); struct tgsi_full_dst_register dst = writemask_dst(swz->inst_dst, writemask_0); /* MOV dst.writemask_0, {0,0,0,0} */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst, &zero, FALSE); } /* handle swizzle one terms */ writemask_1 = (((swz_r == PIPE_SWIZZLE_1) << 0) | ((swz_g == PIPE_SWIZZLE_1) << 1) | ((swz_b == PIPE_SWIZZLE_1) << 2) | ((swz_a == PIPE_SWIZZLE_1) << 3)); if (writemask_1) { struct tgsi_full_src_register one = int_tex ? make_immediate_reg_int(emit, 1) : make_immediate_reg_float(emit, 1.0f); struct tgsi_full_dst_register dst = writemask_dst(swz->inst_dst, writemask_1); /* MOV dst.writemask_1, {1,1,1,1} */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &dst, &one, FALSE); } } } /** * Emit code for TGSI_OPCODE_SAMPLE instruction. */ static boolean emit_sample(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const unsigned resource_unit = inst->Src[1].Register.Index; const unsigned sampler_unit = inst->Src[2].Register.Index; struct tgsi_full_src_register coord; int offsets[3]; struct tex_swizzle_info swz_info; begin_tex_swizzle(emit, sampler_unit, inst, FALSE, &swz_info); get_texel_offsets(emit, inst, offsets); coord = setup_texcoord(emit, resource_unit, &inst->Src[0]); /* SAMPLE dst, coord(s0), resource, sampler */ begin_emit_instruction(emit); emit_sample_opcode(emit, VGPU10_OPCODE_SAMPLE, inst->Instruction.Saturate, offsets); emit_dst_register(emit, get_tex_swizzle_dst(&swz_info)); emit_src_register(emit, &coord); emit_resource_register(emit, resource_unit); emit_sampler_register(emit, sampler_unit); end_emit_instruction(emit); end_tex_swizzle(emit, &swz_info); free_temp_indexes(emit); return TRUE; } /** * Check if a texture instruction is valid. * An example of an invalid texture instruction is doing shadow comparison * with an integer-valued texture. * If we detect an invalid texture instruction, we replace it with: * MOV dst, {1,1,1,1}; * \return TRUE if valid, FALSE if invalid. */ static boolean is_valid_tex_instruction(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const unsigned unit = inst->Src[1].Register.Index; const unsigned target = inst->Texture.Texture; boolean valid = TRUE; if (tgsi_is_shadow_target(target) && is_integer_type(emit->sampler_return_type[unit])) { debug_printf("Invalid SAMPLE_C with an integer texture!\n"); valid = FALSE; } /* XXX might check for other conditions in the future here */ if (!valid) { /* emit a MOV dst, {1,1,1,1} instruction. */ struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE); emit_dst_register(emit, &inst->Dst[0]); emit_src_register(emit, &one); end_emit_instruction(emit); } return valid; } /** * Emit code for TGSI_OPCODE_TEX (simple texture lookup) */ static boolean emit_tex(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const uint unit = inst->Src[1].Register.Index; unsigned target = inst->Texture.Texture; unsigned opcode; struct tgsi_full_src_register coord; int offsets[3]; struct tex_swizzle_info swz_info; /* check that the sampler returns a float */ if (!is_valid_tex_instruction(emit, inst)) return TRUE; begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info); get_texel_offsets(emit, inst, offsets); coord = setup_texcoord(emit, unit, &inst->Src[0]); /* SAMPLE dst, coord(s0), resource, sampler */ begin_emit_instruction(emit); if (tgsi_is_shadow_target(target)) opcode = VGPU10_OPCODE_SAMPLE_C; else opcode = VGPU10_OPCODE_SAMPLE; emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets); emit_dst_register(emit, get_tex_swizzle_dst(&swz_info)); emit_src_register(emit, &coord); emit_resource_register(emit, unit); emit_sampler_register(emit, unit); if (opcode == VGPU10_OPCODE_SAMPLE_C) { emit_tex_compare_refcoord(emit, target, &coord); } end_emit_instruction(emit); end_tex_swizzle(emit, &swz_info); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_TXP (projective texture) */ static boolean emit_txp(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const uint unit = inst->Src[1].Register.Index; unsigned target = inst->Texture.Texture; unsigned opcode; int offsets[3]; unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register src0_wwww = scalar_src(&inst->Src[0], TGSI_SWIZZLE_W); struct tgsi_full_src_register coord; struct tex_swizzle_info swz_info; /* check that the sampler returns a float */ if (!is_valid_tex_instruction(emit, inst)) return TRUE; begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info); get_texel_offsets(emit, inst, offsets); coord = setup_texcoord(emit, unit, &inst->Src[0]); /* DIV tmp, coord, coord.wwww */ emit_instruction_op2(emit, VGPU10_OPCODE_DIV, &tmp_dst, &coord, &src0_wwww, FALSE); /* SAMPLE dst, coord(tmp), resource, sampler */ begin_emit_instruction(emit); if (tgsi_is_shadow_target(target)) opcode = VGPU10_OPCODE_SAMPLE_C; else opcode = VGPU10_OPCODE_SAMPLE; emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets); emit_dst_register(emit, get_tex_swizzle_dst(&swz_info)); emit_src_register(emit, &tmp_src); /* projected coord */ emit_resource_register(emit, unit); emit_sampler_register(emit, unit); if (opcode == VGPU10_OPCODE_SAMPLE_C) { emit_tex_compare_refcoord(emit, target, &tmp_src); } end_emit_instruction(emit); end_tex_swizzle(emit, &swz_info); free_temp_indexes(emit); return TRUE; } /* * Emit code for TGSI_OPCODE_XPD instruction. */ static boolean emit_xpd(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { /* dst.x = src0.y * src1.z - src1.y * src0.z * dst.y = src0.z * src1.x - src1.z * src0.x * dst.z = src0.x * src1.y - src1.x * src0.y * dst.w = 1 */ struct tgsi_full_src_register s0_xxxx = scalar_src(&inst->Src[0], TGSI_SWIZZLE_X); struct tgsi_full_src_register s0_yyyy = scalar_src(&inst->Src[0], TGSI_SWIZZLE_Y); struct tgsi_full_src_register s0_zzzz = scalar_src(&inst->Src[0], TGSI_SWIZZLE_Z); struct tgsi_full_src_register s1_xxxx = scalar_src(&inst->Src[1], TGSI_SWIZZLE_X); struct tgsi_full_src_register s1_yyyy = scalar_src(&inst->Src[1], TGSI_SWIZZLE_Y); struct tgsi_full_src_register s1_zzzz = scalar_src(&inst->Src[1], TGSI_SWIZZLE_Z); unsigned tmp1 = get_temp_index(emit); struct tgsi_full_src_register tmp1_src = make_src_temp_reg(tmp1); struct tgsi_full_dst_register tmp1_dst = make_dst_temp_reg(tmp1); unsigned tmp2 = get_temp_index(emit); struct tgsi_full_src_register tmp2_src = make_src_temp_reg(tmp2); struct tgsi_full_dst_register tmp2_dst = make_dst_temp_reg(tmp2); struct tgsi_full_src_register neg_tmp2_src = negate_src(&tmp2_src); unsigned tmp3 = get_temp_index(emit); struct tgsi_full_src_register tmp3_src = make_src_temp_reg(tmp3); struct tgsi_full_dst_register tmp3_dst = make_dst_temp_reg(tmp3); struct tgsi_full_dst_register tmp3_dst_x = writemask_dst(&tmp3_dst, TGSI_WRITEMASK_X); struct tgsi_full_dst_register tmp3_dst_y = writemask_dst(&tmp3_dst, TGSI_WRITEMASK_Y); struct tgsi_full_dst_register tmp3_dst_z = writemask_dst(&tmp3_dst, TGSI_WRITEMASK_Z); struct tgsi_full_dst_register tmp3_dst_w = writemask_dst(&tmp3_dst, TGSI_WRITEMASK_W); /* Note: we put all the intermediate computations into tmp3 in case * the XPD dest register is that same as one of the src regs (in which * case we could clobber a src reg before we're done with it) . * * Note: we could get by with just one temp register instead of three * since we're doing scalar operations and there's enough room in one * temp for everything. */ /* MUL tmp1, src0.y, src1.z */ /* MUL tmp2, src1.y, src0.z */ /* ADD tmp3.x, tmp1, -tmp2 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) { emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &s0_yyyy, &s1_zzzz, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst, &s1_yyyy, &s0_zzzz, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_x, &tmp1_src, &neg_tmp2_src, FALSE); } /* MUL tmp1, src0.z, src1.x */ /* MUL tmp2, src1.z, src0.x */ /* ADD tmp3.y, tmp1, -tmp2 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) { emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &s0_zzzz, &s1_xxxx, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst, &s1_zzzz, &s0_xxxx, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_y, &tmp1_src, &neg_tmp2_src, FALSE); } /* MUL tmp1, src0.x, src1.y */ /* MUL tmp2, src1.x, src0.y */ /* ADD tmp3.z, tmp1, -tmp2 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) { emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp1_dst, &s0_xxxx, &s1_yyyy, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp2_dst, &s1_xxxx, &s0_yyyy, FALSE); emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp3_dst_z, &tmp1_src, &neg_tmp2_src, FALSE); } /* MOV tmp3.w, 1.0 */ if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) { struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &tmp3_dst_w, &one, FALSE); } /* MOV dst, tmp3 */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &tmp3_src, inst->Instruction.Saturate); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_TXD (explicit derivatives) */ static boolean emit_txd(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const uint unit = inst->Src[3].Register.Index; unsigned target = inst->Texture.Texture; int offsets[3]; struct tgsi_full_src_register coord; struct tex_swizzle_info swz_info; begin_tex_swizzle(emit, unit, inst, tgsi_is_shadow_target(target), &swz_info); get_texel_offsets(emit, inst, offsets); coord = setup_texcoord(emit, unit, &inst->Src[0]); /* SAMPLE_D dst, coord(s0), resource, sampler, Xderiv(s1), Yderiv(s2) */ begin_emit_instruction(emit); emit_sample_opcode(emit, VGPU10_OPCODE_SAMPLE_D, inst->Instruction.Saturate, offsets); emit_dst_register(emit, get_tex_swizzle_dst(&swz_info)); emit_src_register(emit, &coord); emit_resource_register(emit, unit); emit_sampler_register(emit, unit); emit_src_register(emit, &inst->Src[1]); /* Xderiv */ emit_src_register(emit, &inst->Src[2]); /* Yderiv */ end_emit_instruction(emit); end_tex_swizzle(emit, &swz_info); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_TXF (texel fetch) */ static boolean emit_txf(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const uint unit = inst->Src[1].Register.Index; const boolean msaa = tgsi_is_msaa_target(inst->Texture.Texture); int offsets[3]; struct tex_swizzle_info swz_info; begin_tex_swizzle(emit, unit, inst, FALSE, &swz_info); get_texel_offsets(emit, inst, offsets); if (msaa) { /* Fetch one sample from an MSAA texture */ struct tgsi_full_src_register sampleIndex = scalar_src(&inst->Src[0], TGSI_SWIZZLE_W); /* LD_MS dst, coord(s0), resource, sampleIndex */ begin_emit_instruction(emit); emit_sample_opcode(emit, VGPU10_OPCODE_LD_MS, inst->Instruction.Saturate, offsets); emit_dst_register(emit, get_tex_swizzle_dst(&swz_info)); emit_src_register(emit, &inst->Src[0]); emit_resource_register(emit, unit); emit_src_register(emit, &sampleIndex); end_emit_instruction(emit); } else { /* Fetch one texel specified by integer coordinate */ /* LD dst, coord(s0), resource */ begin_emit_instruction(emit); emit_sample_opcode(emit, VGPU10_OPCODE_LD, inst->Instruction.Saturate, offsets); emit_dst_register(emit, get_tex_swizzle_dst(&swz_info)); emit_src_register(emit, &inst->Src[0]); emit_resource_register(emit, unit); end_emit_instruction(emit); } end_tex_swizzle(emit, &swz_info); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_TXL (explicit LOD) or TGSI_OPCODE_TXB (LOD bias) * or TGSI_OPCODE_TXB2 (for cube shadow maps). */ static boolean emit_txl_txb(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { unsigned target = inst->Texture.Texture; unsigned opcode, unit; int offsets[3]; struct tgsi_full_src_register coord, lod_bias; struct tex_swizzle_info swz_info; assert(inst->Instruction.Opcode == TGSI_OPCODE_TXL || inst->Instruction.Opcode == TGSI_OPCODE_TXB || inst->Instruction.Opcode == TGSI_OPCODE_TXB2); if (inst->Instruction.Opcode == TGSI_OPCODE_TXB2) { lod_bias = scalar_src(&inst->Src[1], TGSI_SWIZZLE_X); unit = inst->Src[2].Register.Index; } else { lod_bias = scalar_src(&inst->Src[0], TGSI_SWIZZLE_W); unit = inst->Src[1].Register.Index; } begin_tex_swizzle(emit, unit, inst, tgsi_is_shadow_target(target), &swz_info); get_texel_offsets(emit, inst, offsets); coord = setup_texcoord(emit, unit, &inst->Src[0]); /* SAMPLE_L/B dst, coord(s0), resource, sampler, lod(s3) */ begin_emit_instruction(emit); if (inst->Instruction.Opcode == TGSI_OPCODE_TXL) { opcode = VGPU10_OPCODE_SAMPLE_L; } else { opcode = VGPU10_OPCODE_SAMPLE_B; } emit_sample_opcode(emit, opcode, inst->Instruction.Saturate, offsets); emit_dst_register(emit, get_tex_swizzle_dst(&swz_info)); emit_src_register(emit, &coord); emit_resource_register(emit, unit); emit_sampler_register(emit, unit); emit_src_register(emit, &lod_bias); end_emit_instruction(emit); end_tex_swizzle(emit, &swz_info); free_temp_indexes(emit); return TRUE; } /** * Emit code for TGSI_OPCODE_TXQ (texture query) instruction. */ static boolean emit_txq(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const uint unit = inst->Src[1].Register.Index; if (emit->sampler_target[unit] == TGSI_TEXTURE_BUFFER) { /* RESINFO does not support querying texture buffers, so we instead * store texture buffer sizes in shader constants, then copy them to * implement TXQ instead of emitting RESINFO. * MOV dst, const[texture_buffer_size_index[unit]] */ struct tgsi_full_src_register size_src = make_src_const_reg(emit->texture_buffer_size_index[unit]); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &inst->Dst[0], &size_src, FALSE); } else { /* RESINFO dst, srcMipLevel, resource */ begin_emit_instruction(emit); emit_opcode_resinfo(emit, VGPU10_RESINFO_RETURN_UINT); emit_dst_register(emit, &inst->Dst[0]); emit_src_register(emit, &inst->Src[0]); emit_resource_register(emit, unit); end_emit_instruction(emit); } free_temp_indexes(emit); return TRUE; } /** * Emit a simple instruction (like ADD, MUL, MIN, etc). */ static boolean emit_simple(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const unsigned opcode = inst->Instruction.Opcode; const struct tgsi_opcode_info *op = tgsi_get_opcode_info(opcode); unsigned i; begin_emit_instruction(emit); emit_opcode(emit, translate_opcode(inst->Instruction.Opcode), inst->Instruction.Saturate); for (i = 0; i < op->num_dst; i++) { emit_dst_register(emit, &inst->Dst[i]); } for (i = 0; i < op->num_src; i++) { emit_src_register(emit, &inst->Src[i]); } end_emit_instruction(emit); return TRUE; } /** * We only special case the MOV instruction to try to detect constant * color writes in the fragment shader. */ static boolean emit_mov(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { const struct tgsi_full_src_register *src = &inst->Src[0]; const struct tgsi_full_dst_register *dst = &inst->Dst[0]; if (emit->unit == PIPE_SHADER_FRAGMENT && dst->Register.File == TGSI_FILE_OUTPUT && dst->Register.Index == 0 && src->Register.File == TGSI_FILE_CONSTANT && !src->Register.Indirect) { emit->constant_color_output = TRUE; } return emit_simple(emit, inst); } /** * Emit a simple VGPU10 instruction which writes to multiple dest registers, * where TGSI only uses one dest register. */ static boolean emit_simple_1dst(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst, unsigned dst_count, unsigned dst_index) { const unsigned opcode = inst->Instruction.Opcode; const struct tgsi_opcode_info *op = tgsi_get_opcode_info(opcode); unsigned i; begin_emit_instruction(emit); emit_opcode(emit, translate_opcode(inst->Instruction.Opcode), inst->Instruction.Saturate); for (i = 0; i < dst_count; i++) { if (i == dst_index) { emit_dst_register(emit, &inst->Dst[0]); } else { emit_null_dst_register(emit); } } for (i = 0; i < op->num_src; i++) { emit_src_register(emit, &inst->Src[i]); } end_emit_instruction(emit); return TRUE; } /** * Translate a single TGSI instruction to VGPU10. */ static boolean emit_vgpu10_instruction(struct svga_shader_emitter_v10 *emit, unsigned inst_number, const struct tgsi_full_instruction *inst) { const unsigned opcode = inst->Instruction.Opcode; switch (opcode) { case TGSI_OPCODE_ADD: case TGSI_OPCODE_AND: case TGSI_OPCODE_BGNLOOP: case TGSI_OPCODE_BRK: case TGSI_OPCODE_CEIL: case TGSI_OPCODE_CONT: case TGSI_OPCODE_DDX: case TGSI_OPCODE_DDY: case TGSI_OPCODE_DIV: case TGSI_OPCODE_DP2: case TGSI_OPCODE_DP3: case TGSI_OPCODE_DP4: case TGSI_OPCODE_ELSE: case TGSI_OPCODE_ENDIF: case TGSI_OPCODE_ENDLOOP: case TGSI_OPCODE_ENDSUB: case TGSI_OPCODE_F2I: case TGSI_OPCODE_F2U: case TGSI_OPCODE_FLR: case TGSI_OPCODE_FRC: case TGSI_OPCODE_FSEQ: case TGSI_OPCODE_FSGE: case TGSI_OPCODE_FSLT: case TGSI_OPCODE_FSNE: case TGSI_OPCODE_I2F: case TGSI_OPCODE_IMAX: case TGSI_OPCODE_IMIN: case TGSI_OPCODE_INEG: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_ISHR: case TGSI_OPCODE_ISLT: case TGSI_OPCODE_MAD: case TGSI_OPCODE_MAX: case TGSI_OPCODE_MIN: case TGSI_OPCODE_MUL: case TGSI_OPCODE_NOP: case TGSI_OPCODE_NOT: case TGSI_OPCODE_OR: case TGSI_OPCODE_RET: case TGSI_OPCODE_UADD: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_USGE: case TGSI_OPCODE_USLT: case TGSI_OPCODE_UMIN: case TGSI_OPCODE_UMAD: case TGSI_OPCODE_UMAX: case TGSI_OPCODE_ROUND: case TGSI_OPCODE_SQRT: case TGSI_OPCODE_SHL: case TGSI_OPCODE_TRUNC: case TGSI_OPCODE_U2F: case TGSI_OPCODE_UCMP: case TGSI_OPCODE_USHR: case TGSI_OPCODE_USNE: case TGSI_OPCODE_XOR: /* simple instructions */ return emit_simple(emit, inst); case TGSI_OPCODE_MOV: return emit_mov(emit, inst); case TGSI_OPCODE_EMIT: return emit_vertex(emit, inst); case TGSI_OPCODE_ENDPRIM: return emit_endprim(emit, inst); case TGSI_OPCODE_ABS: return emit_abs(emit, inst); case TGSI_OPCODE_IABS: return emit_iabs(emit, inst); case TGSI_OPCODE_ARL: /* fall-through */ case TGSI_OPCODE_UARL: return emit_arl_uarl(emit, inst); case TGSI_OPCODE_BGNSUB: /* no-op */ return TRUE; case TGSI_OPCODE_CAL: return emit_cal(emit, inst); case TGSI_OPCODE_CMP: return emit_cmp(emit, inst); case TGSI_OPCODE_COS: return emit_sincos(emit, inst); case TGSI_OPCODE_DP2A: return emit_dp2a(emit, inst); case TGSI_OPCODE_DPH: return emit_dph(emit, inst); case TGSI_OPCODE_DST: return emit_dst(emit, inst); case TGSI_OPCODE_EX2: return emit_ex2(emit, inst); case TGSI_OPCODE_EXP: return emit_exp(emit, inst); case TGSI_OPCODE_IF: return emit_if(emit, inst); case TGSI_OPCODE_KILL: return emit_kill(emit, inst); case TGSI_OPCODE_KILL_IF: return emit_kill_if(emit, inst); case TGSI_OPCODE_LG2: return emit_lg2(emit, inst); case TGSI_OPCODE_LIT: return emit_lit(emit, inst); case TGSI_OPCODE_LOG: return emit_log(emit, inst); case TGSI_OPCODE_LRP: return emit_lrp(emit, inst); case TGSI_OPCODE_POW: return emit_pow(emit, inst); case TGSI_OPCODE_RCP: return emit_rcp(emit, inst); case TGSI_OPCODE_RSQ: return emit_rsq(emit, inst); case TGSI_OPCODE_SAMPLE: return emit_sample(emit, inst); case TGSI_OPCODE_SCS: return emit_scs(emit, inst); case TGSI_OPCODE_SEQ: return emit_seq(emit, inst); case TGSI_OPCODE_SGE: return emit_sge(emit, inst); case TGSI_OPCODE_SGT: return emit_sgt(emit, inst); case TGSI_OPCODE_SIN: return emit_sincos(emit, inst); case TGSI_OPCODE_SLE: return emit_sle(emit, inst); case TGSI_OPCODE_SLT: return emit_slt(emit, inst); case TGSI_OPCODE_SNE: return emit_sne(emit, inst); case TGSI_OPCODE_SSG: return emit_ssg(emit, inst); case TGSI_OPCODE_ISSG: return emit_issg(emit, inst); case TGSI_OPCODE_SUB: return emit_sub(emit, inst); case TGSI_OPCODE_TEX: return emit_tex(emit, inst); case TGSI_OPCODE_TXP: return emit_txp(emit, inst); case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXB2: case TGSI_OPCODE_TXL: return emit_txl_txb(emit, inst); case TGSI_OPCODE_TXD: return emit_txd(emit, inst); case TGSI_OPCODE_TXF: return emit_txf(emit, inst); case TGSI_OPCODE_TXQ: return emit_txq(emit, inst); case TGSI_OPCODE_UIF: return emit_if(emit, inst); case TGSI_OPCODE_XPD: return emit_xpd(emit, inst); case TGSI_OPCODE_UMUL_HI: case TGSI_OPCODE_IMUL_HI: case TGSI_OPCODE_UDIV: case TGSI_OPCODE_IDIV: /* These cases use only the FIRST of two destination registers */ return emit_simple_1dst(emit, inst, 2, 0); case TGSI_OPCODE_UMUL: case TGSI_OPCODE_UMOD: case TGSI_OPCODE_MOD: /* These cases use only the SECOND of two destination registers */ return emit_simple_1dst(emit, inst, 2, 1); case TGSI_OPCODE_END: if (!emit_post_helpers(emit)) return FALSE; return emit_simple(emit, inst); default: debug_printf("Unimplemented tgsi instruction %s\n", tgsi_get_opcode_name(opcode)); return FALSE; } return TRUE; } /** * Emit the extra instructions to adjust the vertex position. * There are two possible adjustments: * 1. Converting from Gallium to VGPU10 coordinate space by applying the * "prescale" and "pretranslate" values. * 2. Undoing the viewport transformation when we use the swtnl/draw path. * \param vs_pos_tmp_index which temporary register contains the vertex pos. */ static void emit_vpos_instructions(struct svga_shader_emitter_v10 *emit, unsigned vs_pos_tmp_index) { struct tgsi_full_src_register tmp_pos_src; struct tgsi_full_dst_register pos_dst; /* Don't bother to emit any extra vertex instructions if vertex position is * not written out */ if (emit->vposition.out_index == INVALID_INDEX) return; tmp_pos_src = make_src_temp_reg(vs_pos_tmp_index); pos_dst = make_dst_output_reg(emit->vposition.out_index); /* If non-adjusted vertex position register index * is valid, copy the vertex position from the temporary * vertex position register before it is modified by the * prescale computation. */ if (emit->vposition.so_index != INVALID_INDEX) { struct tgsi_full_dst_register pos_so_dst = make_dst_output_reg(emit->vposition.so_index); /* MOV pos_so, tmp_pos */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &pos_so_dst, &tmp_pos_src, FALSE); } if (emit->vposition.need_prescale) { /* This code adjusts the vertex position to match the VGPU10 convention. * If p is the position computed by the shader (usually by applying the * modelview and projection matrices), the new position q is computed by: * * q.x = p.w * trans.x + p.x * scale.x * q.y = p.w * trans.y + p.y * scale.y * q.z = p.w * trans.z + p.z * scale.z; * q.w = p.w * trans.w + p.w; */ struct tgsi_full_src_register tmp_pos_src_w = scalar_src(&tmp_pos_src, TGSI_SWIZZLE_W); struct tgsi_full_dst_register tmp_pos_dst = make_dst_temp_reg(vs_pos_tmp_index); struct tgsi_full_dst_register tmp_pos_dst_xyz = writemask_dst(&tmp_pos_dst, TGSI_WRITEMASK_XYZ); struct tgsi_full_src_register prescale_scale = make_src_const_reg(emit->vposition.prescale_scale_index); struct tgsi_full_src_register prescale_trans = make_src_const_reg(emit->vposition.prescale_trans_index); /* MUL tmp_pos.xyz, tmp_pos, prescale.scale */ emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_pos_dst_xyz, &tmp_pos_src, &prescale_scale, FALSE); /* MAD pos, tmp_pos.wwww, prescale.trans, tmp_pos */ emit_instruction_op3(emit, VGPU10_OPCODE_MAD, &pos_dst, &tmp_pos_src_w, &prescale_trans, &tmp_pos_src, FALSE); } else if (emit->key.vs.undo_viewport) { /* This code computes the final vertex position from the temporary * vertex position by undoing the viewport transformation and the * divide-by-W operation (we convert window coords back to clip coords). * This is needed when we use the 'draw' module for fallbacks. * If p is the temp pos in window coords, then the NDC coord q is: * q.x = (p.x - vp.x_trans) / vp.x_scale * p.w * q.y = (p.y - vp.y_trans) / vp.y_scale * p.w * q.z = p.z * p.w * q.w = p.w * CONST[vs_viewport_index] contains: * { 1/vp.x_scale, 1/vp.y_scale, -vp.x_trans, -vp.y_trans } */ struct tgsi_full_dst_register tmp_pos_dst = make_dst_temp_reg(vs_pos_tmp_index); struct tgsi_full_dst_register tmp_pos_dst_xy = writemask_dst(&tmp_pos_dst, TGSI_WRITEMASK_XY); struct tgsi_full_src_register tmp_pos_src_wwww = scalar_src(&tmp_pos_src, TGSI_SWIZZLE_W); struct tgsi_full_dst_register pos_dst_xyz = writemask_dst(&pos_dst, TGSI_WRITEMASK_XYZ); struct tgsi_full_dst_register pos_dst_w = writemask_dst(&pos_dst, TGSI_WRITEMASK_W); struct tgsi_full_src_register vp_xyzw = make_src_const_reg(emit->vs.viewport_index); struct tgsi_full_src_register vp_zwww = swizzle_src(&vp_xyzw, TGSI_SWIZZLE_Z, TGSI_SWIZZLE_W, TGSI_SWIZZLE_W, TGSI_SWIZZLE_W); /* ADD tmp_pos.xy, tmp_pos.xy, viewport.zwww */ emit_instruction_op2(emit, VGPU10_OPCODE_ADD, &tmp_pos_dst_xy, &tmp_pos_src, &vp_zwww, FALSE); /* MUL tmp_pos.xy, tmp_pos.xyzw, viewport.xyzy */ emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &tmp_pos_dst_xy, &tmp_pos_src, &vp_xyzw, FALSE); /* MUL pos.xyz, tmp_pos.xyz, tmp_pos.www */ emit_instruction_op2(emit, VGPU10_OPCODE_MUL, &pos_dst_xyz, &tmp_pos_src, &tmp_pos_src_wwww, FALSE); /* MOV pos.w, tmp_pos.w */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &pos_dst_w, &tmp_pos_src, FALSE); } else if (vs_pos_tmp_index != INVALID_INDEX) { /* This code is to handle the case where the temporary vertex * position register is created when the vertex shader has stream * output and prescale is disabled because rasterization is to be * discarded. */ struct tgsi_full_dst_register pos_dst = make_dst_output_reg(emit->vposition.out_index); /* MOV pos, tmp_pos */ begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE); emit_dst_register(emit, &pos_dst); emit_src_register(emit, &tmp_pos_src); end_emit_instruction(emit); } } static void emit_clipping_instructions(struct svga_shader_emitter_v10 *emit) { if (emit->clip_mode == CLIP_DISTANCE) { /* Copy from copy distance temporary to CLIPDIST & the shadow copy */ emit_clip_distance_instructions(emit); } else if (emit->clip_mode == CLIP_VERTEX) { /* Convert TGSI CLIPVERTEX to CLIPDIST */ emit_clip_vertex_instructions(emit); } /** * Emit vertex position and take care of legacy user planes only if * there is a valid vertex position register index. * This is to take care of the case * where the shader doesn't output vertex position. Then in * this case, don't bother to emit more vertex instructions. */ if (emit->vposition.out_index == INVALID_INDEX) return; /** * Emit per-vertex clipping instructions for legacy user defined clip planes. * NOTE: we must emit the clip distance instructions before the * emit_vpos_instructions() call since the later function will change * the TEMP[vs_pos_tmp_index] value. */ if (emit->clip_mode == CLIP_LEGACY) { /* Emit CLIPDIST for legacy user defined clip planes */ emit_clip_distance_from_vpos(emit, emit->vposition.tmp_index); } } /** * Emit extra per-vertex instructions. This includes clip-coordinate * space conversion and computing clip distances. This is called for * each GS emit-vertex instruction and at the end of VS translation. */ static void emit_vertex_instructions(struct svga_shader_emitter_v10 *emit) { const unsigned vs_pos_tmp_index = emit->vposition.tmp_index; /* Emit clipping instructions based on clipping mode */ emit_clipping_instructions(emit); /** * Reset the temporary vertex position register index * so that emit_dst_register() will use the real vertex position output */ emit->vposition.tmp_index = INVALID_INDEX; /* Emit vertex position instructions */ emit_vpos_instructions(emit, vs_pos_tmp_index); /* Restore original vposition.tmp_index value for the next GS vertex. * It doesn't matter for VS. */ emit->vposition.tmp_index = vs_pos_tmp_index; } /** * Translate the TGSI_OPCODE_EMIT GS instruction. */ static boolean emit_vertex(struct svga_shader_emitter_v10 *emit, const struct tgsi_full_instruction *inst) { unsigned ret = TRUE; assert(emit->unit == PIPE_SHADER_GEOMETRY); emit_vertex_instructions(emit); /* We can't use emit_simple() because the TGSI instruction has one * operand (vertex stream number) which we must ignore for VGPU10. */ begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_EMIT, FALSE); end_emit_instruction(emit); return ret; } /** * Emit the extra code to convert from VGPU10's boolean front-face * register to TGSI's signed front-face register. * * TODO: Make temporary front-face register a scalar. */ static void emit_frontface_instructions(struct svga_shader_emitter_v10 *emit) { assert(emit->unit == PIPE_SHADER_FRAGMENT); if (emit->fs.face_input_index != INVALID_INDEX) { /* convert vgpu10 boolean face register to gallium +/-1 value */ struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(emit->fs.face_tmp_index); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); struct tgsi_full_src_register neg_one = make_immediate_reg_float(emit, -1.0f); /* MOVC face_tmp, IS_FRONT_FACE.x, 1.0, -1.0 */ begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_MOVC, FALSE); emit_dst_register(emit, &tmp_dst); emit_face_register(emit); emit_src_register(emit, &one); emit_src_register(emit, &neg_one); end_emit_instruction(emit); } } /** * Emit the extra code to convert from VGPU10's fragcoord.w value to 1/w. */ static void emit_fragcoord_instructions(struct svga_shader_emitter_v10 *emit) { assert(emit->unit == PIPE_SHADER_FRAGMENT); if (emit->fs.fragcoord_input_index != INVALID_INDEX) { struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(emit->fs.fragcoord_tmp_index); struct tgsi_full_dst_register tmp_dst_xyz = writemask_dst(&tmp_dst, TGSI_WRITEMASK_XYZ); struct tgsi_full_dst_register tmp_dst_w = writemask_dst(&tmp_dst, TGSI_WRITEMASK_W); struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); struct tgsi_full_src_register fragcoord = make_src_reg(TGSI_FILE_INPUT, emit->fs.fragcoord_input_index); /* save the input index */ unsigned fragcoord_input_index = emit->fs.fragcoord_input_index; /* set to invalid to prevent substitution in emit_src_register() */ emit->fs.fragcoord_input_index = INVALID_INDEX; /* MOV fragcoord_tmp.xyz, fragcoord.xyz */ begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_MOV, FALSE); emit_dst_register(emit, &tmp_dst_xyz); emit_src_register(emit, &fragcoord); end_emit_instruction(emit); /* DIV fragcoord_tmp.w, 1.0, fragcoord.w */ begin_emit_instruction(emit); emit_opcode(emit, VGPU10_OPCODE_DIV, FALSE); emit_dst_register(emit, &tmp_dst_w); emit_src_register(emit, &one); emit_src_register(emit, &fragcoord); end_emit_instruction(emit); /* restore saved value */ emit->fs.fragcoord_input_index = fragcoord_input_index; } } /** * Emit extra instructions to adjust VS inputs/attributes. This can * mean casting a vertex attribute from int to float or setting the * W component to 1, or both. */ static void emit_vertex_attrib_instructions(struct svga_shader_emitter_v10 *emit) { const unsigned save_w_1_mask = emit->key.vs.adjust_attrib_w_1; const unsigned save_itof_mask = emit->key.vs.adjust_attrib_itof; const unsigned save_utof_mask = emit->key.vs.adjust_attrib_utof; const unsigned save_is_bgra_mask = emit->key.vs.attrib_is_bgra; const unsigned save_puint_to_snorm_mask = emit->key.vs.attrib_puint_to_snorm; const unsigned save_puint_to_uscaled_mask = emit->key.vs.attrib_puint_to_uscaled; const unsigned save_puint_to_sscaled_mask = emit->key.vs.attrib_puint_to_sscaled; unsigned adjust_mask = (save_w_1_mask | save_itof_mask | save_utof_mask | save_is_bgra_mask | save_puint_to_snorm_mask | save_puint_to_uscaled_mask | save_puint_to_sscaled_mask); assert(emit->unit == PIPE_SHADER_VERTEX); if (adjust_mask) { struct tgsi_full_src_register one = make_immediate_reg_float(emit, 1.0f); struct tgsi_full_src_register one_int = make_immediate_reg_int(emit, 1); /* We need to turn off these bitmasks while emitting the * instructions below, then restore them afterward. */ emit->key.vs.adjust_attrib_w_1 = 0; emit->key.vs.adjust_attrib_itof = 0; emit->key.vs.adjust_attrib_utof = 0; emit->key.vs.attrib_is_bgra = 0; emit->key.vs.attrib_puint_to_snorm = 0; emit->key.vs.attrib_puint_to_uscaled = 0; emit->key.vs.attrib_puint_to_sscaled = 0; while (adjust_mask) { unsigned index = u_bit_scan(&adjust_mask); /* skip the instruction if this vertex attribute is not being used */ if (emit->info.input_usage_mask[index] == 0) continue; unsigned tmp = emit->vs.adjusted_input[index]; struct tgsi_full_src_register input_src = make_src_reg(TGSI_FILE_INPUT, index); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_dst_register tmp_dst_w = writemask_dst(&tmp_dst, TGSI_WRITEMASK_W); /* ITOF/UTOF/MOV tmp, input[index] */ if (save_itof_mask & (1 << index)) { emit_instruction_op1(emit, VGPU10_OPCODE_ITOF, &tmp_dst, &input_src, FALSE); } else if (save_utof_mask & (1 << index)) { emit_instruction_op1(emit, VGPU10_OPCODE_UTOF, &tmp_dst, &input_src, FALSE); } else if (save_puint_to_snorm_mask & (1 << index)) { emit_puint_to_snorm(emit, &tmp_dst, &input_src); } else if (save_puint_to_uscaled_mask & (1 << index)) { emit_puint_to_uscaled(emit, &tmp_dst, &input_src); } else if (save_puint_to_sscaled_mask & (1 << index)) { emit_puint_to_sscaled(emit, &tmp_dst, &input_src); } else { assert((save_w_1_mask | save_is_bgra_mask) & (1 << index)); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &tmp_dst, &input_src, FALSE); } if (save_is_bgra_mask & (1 << index)) { emit_swap_r_b(emit, &tmp_dst, &tmp_src); } if (save_w_1_mask & (1 << index)) { /* MOV tmp.w, 1.0 */ if (emit->key.vs.attrib_is_pure_int & (1 << index)) { emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &tmp_dst_w, &one_int, FALSE); } else { emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &tmp_dst_w, &one, FALSE); } } } emit->key.vs.adjust_attrib_w_1 = save_w_1_mask; emit->key.vs.adjust_attrib_itof = save_itof_mask; emit->key.vs.adjust_attrib_utof = save_utof_mask; emit->key.vs.attrib_is_bgra = save_is_bgra_mask; emit->key.vs.attrib_puint_to_snorm = save_puint_to_snorm_mask; emit->key.vs.attrib_puint_to_uscaled = save_puint_to_uscaled_mask; emit->key.vs.attrib_puint_to_sscaled = save_puint_to_sscaled_mask; } } /** * Some common values like 0.0, 1.0, 0.5, etc. are frequently needed * to implement some instructions. We pre-allocate those values here * in the immediate constant buffer. */ static void alloc_common_immediates(struct svga_shader_emitter_v10 *emit) { unsigned n = 0; emit->common_immediate_pos[n++] = alloc_immediate_float4(emit, 0.0f, 1.0f, 0.5f, -1.0f); emit->common_immediate_pos[n++] = alloc_immediate_float4(emit, 128.0f, -128.0f, 2.0f, 3.0f); emit->common_immediate_pos[n++] = alloc_immediate_int4(emit, 0, 1, 0, -1); if (emit->key.vs.attrib_puint_to_snorm) { emit->common_immediate_pos[n++] = alloc_immediate_float4(emit, -2.0f, -2.0f, -2.0f, -1.66666f); } if (emit->key.vs.attrib_puint_to_uscaled) { emit->common_immediate_pos[n++] = alloc_immediate_float4(emit, 1023.0f, 3.0f, 0.0f, 0.0f); } if (emit->key.vs.attrib_puint_to_sscaled) { emit->common_immediate_pos[n++] = alloc_immediate_int4(emit, 22, 12, 2, 0); emit->common_immediate_pos[n++] = alloc_immediate_int4(emit, 22, 30, 0, 0); } assert(n <= ARRAY_SIZE(emit->common_immediate_pos)); emit->num_common_immediates = n; } /** * Emit any extra/helper declarations/code that we might need between * the declaration section and code section. */ static boolean emit_pre_helpers(struct svga_shader_emitter_v10 *emit) { /* Properties */ if (emit->unit == PIPE_SHADER_GEOMETRY) emit_property_instructions(emit); /* Declare inputs */ if (!emit_input_declarations(emit)) return FALSE; /* Declare outputs */ if (!emit_output_declarations(emit)) return FALSE; /* Declare temporary registers */ emit_temporaries_declaration(emit); /* Declare constant registers */ emit_constant_declaration(emit); /* Declare samplers and resources */ emit_sampler_declarations(emit); emit_resource_declarations(emit); /* Declare clip distance output registers */ if (emit->unit == PIPE_SHADER_VERTEX || emit->unit == PIPE_SHADER_GEOMETRY) { emit_clip_distance_declarations(emit); } alloc_common_immediates(emit); if (emit->unit == PIPE_SHADER_FRAGMENT && emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS) { float alpha = emit->key.fs.alpha_ref; emit->fs.alpha_ref_index = alloc_immediate_float4(emit, alpha, alpha, alpha, alpha); } /* Now, emit the constant block containing all the immediates * declared by shader, as well as the extra ones seen above. */ emit_vgpu10_immediates_block(emit); if (emit->unit == PIPE_SHADER_FRAGMENT) { emit_frontface_instructions(emit); emit_fragcoord_instructions(emit); } else if (emit->unit == PIPE_SHADER_VERTEX) { emit_vertex_attrib_instructions(emit); } return TRUE; } /** * Emit alpha test code. This compares TEMP[fs_color_tmp_index].w * against the alpha reference value and discards the fragment if the * comparison fails. */ static void emit_alpha_test_instructions(struct svga_shader_emitter_v10 *emit, unsigned fs_color_tmp_index) { /* compare output color's alpha to alpha ref and kill */ unsigned tmp = get_temp_index(emit); struct tgsi_full_src_register tmp_src = make_src_temp_reg(tmp); struct tgsi_full_src_register tmp_src_x = scalar_src(&tmp_src, TGSI_SWIZZLE_X); struct tgsi_full_dst_register tmp_dst = make_dst_temp_reg(tmp); struct tgsi_full_src_register color_src = make_src_temp_reg(fs_color_tmp_index); struct tgsi_full_src_register color_src_w = scalar_src(&color_src, TGSI_SWIZZLE_W); struct tgsi_full_src_register ref_src = make_src_immediate_reg(emit->fs.alpha_ref_index); struct tgsi_full_dst_register color_dst = make_dst_output_reg(emit->fs.color_out_index[0]); assert(emit->unit == PIPE_SHADER_FRAGMENT); /* dst = src0 'alpha_func' src1 */ emit_comparison(emit, emit->key.fs.alpha_func, &tmp_dst, &color_src_w, &ref_src); /* DISCARD if dst.x == 0 */ begin_emit_instruction(emit); emit_discard_opcode(emit, FALSE); /* discard if src0.x is zero */ emit_src_register(emit, &tmp_src_x); end_emit_instruction(emit); /* If we don't need to broadcast the color below or set fragments to * white, emit final color here. */ if (emit->key.fs.write_color0_to_n_cbufs <= 1 && !emit->key.fs.white_fragments) { /* MOV output.color, tempcolor */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst, &color_src, FALSE); /* XXX saturate? */ } free_temp_indexes(emit); } /** * When we need to emit white for all fragments (for emulating XOR logicop * mode), this function copies white into the temporary color output register. */ static void emit_set_color_white(struct svga_shader_emitter_v10 *emit, unsigned fs_color_tmp_index) { struct tgsi_full_dst_register color_dst = make_dst_temp_reg(fs_color_tmp_index); struct tgsi_full_src_register white = make_immediate_reg_float(emit, 1.0f); emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst, &white, FALSE); } /** * Emit instructions for writing a single color output to multiple * color buffers. * This is used when the TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS (or * when key.fs.white_fragments is true). * property is set and the number of render targets is greater than one. * \param fs_color_tmp_index index of the temp register that holds the * color to broadcast. */ static void emit_broadcast_color_instructions(struct svga_shader_emitter_v10 *emit, unsigned fs_color_tmp_index) { const unsigned n = emit->key.fs.write_color0_to_n_cbufs; unsigned i; struct tgsi_full_src_register color_src = make_src_temp_reg(fs_color_tmp_index); assert(emit->unit == PIPE_SHADER_FRAGMENT); for (i = 0; i < n; i++) { unsigned output_reg = emit->fs.color_out_index[i]; struct tgsi_full_dst_register color_dst = make_dst_output_reg(output_reg); /* Fill in this semantic here since we'll use it later in * emit_dst_register(). */ emit->info.output_semantic_name[output_reg] = TGSI_SEMANTIC_COLOR; /* MOV output.color[i], tempcolor */ emit_instruction_op1(emit, VGPU10_OPCODE_MOV, &color_dst, &color_src, FALSE); /* XXX saturate? */ } } /** * Emit extra helper code after the original shader code, but before the * last END/RET instruction. * For vertex shaders this means emitting the extra code to apply the * prescale scale/translation. */ static boolean emit_post_helpers(struct svga_shader_emitter_v10 *emit) { if (emit->unit == PIPE_SHADER_VERTEX) { emit_vertex_instructions(emit); } else if (emit->unit == PIPE_SHADER_FRAGMENT) { const unsigned fs_color_tmp_index = emit->fs.color_tmp_index; /* We no longer want emit_dst_register() to substitute the * temporary fragment color register for the real color output. */ emit->fs.color_tmp_index = INVALID_INDEX; if (emit->key.fs.alpha_func != SVGA3D_CMP_ALWAYS) { emit_alpha_test_instructions(emit, fs_color_tmp_index); } if (emit->key.fs.white_fragments) { emit_set_color_white(emit, fs_color_tmp_index); } if (emit->key.fs.write_color0_to_n_cbufs > 1 || emit->key.fs.white_fragments) { emit_broadcast_color_instructions(emit, fs_color_tmp_index); } } return TRUE; } /** * Translate the TGSI tokens into VGPU10 tokens. */ static boolean emit_vgpu10_instructions(struct svga_shader_emitter_v10 *emit, const struct tgsi_token *tokens) { struct tgsi_parse_context parse; boolean ret = TRUE; boolean pre_helpers_emitted = FALSE; unsigned inst_number = 0; tgsi_parse_init(&parse, tokens); while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); switch (parse.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: ret = emit_vgpu10_immediate(emit, &parse.FullToken.FullImmediate); if (!ret) goto done; break; case TGSI_TOKEN_TYPE_DECLARATION: ret = emit_vgpu10_declaration(emit, &parse.FullToken.FullDeclaration); if (!ret) goto done; break; case TGSI_TOKEN_TYPE_INSTRUCTION: if (!pre_helpers_emitted) { ret = emit_pre_helpers(emit); if (!ret) goto done; pre_helpers_emitted = TRUE; } ret = emit_vgpu10_instruction(emit, inst_number++, &parse.FullToken.FullInstruction); if (!ret) goto done; break; case TGSI_TOKEN_TYPE_PROPERTY: ret = emit_vgpu10_property(emit, &parse.FullToken.FullProperty); if (!ret) goto done; break; default: break; } } done: tgsi_parse_free(&parse); return ret; } /** * Emit the first VGPU10 shader tokens. */ static boolean emit_vgpu10_header(struct svga_shader_emitter_v10 *emit) { VGPU10ProgramToken ptoken; /* First token: VGPU10ProgramToken (version info, program type (VS,GS,PS)) */ ptoken.majorVersion = 4; ptoken.minorVersion = 0; ptoken.programType = translate_shader_type(emit->unit); if (!emit_dword(emit, ptoken.value)) return FALSE; /* Second token: total length of shader, in tokens. We can't fill this * in until we're all done. Emit zero for now. */ return emit_dword(emit, 0); } static boolean emit_vgpu10_tail(struct svga_shader_emitter_v10 *emit) { VGPU10ProgramToken *tokens; /* Replace the second token with total shader length */ tokens = (VGPU10ProgramToken *) emit->buf; tokens[1].value = emit_get_num_tokens(emit); return TRUE; } /** * Modify the FS to read the BCOLORs and use the FACE register * to choose between the front/back colors. */ static const struct tgsi_token * transform_fs_twoside(const struct tgsi_token *tokens) { if (0) { debug_printf("Before tgsi_add_two_side ------------------\n"); tgsi_dump(tokens,0); } tokens = tgsi_add_two_side(tokens); if (0) { debug_printf("After tgsi_add_two_side ------------------\n"); tgsi_dump(tokens, 0); } return tokens; } /** * Modify the FS to do polygon stipple. */ static const struct tgsi_token * transform_fs_pstipple(struct svga_shader_emitter_v10 *emit, const struct tgsi_token *tokens) { const struct tgsi_token *new_tokens; unsigned unit; if (0) { debug_printf("Before pstipple ------------------\n"); tgsi_dump(tokens,0); } new_tokens = util_pstipple_create_fragment_shader(tokens, &unit, 0, TGSI_FILE_INPUT); emit->fs.pstipple_sampler_unit = unit; /* Setup texture state for stipple */ emit->sampler_target[unit] = TGSI_TEXTURE_2D; emit->key.tex[unit].swizzle_r = TGSI_SWIZZLE_X; emit->key.tex[unit].swizzle_g = TGSI_SWIZZLE_Y; emit->key.tex[unit].swizzle_b = TGSI_SWIZZLE_Z; emit->key.tex[unit].swizzle_a = TGSI_SWIZZLE_W; if (0) { debug_printf("After pstipple ------------------\n"); tgsi_dump(new_tokens, 0); } return new_tokens; } /** * Modify the FS to support anti-aliasing point. */ static const struct tgsi_token * transform_fs_aapoint(const struct tgsi_token *tokens, int aa_coord_index) { if (0) { debug_printf("Before tgsi_add_aa_point ------------------\n"); tgsi_dump(tokens,0); } tokens = tgsi_add_aa_point(tokens, aa_coord_index); if (0) { debug_printf("After tgsi_add_aa_point ------------------\n"); tgsi_dump(tokens, 0); } return tokens; } /** * This is the main entrypoint for the TGSI -> VPGU10 translator. */ struct svga_shader_variant * svga_tgsi_vgpu10_translate(struct svga_context *svga, const struct svga_shader *shader, const struct svga_compile_key *key, unsigned unit) { struct svga_shader_variant *variant = NULL; struct svga_shader_emitter_v10 *emit; const struct tgsi_token *tokens = shader->tokens; struct svga_vertex_shader *vs = svga->curr.vs; struct svga_geometry_shader *gs = svga->curr.gs; assert(unit == PIPE_SHADER_VERTEX || unit == PIPE_SHADER_GEOMETRY || unit == PIPE_SHADER_FRAGMENT); /* These two flags cannot be used together */ assert(key->vs.need_prescale + key->vs.undo_viewport <= 1); /* * Setup the code emitter */ emit = alloc_emitter(); if (!emit) return NULL; emit->unit = unit; emit->key = *key; emit->vposition.need_prescale = (emit->key.vs.need_prescale || emit->key.gs.need_prescale); emit->vposition.tmp_index = INVALID_INDEX; emit->vposition.so_index = INVALID_INDEX; emit->vposition.out_index = INVALID_INDEX; emit->fs.color_tmp_index = INVALID_INDEX; emit->fs.face_input_index = INVALID_INDEX; emit->fs.fragcoord_input_index = INVALID_INDEX; emit->gs.prim_id_index = INVALID_INDEX; emit->clip_dist_out_index = INVALID_INDEX; emit->clip_dist_tmp_index = INVALID_INDEX; emit->clip_dist_so_index = INVALID_INDEX; emit->clip_vertex_out_index = INVALID_INDEX; if (emit->key.fs.alpha_func == SVGA3D_CMP_INVALID) { emit->key.fs.alpha_func = SVGA3D_CMP_ALWAYS; } if (unit == PIPE_SHADER_FRAGMENT) { if (key->fs.light_twoside) { tokens = transform_fs_twoside(tokens); } if (key->fs.pstipple) { const struct tgsi_token *new_tokens = transform_fs_pstipple(emit, tokens); if (tokens != shader->tokens) { /* free the two-sided shader tokens */ tgsi_free_tokens(tokens); } tokens = new_tokens; } if (key->fs.aa_point) { tokens = transform_fs_aapoint(tokens, key->fs.aa_point_coord_index); } } if (SVGA_DEBUG & DEBUG_TGSI) { debug_printf("#####################################\n"); debug_printf("### TGSI Shader %u\n", shader->id); tgsi_dump(tokens, 0); } /** * Rescan the header if the token string is different from the one * included in the shader; otherwise, the header info is already up-to-date */ if (tokens != shader->tokens) { tgsi_scan_shader(tokens, &emit->info); } else { emit->info = shader->info; } emit->num_outputs = emit->info.num_outputs; if (unit == PIPE_SHADER_FRAGMENT) { /* Compute FS input remapping to match the output from VS/GS */ if (gs) { svga_link_shaders(&gs->base.info, &emit->info, &emit->linkage); } else { assert(vs); svga_link_shaders(&vs->base.info, &emit->info, &emit->linkage); } } else if (unit == PIPE_SHADER_GEOMETRY) { assert(vs); svga_link_shaders(&vs->base.info, &emit->info, &emit->linkage); } determine_clipping_mode(emit); if (unit == PIPE_SHADER_GEOMETRY || unit == PIPE_SHADER_VERTEX) { if (shader->stream_output != NULL || emit->clip_mode == CLIP_DISTANCE) { /* if there is stream output declarations associated * with this shader or the shader writes to ClipDistance * then reserve extra registers for the non-adjusted vertex position * and the ClipDistance shadow copy */ emit->vposition.so_index = emit->num_outputs++; if (emit->clip_mode == CLIP_DISTANCE) { emit->clip_dist_so_index = emit->num_outputs++; if (emit->info.num_written_clipdistance > 4) emit->num_outputs++; } } } /* * Do actual shader translation. */ if (!emit_vgpu10_header(emit)) { debug_printf("svga: emit VGPU10 header failed\n"); goto cleanup; } if (!emit_vgpu10_instructions(emit, tokens)) { debug_printf("svga: emit VGPU10 instructions failed\n"); goto cleanup; } if (!emit_vgpu10_tail(emit)) { debug_printf("svga: emit VGPU10 tail failed\n"); goto cleanup; } if (emit->register_overflow) { goto cleanup; } /* * Create, initialize the 'variant' object. */ variant = svga_new_shader_variant(svga); if (!variant) goto cleanup; variant->shader = shader; variant->nr_tokens = emit_get_num_tokens(emit); variant->tokens = (const unsigned *)emit->buf; emit->buf = NULL; /* buffer is no longer owed by emitter context */ memcpy(&variant->key, key, sizeof(*key)); variant->id = UTIL_BITMASK_INVALID_INDEX; /* The extra constant starting offset starts with the number of * shader constants declared in the shader. */ variant->extra_const_start = emit->num_shader_consts[0]; if (key->gs.wide_point) { /** * The extra constant added in the transformed shader * for inverse viewport scale is to be supplied by the driver. * So the extra constant starting offset needs to be reduced by 1. */ assert(variant->extra_const_start > 0); variant->extra_const_start--; } variant->pstipple_sampler_unit = emit->fs.pstipple_sampler_unit; /* If there was exactly one write to a fragment shader output register * and it came from a constant buffer, we know all fragments will have * the same color (except for blending). */ variant->constant_color_output = emit->constant_color_output && emit->num_output_writes == 1; /** keep track in the variant if flat interpolation is used * for any of the varyings. */ variant->uses_flat_interp = emit->uses_flat_interp; if (tokens != shader->tokens) { tgsi_free_tokens(tokens); } cleanup: free_emitter(emit); return variant; }