/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * Copyright 2008-2010 VMware, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * Texture sampling * * Authors: * Brian Paul * Keith Whitwell */ #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_shader_tokens.h" #include "util/u_math.h" #include "util/u_memory.h" #include "sp_quad.h" /* only for #define QUAD_* tokens */ #include "sp_tex_sample.h" #include "sp_tex_tile_cache.h" /** Set to one to help debug texture sampling */ #define DEBUG_TEX 0 /* * Return fractional part of 'f'. Used for computing interpolation weights. * Need to be careful with negative values. * Note, if this function isn't perfect you'll sometimes see 1-pixel bands * of improperly weighted linear-filtered textures. * The tests/texwrap.c demo is a good test. */ static INLINE float frac(float f) { return f - floorf(f); } /** * Linear interpolation macro */ static INLINE float lerp(float a, float v0, float v1) { return v0 + a * (v1 - v0); } /** * Do 2D/bilinear interpolation of float values. * v00, v10, v01 and v11 are typically four texture samples in a square/box. * a and b are the horizontal and vertical interpolants. * It's important that this function is inlined when compiled with * optimization! If we find that's not true on some systems, convert * to a macro. */ static INLINE float lerp_2d(float a, float b, float v00, float v10, float v01, float v11) { const float temp0 = lerp(a, v00, v10); const float temp1 = lerp(a, v01, v11); return lerp(b, temp0, temp1); } /** * As above, but 3D interpolation of 8 values. */ static INLINE float lerp_3d(float a, float b, float c, float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111) { const float temp0 = lerp_2d(a, b, v000, v100, v010, v110); const float temp1 = lerp_2d(a, b, v001, v101, v011, v111); return lerp(c, temp0, temp1); } /** * Compute coord % size for repeat wrap modes. * Note that if coord is negative, coord % size doesn't give the right * value. To avoid that problem we add a large multiple of the size * (rather than using a conditional). */ static INLINE int repeat(int coord, unsigned size) { return (coord + size * 1024) % size; } /** * Apply texture coord wrapping mode and return integer texture indexes * for a vector of four texcoords (S or T or P). * \param wrapMode PIPE_TEX_WRAP_x * \param s the incoming texcoords * \param size the texture image size * \param icoord returns the integer texcoords * \return integer texture index */ static void wrap_nearest_repeat(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [0,1) */ /* i limited to [0,size-1] */ for (ch = 0; ch < 4; ch++) { int i = util_ifloor(s[ch] * size); icoord[ch] = repeat(i, size); } } static void wrap_nearest_clamp(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [0,1] */ /* i limited to [0,size-1] */ for (ch = 0; ch < 4; ch++) { if (s[ch] <= 0.0F) icoord[ch] = 0; else if (s[ch] >= 1.0F) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(s[ch] * size); } } static void wrap_nearest_clamp_to_edge(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [min,max] */ /* i limited to [0, size-1] */ const float min = 1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { if (s[ch] < min) icoord[ch] = 0; else if (s[ch] > max) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(s[ch] * size); } } static void wrap_nearest_clamp_to_border(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [min,max] */ /* i limited to [-1, size] */ const float min = -1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { if (s[ch] <= min) icoord[ch] = -1; else if (s[ch] >= max) icoord[ch] = size; else icoord[ch] = util_ifloor(s[ch] * size); } } static void wrap_nearest_mirror_repeat(const float s[4], unsigned size, int icoord[4]) { uint ch; const float min = 1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { const int flr = util_ifloor(s[ch]); float u = frac(s[ch]); if (flr & 1) u = 1.0F - u; if (u < min) icoord[ch] = 0; else if (u > max) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(u * size); } } static void wrap_nearest_mirror_clamp(const float s[4], unsigned size, int icoord[4]) { uint ch; for (ch = 0; ch < 4; ch++) { /* s limited to [0,1] */ /* i limited to [0,size-1] */ const float u = fabsf(s[ch]); if (u <= 0.0F) icoord[ch] = 0; else if (u >= 1.0F) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(u * size); } } static void wrap_nearest_mirror_clamp_to_edge(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [min,max] */ /* i limited to [0, size-1] */ const float min = 1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { const float u = fabsf(s[ch]); if (u < min) icoord[ch] = 0; else if (u > max) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(u * size); } } static void wrap_nearest_mirror_clamp_to_border(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [min,max] */ /* i limited to [0, size-1] */ const float min = -1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { const float u = fabsf(s[ch]); if (u < min) icoord[ch] = -1; else if (u > max) icoord[ch] = size; else icoord[ch] = util_ifloor(u * size); } } /** * Used to compute texel locations for linear sampling for four texcoords. * \param wrapMode PIPE_TEX_WRAP_x * \param s the texcoords * \param size the texture image size * \param icoord0 returns first texture indexes * \param icoord1 returns second texture indexes (usually icoord0 + 1) * \param w returns blend factor/weight between texture indexes * \param icoord returns the computed integer texture coords */ static void wrap_linear_repeat(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = s[ch] * size - 0.5F; icoord0[ch] = repeat(util_ifloor(u), size); icoord1[ch] = repeat(icoord0[ch] + 1, size); w[ch] = frac(u); } } static void wrap_linear_clamp(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], 0.0F, 1.0F); u = u * size - 0.5f; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = frac(u); } } static void wrap_linear_clamp_to_edge(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], 0.0F, 1.0F); u = u * size - 0.5f; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord0[ch] < 0) icoord0[ch] = 0; if (icoord1[ch] >= (int) size) icoord1[ch] = size - 1; w[ch] = frac(u); } } static void wrap_linear_clamp_to_border(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { const float min = -1.0F / (2.0F * size); const float max = 1.0F - min; uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], min, max); u = u * size - 0.5f; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = frac(u); } } static void wrap_linear_mirror_repeat(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { const int flr = util_ifloor(s[ch]); float u = frac(s[ch]); if (flr & 1) u = 1.0F - u; u = u * size - 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord0[ch] < 0) icoord0[ch] = 0; if (icoord1[ch] >= (int) size) icoord1[ch] = size - 1; w[ch] = frac(u); } } static void wrap_linear_mirror_clamp(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = fabsf(s[ch]); if (u >= 1.0F) u = (float) size; else u *= size; u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = frac(u); } } static void wrap_linear_mirror_clamp_to_edge(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = fabsf(s[ch]); if (u >= 1.0F) u = (float) size; else u *= size; u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord0[ch] < 0) icoord0[ch] = 0; if (icoord1[ch] >= (int) size) icoord1[ch] = size - 1; w[ch] = frac(u); } } static void wrap_linear_mirror_clamp_to_border(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { const float min = -1.0F / (2.0F * size); const float max = 1.0F - min; uint ch; for (ch = 0; ch < 4; ch++) { float u = fabsf(s[ch]); if (u <= min) u = min * size; else if (u >= max) u = max * size; else u *= size; u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = frac(u); } } /** * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords. */ static void wrap_nearest_unorm_clamp(const float s[4], unsigned size, int icoord[4]) { uint ch; for (ch = 0; ch < 4; ch++) { int i = util_ifloor(s[ch]); icoord[ch]= CLAMP(i, 0, (int) size-1); } } /** * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords. */ static void wrap_nearest_unorm_clamp_to_border(const float s[4], unsigned size, int icoord[4]) { uint ch; for (ch = 0; ch < 4; ch++) { icoord[ch]= util_ifloor( CLAMP(s[ch], -0.5F, (float) size + 0.5F) ); } } /** * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords. */ static void wrap_nearest_unorm_clamp_to_edge(const float s[4], unsigned size, int icoord[4]) { uint ch; for (ch = 0; ch < 4; ch++) { icoord[ch]= util_ifloor( CLAMP(s[ch], 0.5F, (float) size - 0.5F) ); } } /** * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords. */ static void wrap_linear_unorm_clamp(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { /* Not exactly what the spec says, but it matches NVIDIA output */ float u = CLAMP(s[ch] - 0.5F, 0.0f, (float) size - 1.0f); icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = frac(u); } } /** * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords. */ static void wrap_linear_unorm_clamp_to_border(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], -0.5F, (float) size + 0.5F); u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord1[ch] > (int) size - 1) icoord1[ch] = size - 1; w[ch] = frac(u); } } /** * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords. */ static void wrap_linear_unorm_clamp_to_edge(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], +0.5F, (float) size - 0.5F); u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord1[ch] > (int) size - 1) icoord1[ch] = size - 1; w[ch] = frac(u); } } /** * Do coordinate to array index conversion. For array textures. */ static INLINE void wrap_array_layer(const float coord[4], unsigned size, int layer[4]) { uint ch; for (ch = 0; ch < 4; ch++) { int c = util_ifloor(coord[ch] + 0.5F); layer[ch] = CLAMP(c, 0, size - 1); } } /** * Examine the quad's texture coordinates to compute the partial * derivatives w.r.t X and Y, then compute lambda (level of detail). */ static float compute_lambda_1d(const struct sp_sampler_variant *samp, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE]) { const struct pipe_resource *texture = samp->view->texture; float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]); float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]); float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level); return util_fast_log2(rho); } static float compute_lambda_2d(const struct sp_sampler_variant *samp, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE]) { const struct pipe_resource *texture = samp->view->texture; float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]); float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]); float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]); float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]); float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level); float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, samp->view->u.tex.first_level); float rho = MAX2(maxx, maxy); return util_fast_log2(rho); } static float compute_lambda_3d(const struct sp_sampler_variant *samp, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE]) { const struct pipe_resource *texture = samp->view->texture; float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]); float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]); float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]); float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]); float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]); float dpdy = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]); float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level); float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, samp->view->u.tex.first_level); float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, samp->view->u.tex.first_level); float rho; rho = MAX2(maxx, maxy); rho = MAX2(rho, maxz); return util_fast_log2(rho); } /** * Compute lambda for a vertex texture sampler. * Since there aren't derivatives to use, just return 0. */ static float compute_lambda_vert(const struct sp_sampler_variant *samp, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE]) { return 0.0f; } /** * Get a texel from a texture, using the texture tile cache. * * \param addr the template tex address containing cube, z, face info. * \param x the x coord of texel within 2D image * \param y the y coord of texel within 2D image * \param rgba the quad to put the texel/color into * * XXX maybe move this into sp_tex_tile_cache.c and merge with the * sp_get_cached_tile_tex() function. Also, get 4 texels instead of 1... */ static INLINE const float * get_texel_2d_no_border(const struct sp_sampler_variant *samp, union tex_tile_address addr, int x, int y) { const struct softpipe_tex_cached_tile *tile; addr.bits.x = x / TILE_SIZE; addr.bits.y = y / TILE_SIZE; y %= TILE_SIZE; x %= TILE_SIZE; tile = sp_get_cached_tile_tex(samp->cache, addr); return &tile->data.color[y][x][0]; } static INLINE const float * get_texel_2d(const struct sp_sampler_variant *samp, union tex_tile_address addr, int x, int y) { const struct pipe_resource *texture = samp->view->texture; unsigned level = addr.bits.level; if (x < 0 || x >= (int) u_minify(texture->width0, level) || y < 0 || y >= (int) u_minify(texture->height0, level)) { return samp->sampler->border_color; } else { return get_texel_2d_no_border( samp, addr, x, y ); } } /* Gather a quad of adjacent texels within a tile: */ static INLINE void get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_variant *samp, union tex_tile_address addr, unsigned x, unsigned y, const float *out[4]) { const struct softpipe_tex_cached_tile *tile; addr.bits.x = x / TILE_SIZE; addr.bits.y = y / TILE_SIZE; y %= TILE_SIZE; x %= TILE_SIZE; tile = sp_get_cached_tile_tex(samp->cache, addr); out[0] = &tile->data.color[y ][x ][0]; out[1] = &tile->data.color[y ][x+1][0]; out[2] = &tile->data.color[y+1][x ][0]; out[3] = &tile->data.color[y+1][x+1][0]; } /* Gather a quad of potentially non-adjacent texels: */ static INLINE void get_texel_quad_2d_no_border(const struct sp_sampler_variant *samp, union tex_tile_address addr, int x0, int y0, int x1, int y1, const float *out[4]) { out[0] = get_texel_2d_no_border( samp, addr, x0, y0 ); out[1] = get_texel_2d_no_border( samp, addr, x1, y0 ); out[2] = get_texel_2d_no_border( samp, addr, x0, y1 ); out[3] = get_texel_2d_no_border( samp, addr, x1, y1 ); } /* Can involve a lot of unnecessary checks for border color: */ static INLINE void get_texel_quad_2d(const struct sp_sampler_variant *samp, union tex_tile_address addr, int x0, int y0, int x1, int y1, const float *out[4]) { out[0] = get_texel_2d( samp, addr, x0, y0 ); out[1] = get_texel_2d( samp, addr, x1, y0 ); out[3] = get_texel_2d( samp, addr, x1, y1 ); out[2] = get_texel_2d( samp, addr, x0, y1 ); } /* 3d variants: */ static INLINE const float * get_texel_3d_no_border(const struct sp_sampler_variant *samp, union tex_tile_address addr, int x, int y, int z) { const struct softpipe_tex_cached_tile *tile; addr.bits.x = x / TILE_SIZE; addr.bits.y = y / TILE_SIZE; addr.bits.z = z; y %= TILE_SIZE; x %= TILE_SIZE; tile = sp_get_cached_tile_tex(samp->cache, addr); return &tile->data.color[y][x][0]; } static INLINE const float * get_texel_3d(const struct sp_sampler_variant *samp, union tex_tile_address addr, int x, int y, int z) { const struct pipe_resource *texture = samp->view->texture; unsigned level = addr.bits.level; if (x < 0 || x >= (int) u_minify(texture->width0, level) || y < 0 || y >= (int) u_minify(texture->height0, level) || z < 0 || z >= (int) u_minify(texture->depth0, level)) { return samp->sampler->border_color; } else { return get_texel_3d_no_border( samp, addr, x, y, z ); } } /* Get texel pointer for 1D array texture */ static INLINE const float * get_texel_1d_array(const struct sp_sampler_variant *samp, union tex_tile_address addr, int x, int y) { const struct pipe_resource *texture = samp->view->texture; unsigned level = addr.bits.level; if (x < 0 || x >= (int) u_minify(texture->width0, level)) { return samp->sampler->border_color; } else { return get_texel_2d_no_border(samp, addr, x, y); } } /* Get texel pointer for 2D array texture */ static INLINE const float * get_texel_2d_array(const struct sp_sampler_variant *samp, union tex_tile_address addr, int x, int y, int layer) { const struct pipe_resource *texture = samp->view->texture; unsigned level = addr.bits.level; assert(layer < texture->array_size); if (x < 0 || x >= (int) u_minify(texture->width0, level) || y < 0 || y >= (int) u_minify(texture->height0, level)) { return samp->sampler->border_color; } else { return get_texel_3d_no_border(samp, addr, x, y, layer); } } /** * Given the logbase2 of a mipmap's base level size and a mipmap level, * return the size (in texels) of that mipmap level. * For example, if level[0].width = 256 then base_pot will be 8. * If level = 2, then we'll return 64 (the width at level=2). * Return 1 if level > base_pot. */ static INLINE unsigned pot_level_size(unsigned base_pot, unsigned level) { return (base_pot >= level) ? (1 << (base_pot - level)) : 1; } static void print_sample(const char *function, float rgba[NUM_CHANNELS][QUAD_SIZE]) { debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n", function, rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0], rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1], rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2], rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]); } /* Some image-filter fastpaths: */ static INLINE void img_filter_2d_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); unsigned j; unsigned level = samp->level; unsigned xpot = pot_level_size(samp->xpot, level); unsigned ypot = pot_level_size(samp->ypot, level); unsigned xmax = (xpot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, xpot) - 1; */ unsigned ymax = (ypot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, ypot) - 1; */ union tex_tile_address addr; addr.value = 0; addr.bits.level = samp->level; for (j = 0; j < QUAD_SIZE; j++) { int c; float u = s[j] * xpot - 0.5F; float v = t[j] * ypot - 0.5F; int uflr = util_ifloor(u); int vflr = util_ifloor(v); float xw = u - (float)uflr; float yw = v - (float)vflr; int x0 = uflr & (xpot - 1); int y0 = vflr & (ypot - 1); const float *tx[4]; /* Can we fetch all four at once: */ if (x0 < xmax && y0 < ymax) { get_texel_quad_2d_no_border_single_tile(samp, addr, x0, y0, tx); } else { unsigned x1 = (x0 + 1) & (xpot - 1); unsigned y1 = (y0 + 1) & (ypot - 1); get_texel_quad_2d_no_border(samp, addr, x0, y0, x1, y1, tx); } /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp_2d(xw, yw, tx[0][c], tx[1][c], tx[2][c], tx[3][c]); } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static INLINE void img_filter_2d_nearest_repeat_POT(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); unsigned j; unsigned level = samp->level; unsigned xpot = pot_level_size(samp->xpot, level); unsigned ypot = pot_level_size(samp->ypot, level); union tex_tile_address addr; addr.value = 0; addr.bits.level = samp->level; for (j = 0; j < QUAD_SIZE; j++) { int c; float u = s[j] * xpot; float v = t[j] * ypot; int uflr = util_ifloor(u); int vflr = util_ifloor(v); int x0 = uflr & (xpot - 1); int y0 = vflr & (ypot - 1); const float *out = get_texel_2d_no_border(samp, addr, x0, y0); for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static INLINE void img_filter_2d_nearest_clamp_POT(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); unsigned j; unsigned level = samp->level; unsigned xpot = pot_level_size(samp->xpot, level); unsigned ypot = pot_level_size(samp->ypot, level); union tex_tile_address addr; addr.value = 0; addr.bits.level = samp->level; for (j = 0; j < QUAD_SIZE; j++) { int c; float u = s[j] * xpot; float v = t[j] * ypot; int x0, y0; const float *out; x0 = util_ifloor(u); if (x0 < 0) x0 = 0; else if (x0 > xpot - 1) x0 = xpot - 1; y0 = util_ifloor(v); if (y0 < 0) y0 = 0; else if (y0 > ypot - 1) y0 = ypot - 1; out = get_texel_2d_no_border(samp, addr, x0, y0); for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_1d_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width; int x[4]; union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); assert(width > 0); addr.value = 0; addr.bits.level = samp->level; samp->nearest_texcoord_s(s, width, x); for (j = 0; j < QUAD_SIZE; j++) { const float *out = get_texel_2d(samp, addr, x[j], 0); int c; for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_1d_array_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width; int x[4], layer[4]; union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); assert(width > 0); addr.value = 0; addr.bits.level = samp->level; samp->nearest_texcoord_s(s, width, x); wrap_array_layer(t, texture->array_size, layer); for (j = 0; j < QUAD_SIZE; j++) { const float *out = get_texel_1d_array(samp, addr, x[j], layer[j]); int c; for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_2d_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width, height; int x[4], y[4]; union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); height = u_minify(texture->height0, level0); assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = samp->level; samp->nearest_texcoord_s(s, width, x); samp->nearest_texcoord_t(t, height, y); for (j = 0; j < QUAD_SIZE; j++) { const float *out = get_texel_2d(samp, addr, x[j], y[j]); int c; for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_2d_array_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width, height; int x[4], y[4], layer[4]; union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); height = u_minify(texture->height0, level0); assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = samp->level; samp->nearest_texcoord_s(s, width, x); samp->nearest_texcoord_t(t, height, y); wrap_array_layer(p, texture->array_size, layer); for (j = 0; j < QUAD_SIZE; j++) { const float *out = get_texel_2d_array(samp, addr, x[j], y[j], layer[j]); int c; for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static INLINE union tex_tile_address face(union tex_tile_address addr, unsigned face ) { addr.bits.face = face; return addr; } static void img_filter_cube_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; const unsigned *faces = samp->faces; /* zero when not cube-mapping */ unsigned level0, j; int width, height; int x[4], y[4]; union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); height = u_minify(texture->height0, level0); assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = samp->level; samp->nearest_texcoord_s(s, width, x); samp->nearest_texcoord_t(t, height, y); for (j = 0; j < QUAD_SIZE; j++) { const float *out = get_texel_2d(samp, face(addr, faces[j]), x[j], y[j]); int c; for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_3d_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width, height, depth; int x[4], y[4], z[4]; union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); height = u_minify(texture->height0, level0); depth = u_minify(texture->depth0, level0); assert(width > 0); assert(height > 0); assert(depth > 0); samp->nearest_texcoord_s(s, width, x); samp->nearest_texcoord_t(t, height, y); samp->nearest_texcoord_p(p, depth, z); addr.value = 0; addr.bits.level = samp->level; for (j = 0; j < QUAD_SIZE; j++) { const float *out = get_texel_3d(samp, addr, x[j], y[j], z[j]); int c; for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } } static void img_filter_1d_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width; int x0[4], x1[4]; float xw[4]; /* weights */ union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); assert(width > 0); addr.value = 0; addr.bits.level = samp->level; samp->linear_texcoord_s(s, width, x0, x1, xw); for (j = 0; j < QUAD_SIZE; j++) { const float *tx0 = get_texel_2d(samp, addr, x0[j], 0); const float *tx1 = get_texel_2d(samp, addr, x1[j], 0); int c; /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]); } } } static void img_filter_1d_array_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width; int x0[4], x1[4], layer[4]; float xw[4]; /* weights */ union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); assert(width > 0); addr.value = 0; addr.bits.level = samp->level; samp->linear_texcoord_s(s, width, x0, x1, xw); wrap_array_layer(t, texture->array_size, layer); for (j = 0; j < QUAD_SIZE; j++) { const float *tx0 = get_texel_1d_array(samp, addr, x0[j], layer[j]); const float *tx1 = get_texel_1d_array(samp, addr, x1[j], layer[j]); int c; /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]); } } } static void img_filter_2d_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width, height; int x0[4], y0[4], x1[4], y1[4]; float xw[4], yw[4]; /* weights */ union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); height = u_minify(texture->height0, level0); assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = samp->level; samp->linear_texcoord_s(s, width, x0, x1, xw); samp->linear_texcoord_t(t, height, y0, y1, yw); for (j = 0; j < QUAD_SIZE; j++) { const float *tx0 = get_texel_2d(samp, addr, x0[j], y0[j]); const float *tx1 = get_texel_2d(samp, addr, x1[j], y0[j]); const float *tx2 = get_texel_2d(samp, addr, x0[j], y1[j]); const float *tx3 = get_texel_2d(samp, addr, x1[j], y1[j]); int c; /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp_2d(xw[j], yw[j], tx0[c], tx1[c], tx2[c], tx3[c]); } } } static void img_filter_2d_array_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width, height; int x0[4], y0[4], x1[4], y1[4], layer[4]; float xw[4], yw[4]; /* weights */ union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); height = u_minify(texture->height0, level0); assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = samp->level; samp->linear_texcoord_s(s, width, x0, x1, xw); samp->linear_texcoord_t(t, height, y0, y1, yw); wrap_array_layer(p, texture->array_size, layer); for (j = 0; j < QUAD_SIZE; j++) { const float *tx0 = get_texel_2d_array(samp, addr, x0[j], y0[j], layer[j]); const float *tx1 = get_texel_2d_array(samp, addr, x1[j], y0[j], layer[j]); const float *tx2 = get_texel_2d_array(samp, addr, x0[j], y1[j], layer[j]); const float *tx3 = get_texel_2d_array(samp, addr, x1[j], y1[j], layer[j]); int c; /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp_2d(xw[j], yw[j], tx0[c], tx1[c], tx2[c], tx3[c]); } } } static void img_filter_cube_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; const unsigned *faces = samp->faces; /* zero when not cube-mapping */ unsigned level0, j; int width, height; int x0[4], y0[4], x1[4], y1[4]; float xw[4], yw[4]; /* weights */ union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); height = u_minify(texture->height0, level0); assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = samp->level; samp->linear_texcoord_s(s, width, x0, x1, xw); samp->linear_texcoord_t(t, height, y0, y1, yw); for (j = 0; j < QUAD_SIZE; j++) { union tex_tile_address addrj = face(addr, faces[j]); const float *tx0 = get_texel_2d(samp, addrj, x0[j], y0[j]); const float *tx1 = get_texel_2d(samp, addrj, x1[j], y0[j]); const float *tx2 = get_texel_2d(samp, addrj, x0[j], y1[j]); const float *tx3 = get_texel_2d(samp, addrj, x1[j], y1[j]); int c; /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp_2d(xw[j], yw[j], tx0[c], tx1[c], tx2[c], tx3[c]); } } } static void img_filter_3d_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0, j; int width, height, depth; int x0[4], x1[4], y0[4], y1[4], z0[4], z1[4]; float xw[4], yw[4], zw[4]; /* interpolation weights */ union tex_tile_address addr; level0 = samp->level; width = u_minify(texture->width0, level0); height = u_minify(texture->height0, level0); depth = u_minify(texture->depth0, level0); addr.value = 0; addr.bits.level = level0; assert(width > 0); assert(height > 0); assert(depth > 0); samp->linear_texcoord_s(s, width, x0, x1, xw); samp->linear_texcoord_t(t, height, y0, y1, yw); samp->linear_texcoord_p(p, depth, z0, z1, zw); for (j = 0; j < QUAD_SIZE; j++) { int c; const float *tx00 = get_texel_3d(samp, addr, x0[j], y0[j], z0[j]); const float *tx01 = get_texel_3d(samp, addr, x1[j], y0[j], z0[j]); const float *tx02 = get_texel_3d(samp, addr, x0[j], y1[j], z0[j]); const float *tx03 = get_texel_3d(samp, addr, x1[j], y1[j], z0[j]); const float *tx10 = get_texel_3d(samp, addr, x0[j], y0[j], z1[j]); const float *tx11 = get_texel_3d(samp, addr, x1[j], y0[j], z1[j]); const float *tx12 = get_texel_3d(samp, addr, x0[j], y1[j], z1[j]); const float *tx13 = get_texel_3d(samp, addr, x1[j], y1[j], z1[j]); /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp_3d(xw[j], yw[j], zw[j], tx00[c], tx01[c], tx02[c], tx03[c], tx10[c], tx11[c], tx12[c], tx13[c]); } } } /* Calculate level of detail for every fragment. * Note that lambda has already been biased by global LOD bias. */ static INLINE void compute_lod(const struct pipe_sampler_state *sampler, const float biased_lambda, const float lodbias[QUAD_SIZE], float lod[QUAD_SIZE]) { uint i; for (i = 0; i < QUAD_SIZE; i++) { lod[i] = biased_lambda + lodbias[i]; lod[i] = CLAMP(lod[i], sampler->min_lod, sampler->max_lod); } } static void mip_filter_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; int level0; float lambda; float lod[QUAD_SIZE]; if (control == tgsi_sampler_lod_bias) { lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias; compute_lod(samp->sampler, lambda, c0, lod); } else { assert(control == tgsi_sampler_lod_explicit); memcpy(lod, c0, sizeof(lod)); } /* XXX: Take into account all lod values. */ lambda = lod[0]; level0 = samp->view->u.tex.first_level + (int)lambda; if (lambda < 0.0) { samp->level = samp->view->u.tex.first_level; samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba); } else if (level0 >= texture->last_level) { samp->level = texture->last_level; samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba); } else { float levelBlend = frac(lambda); float rgba0[4][4]; float rgba1[4][4]; int c,j; samp->level = level0; samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0); samp->level = level0+1; samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1); for (j = 0; j < QUAD_SIZE; j++) { for (c = 0; c < 4; c++) { rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]); } } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } /** * Compute nearest mipmap level from texcoords. * Then sample the texture level for four elements of a quad. * \param c0 the LOD bias factors, or absolute LODs (depending on control) */ static void mip_filter_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; float lambda; float lod[QUAD_SIZE]; if (control == tgsi_sampler_lod_bias) { lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias; compute_lod(samp->sampler, lambda, c0, lod); } else { assert(control == tgsi_sampler_lod_explicit); memcpy(lod, c0, sizeof(lod)); } /* XXX: Take into account all lod values. */ lambda = lod[0]; if (lambda < 0.0) { samp->level = samp->view->u.tex.first_level; samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba); } else { samp->level = samp->view->u.tex.first_level + (int)(lambda + 0.5F) ; samp->level = MIN2(samp->level, (int)texture->last_level); samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba); } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void mip_filter_none(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); float lambda; float lod[QUAD_SIZE]; if (control == tgsi_sampler_lod_bias) { lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias; compute_lod(samp->sampler, lambda, c0, lod); } else { assert(control == tgsi_sampler_lod_explicit); memcpy(lod, c0, sizeof(lod)); } /* XXX: Take into account all lod values. */ lambda = lod[0]; samp->level = samp->view->u.tex.first_level; if (lambda < 0.0) { samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba); } else { samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba); } } /* For anisotropic filtering */ #define WEIGHT_LUT_SIZE 1024 static float *weightLut = NULL; /** * Creates the look-up table used to speed-up EWA sampling */ static void create_filter_table(void) { unsigned i; if (!weightLut) { weightLut = (float *) malloc(WEIGHT_LUT_SIZE * sizeof(float)); for (i = 0; i < WEIGHT_LUT_SIZE; ++i) { float alpha = 2; float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1); float weight = (float) exp(-alpha * r2); weightLut[i] = weight; } } } /** * Elliptical weighted average (EWA) filter for producing high quality * anisotropic filtered results. * Based on the Higher Quality Elliptical Weighted Avarage Filter * published by Paul S. Heckbert in his Master's Thesis * "Fundamentals of Texture Mapping and Image Warping" (1989) */ static void img_filter_2d_ewa(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, const float dudx, const float dvdx, const float dudy, const float dvdy, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; unsigned level0 = samp->level > 0 ? samp->level : 0; float scaling = 1.0 / (1 << level0); int width = u_minify(texture->width0, level0); int height = u_minify(texture->height0, level0); float ux = dudx * scaling; float vx = dvdx * scaling; float uy = dudy * scaling; float vy = dvdy * scaling; /* compute ellipse coefficients to bound the region: * A*x*x + B*x*y + C*y*y = F. */ float A = vx*vx+vy*vy+1; float B = -2*(ux*vx+uy*vy); float C = ux*ux+uy*uy+1; float F = A*C-B*B/4.0; /* check if it is an ellipse */ /* ASSERT(F > 0.0); */ /* Compute the ellipse's (u,v) bounding box in texture space */ float d = -B*B+4.0*C*A; float box_u = 2.0 / d * sqrt(d*C*F); /* box_u -> half of bbox with */ float box_v = 2.0 / d * sqrt(A*d*F); /* box_v -> half of bbox height */ float rgba_temp[NUM_CHANNELS][QUAD_SIZE]; float s_buffer[QUAD_SIZE]; float t_buffer[QUAD_SIZE]; float weight_buffer[QUAD_SIZE]; unsigned buffer_next; int j; float den;// = 0.0F; float ddq; float U;// = u0 - tex_u; int v; /* Scale ellipse formula to directly index the Filter Lookup Table. * i.e. scale so that F = WEIGHT_LUT_SIZE-1 */ double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F; A *= formScale; B *= formScale; C *= formScale; /* F *= formScale; */ /* no need to scale F as we don't use it below here */ /* For each quad, the du and dx values are the same and so the ellipse is * also the same. Note that texel/image access can only be performed using * a quad, i.e. it is not possible to get the pixel value for a single * tex coord. In order to have a better performance, the access is buffered * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is full, * then the pixel values are read from the image. */ ddq = 2 * A; for (j = 0; j < QUAD_SIZE; j++) { /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse * and incrementally update the value of Ax^2+Bxy*Cy^2; when this * value, q, is less than F, we're inside the ellipse */ float tex_u = -0.5F + s[j] * texture->width0 * scaling; float tex_v = -0.5F + t[j] * texture->height0 * scaling; int u0 = (int) floorf(tex_u - box_u); int u1 = (int) ceilf(tex_u + box_u); int v0 = (int) floorf(tex_v - box_v); int v1 = (int) ceilf(tex_v + box_v); float num[4] = {0.0F, 0.0F, 0.0F, 0.0F}; buffer_next = 0; den = 0; U = u0 - tex_u; for (v = v0; v <= v1; ++v) { float V = v - tex_v; float dq = A * (2 * U + 1) + B * V; float q = (C * V + B * U) * V + A * U * U; int u; for (u = u0; u <= u1; ++u) { /* Note that the ellipse has been pre-scaled so F = WEIGHT_LUT_SIZE - 1 */ if (q < WEIGHT_LUT_SIZE) { /* as a LUT is used, q must never be negative; * should not happen, though */ const int qClamped = q >= 0.0F ? q : 0; float weight = weightLut[qClamped]; weight_buffer[buffer_next] = weight; s_buffer[buffer_next] = u / ((float) width); t_buffer[buffer_next] = v / ((float) height); buffer_next++; if (buffer_next == QUAD_SIZE) { /* 4 texel coords are in the buffer -> read it now */ unsigned jj; /* it is assumed that samp->min_img_filter is set to * img_filter_2d_nearest or one of the * accelerated img_filter_2d_nearest_XXX functions. */ samp->min_img_filter(tgsi_sampler, s_buffer, t_buffer, p, NULL, tgsi_sampler_lod_bias, rgba_temp); for (jj = 0; jj < buffer_next; jj++) { num[0] += weight_buffer[jj] * rgba_temp[0][jj]; num[1] += weight_buffer[jj] * rgba_temp[1][jj]; num[2] += weight_buffer[jj] * rgba_temp[2][jj]; num[3] += weight_buffer[jj] * rgba_temp[3][jj]; } buffer_next = 0; } den += weight; } q += dq; dq += ddq; } } /* if the tex coord buffer contains unread values, we will read them now. * Note that in most cases we have to read more pixel values than required, * however, as the img_filter_2d_nearest function(s) does not have a count * parameter, we need to read the whole quad and ignore the unused values */ if (buffer_next > 0) { unsigned jj; /* it is assumed that samp->min_img_filter is set to * img_filter_2d_nearest or one of the * accelerated img_filter_2d_nearest_XXX functions. */ samp->min_img_filter(tgsi_sampler, s_buffer, t_buffer, p, NULL, tgsi_sampler_lod_bias, rgba_temp); for (jj = 0; jj < buffer_next; jj++) { num[0] += weight_buffer[jj] * rgba_temp[0][jj]; num[1] += weight_buffer[jj] * rgba_temp[1][jj]; num[2] += weight_buffer[jj] * rgba_temp[2][jj]; num[3] += weight_buffer[jj] * rgba_temp[3][jj]; } } if (den <= 0.0F) { /* Reaching this place would mean * that no pixels intersected the ellipse. * This should never happen because * the filter we use always * intersects at least one pixel. */ /*rgba[0]=0; rgba[1]=0; rgba[2]=0; rgba[3]=0;*/ /* not enough pixels in resampling, resort to direct interpolation */ samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba_temp); den = 1; num[0] = rgba_temp[0][j]; num[1] = rgba_temp[1][j]; num[2] = rgba_temp[2][j]; num[3] = rgba_temp[3][j]; } rgba[0][j] = num[0] / den; rgba[1][j] = num[1] / den; rgba[2][j] = num[2] / den; rgba[3][j] = num[3] / den; } } /** * Sample 2D texture using an anisotropic filter. */ static void mip_filter_linear_aniso(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; int level0; float lambda; float lod[QUAD_SIZE]; float s_to_u = u_minify(texture->width0, samp->view->u.tex.first_level); float t_to_v = u_minify(texture->height0, samp->view->u.tex.first_level); float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u; float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u; float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v; float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v; if (control == tgsi_sampler_lod_bias) { /* note: instead of working with Px and Py, we will use the * squared length instead, to avoid sqrt. */ float Px2 = dudx * dudx + dvdx * dvdx; float Py2 = dudy * dudy + dvdy * dvdy; float Pmax2; float Pmin2; float e; const float maxEccentricity = samp->sampler->max_anisotropy * samp->sampler->max_anisotropy; if (Px2 < Py2) { Pmax2 = Py2; Pmin2 = Px2; } else { Pmax2 = Px2; Pmin2 = Py2; } /* if the eccentricity of the ellipse is too big, scale up the shorter * of the two vectors to limit the maximum amount of work per pixel */ e = Pmax2 / Pmin2; if (e > maxEccentricity) { /* float s=e / maxEccentricity; minor[0] *= s; minor[1] *= s; Pmin2 *= s; */ Pmin2 = Pmax2 / maxEccentricity; } /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid * this since 0.5*log(x) = log(sqrt(x)) */ lambda = 0.5F * util_fast_log2(Pmin2) + samp->sampler->lod_bias; compute_lod(samp->sampler, lambda, c0, lod); } else { assert(control == tgsi_sampler_lod_explicit); memcpy(lod, c0, sizeof(lod)); } /* XXX: Take into account all lod values. */ lambda = lod[0]; level0 = samp->view->u.tex.first_level + (int)lambda; /* If the ellipse covers the whole image, we can * simply return the average of the whole image. */ if (level0 >= (int) texture->last_level) { samp->level = texture->last_level; samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba); } else { /* don't bother interpolating between multiple LODs; it doesn't * seem to be worth the extra running time. */ samp->level = level0; img_filter_2d_ewa(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, dudx, dvdx, dudy, dvdy, rgba); } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } /** * Specialized version of mip_filter_linear with hard-wired calls to * 2d lambda calculation and 2d_linear_repeat_POT img filters. */ static void mip_filter_linear_2d_linear_repeat_POT( struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_resource *texture = samp->view->texture; int level0; float lambda; float lod[QUAD_SIZE]; if (control == tgsi_sampler_lod_bias) { lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias; compute_lod(samp->sampler, lambda, c0, lod); } else { assert(control == tgsi_sampler_lod_explicit); memcpy(lod, c0, sizeof(lod)); } /* XXX: Take into account all lod values. */ lambda = lod[0]; level0 = samp->view->u.tex.first_level + (int)lambda; /* Catches both negative and large values of level0: */ if ((unsigned)level0 >= texture->last_level) { if (level0 < 0) samp->level = samp->view->u.tex.first_level; else samp->level = texture->last_level; img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba); } else { float levelBlend = frac(lambda); float rgba0[4][4]; float rgba1[4][4]; int c,j; samp->level = level0; img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0); samp->level = level0+1; img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1); for (j = 0; j < QUAD_SIZE; j++) { for (c = 0; c < 4; c++) { rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]); } } } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } /** * Do shadow/depth comparisons. */ static void sample_compare(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); const struct pipe_sampler_state *sampler = samp->sampler; int j, k0, k1, k2, k3; float val; float pc0, pc1, pc2, pc3; samp->mip_filter(tgsi_sampler, s, t, p, c0, control, rgba); /** * Compare texcoord 'p' (aka R) against texture value 'rgba[0]' * When we sampled the depth texture, the depth value was put into all * RGBA channels. We look at the red channel here. */ pc0 = CLAMP(p[0], 0.0F, 1.0F); pc1 = CLAMP(p[1], 0.0F, 1.0F); pc2 = CLAMP(p[2], 0.0F, 1.0F); pc3 = CLAMP(p[3], 0.0F, 1.0F); /* compare four texcoords vs. four texture samples */ switch (sampler->compare_func) { case PIPE_FUNC_LESS: k0 = pc0 < rgba[0][0]; k1 = pc1 < rgba[0][1]; k2 = pc2 < rgba[0][2]; k3 = pc3 < rgba[0][3]; break; case PIPE_FUNC_LEQUAL: k0 = pc0 <= rgba[0][0]; k1 = pc1 <= rgba[0][1]; k2 = pc2 <= rgba[0][2]; k3 = pc3 <= rgba[0][3]; break; case PIPE_FUNC_GREATER: k0 = pc0 > rgba[0][0]; k1 = pc1 > rgba[0][1]; k2 = pc2 > rgba[0][2]; k3 = pc3 > rgba[0][3]; break; case PIPE_FUNC_GEQUAL: k0 = pc0 >= rgba[0][0]; k1 = pc1 >= rgba[0][1]; k2 = pc2 >= rgba[0][2]; k3 = pc3 >= rgba[0][3]; break; case PIPE_FUNC_EQUAL: k0 = pc0 == rgba[0][0]; k1 = pc1 == rgba[0][1]; k2 = pc2 == rgba[0][2]; k3 = pc3 == rgba[0][3]; break; case PIPE_FUNC_NOTEQUAL: k0 = pc0 != rgba[0][0]; k1 = pc1 != rgba[0][1]; k2 = pc2 != rgba[0][2]; k3 = pc3 != rgba[0][3]; break; case PIPE_FUNC_ALWAYS: k0 = k1 = k2 = k3 = 1; break; case PIPE_FUNC_NEVER: k0 = k1 = k2 = k3 = 0; break; default: k0 = k1 = k2 = k3 = 0; assert(0); break; } /* convert four pass/fail values to an intensity in [0,1] */ val = 0.25F * (k0 + k1 + k2 + k3); /* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */ for (j = 0; j < 4; j++) { rgba[0][j] = rgba[1][j] = rgba[2][j] = val; rgba[3][j] = 1.0F; } } /** * Use 3D texcoords to choose a cube face, then sample the 2D cube faces. * Put face info into the sampler faces[] array. */ static void sample_cube(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); unsigned j; float ssss[4], tttt[4]; /* major axis direction target sc tc ma ---------- ------------------------------- --- --- --- +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz */ /* Choose the cube face and compute new s/t coords for the 2D face. * * Use the same cube face for all four pixels in the quad. * * This isn't ideal, but if we want to use a different cube face * per pixel in the quad, we'd have to also compute the per-face * LOD here too. That's because the four post-face-selection * texcoords are no longer related to each other (they're * per-face!) so we can't use subtraction to compute the partial * deriviates to compute the LOD. Doing so (near cube edges * anyway) gives us pretty much random values. */ { /* use the average of the four pixel's texcoords to choose the face */ const float rx = 0.25F * (s[0] + s[1] + s[2] + s[3]); const float ry = 0.25F * (t[0] + t[1] + t[2] + t[3]); const float rz = 0.25F * (p[0] + p[1] + p[2] + p[3]); const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz); if (arx >= ary && arx >= arz) { float sign = (rx >= 0.0F) ? 1.0F : -1.0F; uint face = (rx >= 0.0F) ? PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X; for (j = 0; j < QUAD_SIZE; j++) { const float ima = -0.5F / fabsf(s[j]); ssss[j] = sign * p[j] * ima + 0.5F; tttt[j] = t[j] * ima + 0.5F; samp->faces[j] = face; } } else if (ary >= arx && ary >= arz) { float sign = (ry >= 0.0F) ? 1.0F : -1.0F; uint face = (ry >= 0.0F) ? PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y; for (j = 0; j < QUAD_SIZE; j++) { const float ima = -0.5F / fabsf(t[j]); ssss[j] = -s[j] * ima + 0.5F; tttt[j] = sign * -p[j] * ima + 0.5F; samp->faces[j] = face; } } else { float sign = (rz >= 0.0F) ? 1.0F : -1.0F; uint face = (rz >= 0.0F) ? PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z; for (j = 0; j < QUAD_SIZE; j++) { const float ima = -0.5F / fabsf(p[j]); ssss[j] = sign * -s[j] * ima + 0.5F; tttt[j] = t[j] * ima + 0.5F; samp->faces[j] = face; } } } /* In our little pipeline, the compare stage is next. If compare * is not active, this will point somewhere deeper into the * pipeline, eg. to mip_filter or even img_filter. */ samp->compare(tgsi_sampler, ssss, tttt, NULL, c0, control, rgba); } static void sample_swizzle(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], const float c0[QUAD_SIZE], enum tgsi_sampler_control control, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler); float rgba_temp[NUM_CHANNELS][QUAD_SIZE]; const unsigned swizzle_r = samp->key.bits.swizzle_r; const unsigned swizzle_g = samp->key.bits.swizzle_g; const unsigned swizzle_b = samp->key.bits.swizzle_b; const unsigned swizzle_a = samp->key.bits.swizzle_a; unsigned j; samp->sample_target(tgsi_sampler, s, t, p, c0, control, rgba_temp); switch (swizzle_r) { case PIPE_SWIZZLE_ZERO: for (j = 0; j < 4; j++) rgba[0][j] = 0.0f; break; case PIPE_SWIZZLE_ONE: for (j = 0; j < 4; j++) rgba[0][j] = 1.0f; break; default: assert(swizzle_r < 4); for (j = 0; j < 4; j++) rgba[0][j] = rgba_temp[swizzle_r][j]; } switch (swizzle_g) { case PIPE_SWIZZLE_ZERO: for (j = 0; j < 4; j++) rgba[1][j] = 0.0f; break; case PIPE_SWIZZLE_ONE: for (j = 0; j < 4; j++) rgba[1][j] = 1.0f; break; default: assert(swizzle_g < 4); for (j = 0; j < 4; j++) rgba[1][j] = rgba_temp[swizzle_g][j]; } switch (swizzle_b) { case PIPE_SWIZZLE_ZERO: for (j = 0; j < 4; j++) rgba[2][j] = 0.0f; break; case PIPE_SWIZZLE_ONE: for (j = 0; j < 4; j++) rgba[2][j] = 1.0f; break; default: assert(swizzle_b < 4); for (j = 0; j < 4; j++) rgba[2][j] = rgba_temp[swizzle_b][j]; } switch (swizzle_a) { case PIPE_SWIZZLE_ZERO: for (j = 0; j < 4; j++) rgba[3][j] = 0.0f; break; case PIPE_SWIZZLE_ONE: for (j = 0; j < 4; j++) rgba[3][j] = 1.0f; break; default: assert(swizzle_a < 4); for (j = 0; j < 4; j++) rgba[3][j] = rgba_temp[swizzle_a][j]; } } static wrap_nearest_func get_nearest_unorm_wrap(unsigned mode) { switch (mode) { case PIPE_TEX_WRAP_CLAMP: return wrap_nearest_unorm_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_nearest_unorm_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_nearest_unorm_clamp_to_border; default: assert(0); return wrap_nearest_unorm_clamp; } } static wrap_nearest_func get_nearest_wrap(unsigned mode) { switch (mode) { case PIPE_TEX_WRAP_REPEAT: return wrap_nearest_repeat; case PIPE_TEX_WRAP_CLAMP: return wrap_nearest_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_nearest_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_nearest_clamp_to_border; case PIPE_TEX_WRAP_MIRROR_REPEAT: return wrap_nearest_mirror_repeat; case PIPE_TEX_WRAP_MIRROR_CLAMP: return wrap_nearest_mirror_clamp; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return wrap_nearest_mirror_clamp_to_edge; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return wrap_nearest_mirror_clamp_to_border; default: assert(0); return wrap_nearest_repeat; } } static wrap_linear_func get_linear_unorm_wrap(unsigned mode) { switch (mode) { case PIPE_TEX_WRAP_CLAMP: return wrap_linear_unorm_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_linear_unorm_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_linear_unorm_clamp_to_border; default: assert(0); return wrap_linear_unorm_clamp; } } static wrap_linear_func get_linear_wrap(unsigned mode) { switch (mode) { case PIPE_TEX_WRAP_REPEAT: return wrap_linear_repeat; case PIPE_TEX_WRAP_CLAMP: return wrap_linear_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_linear_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_linear_clamp_to_border; case PIPE_TEX_WRAP_MIRROR_REPEAT: return wrap_linear_mirror_repeat; case PIPE_TEX_WRAP_MIRROR_CLAMP: return wrap_linear_mirror_clamp; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return wrap_linear_mirror_clamp_to_edge; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return wrap_linear_mirror_clamp_to_border; default: assert(0); return wrap_linear_repeat; } } static compute_lambda_func get_lambda_func(const union sp_sampler_key key) { if (key.bits.processor == TGSI_PROCESSOR_VERTEX) return compute_lambda_vert; switch (key.bits.target) { case PIPE_TEXTURE_1D: case PIPE_TEXTURE_1D_ARRAY: return compute_lambda_1d; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_2D_ARRAY: case PIPE_TEXTURE_RECT: case PIPE_TEXTURE_CUBE: return compute_lambda_2d; case PIPE_TEXTURE_3D: return compute_lambda_3d; default: assert(0); return compute_lambda_1d; } } static filter_func get_img_filter(const union sp_sampler_key key, unsigned filter, const struct pipe_sampler_state *sampler) { switch (key.bits.target) { case PIPE_TEXTURE_1D: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_1d_nearest; else return img_filter_1d_linear; break; case PIPE_TEXTURE_1D_ARRAY: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_1d_array_nearest; else return img_filter_1d_array_linear; break; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_RECT: /* Try for fast path: */ if (key.bits.is_pot && sampler->wrap_s == sampler->wrap_t && sampler->normalized_coords) { switch (sampler->wrap_s) { case PIPE_TEX_WRAP_REPEAT: switch (filter) { case PIPE_TEX_FILTER_NEAREST: return img_filter_2d_nearest_repeat_POT; case PIPE_TEX_FILTER_LINEAR: return img_filter_2d_linear_repeat_POT; default: break; } break; case PIPE_TEX_WRAP_CLAMP: switch (filter) { case PIPE_TEX_FILTER_NEAREST: return img_filter_2d_nearest_clamp_POT; default: break; } } } /* Otherwise use default versions: */ if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_2d_nearest; else return img_filter_2d_linear; break; case PIPE_TEXTURE_2D_ARRAY: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_2d_array_nearest; else return img_filter_2d_array_linear; break; case PIPE_TEXTURE_CUBE: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_cube_nearest; else return img_filter_cube_linear; break; case PIPE_TEXTURE_3D: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_3d_nearest; else return img_filter_3d_linear; break; default: assert(0); return img_filter_1d_nearest; } } /** * Bind the given texture object and texture cache to the sampler variant. */ void sp_sampler_variant_bind_view( struct sp_sampler_variant *samp, struct softpipe_tex_tile_cache *tex_cache, const struct pipe_sampler_view *view ) { const struct pipe_resource *texture = view->texture; samp->view = view; samp->cache = tex_cache; samp->xpot = util_logbase2( texture->width0 ); samp->ypot = util_logbase2( texture->height0 ); samp->level = view->u.tex.first_level; } void sp_sampler_variant_destroy( struct sp_sampler_variant *samp ) { FREE(samp); } /** * Create a sampler variant for a given set of non-orthogonal state. */ struct sp_sampler_variant * sp_create_sampler_variant( const struct pipe_sampler_state *sampler, const union sp_sampler_key key ) { struct sp_sampler_variant *samp = CALLOC_STRUCT(sp_sampler_variant); if (!samp) return NULL; samp->sampler = sampler; samp->key = key; /* Note that (for instance) linear_texcoord_s and * nearest_texcoord_s may be active at the same time, if the * sampler min_img_filter differs from its mag_img_filter. */ if (sampler->normalized_coords) { samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s ); samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t ); samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r ); samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s ); samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t ); samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r ); } else { samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s ); samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t ); samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r ); samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s ); samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t ); samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r ); } samp->compute_lambda = get_lambda_func( key ); samp->min_img_filter = get_img_filter(key, sampler->min_img_filter, sampler); samp->mag_img_filter = get_img_filter(key, sampler->mag_img_filter, sampler); switch (sampler->min_mip_filter) { case PIPE_TEX_MIPFILTER_NONE: if (sampler->min_img_filter == sampler->mag_img_filter) samp->mip_filter = samp->min_img_filter; else samp->mip_filter = mip_filter_none; break; case PIPE_TEX_MIPFILTER_NEAREST: samp->mip_filter = mip_filter_nearest; break; case PIPE_TEX_MIPFILTER_LINEAR: if (key.bits.is_pot && sampler->min_img_filter == sampler->mag_img_filter && sampler->normalized_coords && sampler->wrap_s == PIPE_TEX_WRAP_REPEAT && sampler->wrap_t == PIPE_TEX_WRAP_REPEAT && sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR) { samp->mip_filter = mip_filter_linear_2d_linear_repeat_POT; } else { samp->mip_filter = mip_filter_linear; } /* Anisotropic filtering extension. */ if (sampler->max_anisotropy > 1) { samp->mip_filter = mip_filter_linear_aniso; /* Override min_img_filter: * min_img_filter needs to be set to NEAREST since we need to access * each texture pixel as it is and weight it later; using linear * filters will have incorrect results. * By setting the filter to NEAREST here, we can avoid calling the * generic img_filter_2d_nearest in the anisotropic filter function, * making it possible to use one of the accelerated implementations */ samp->min_img_filter = get_img_filter(key, PIPE_TEX_FILTER_NEAREST, sampler); /* on first access create the lookup table containing the filter weights. */ if (!weightLut) { create_filter_table(); } } break; } if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) { samp->compare = sample_compare; } else { /* Skip compare operation by promoting the mip_filter function * pointer: */ samp->compare = samp->mip_filter; } if (key.bits.target == PIPE_TEXTURE_CUBE) { samp->sample_target = sample_cube; } else { samp->faces[0] = 0; samp->faces[1] = 0; samp->faces[2] = 0; samp->faces[3] = 0; /* Skip cube face determination by promoting the compare * function pointer: */ samp->sample_target = samp->compare; } if (key.bits.swizzle_r != PIPE_SWIZZLE_RED || key.bits.swizzle_g != PIPE_SWIZZLE_GREEN || key.bits.swizzle_b != PIPE_SWIZZLE_BLUE || key.bits.swizzle_a != PIPE_SWIZZLE_ALPHA) { samp->base.get_samples = sample_swizzle; } else { samp->base.get_samples = samp->sample_target; } return samp; }