/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * quad blending * \author Brian Paul */ #include "pipe/p_defines.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_format.h" #include "sp_context.h" #include "sp_state.h" #include "sp_quad.h" #include "sp_tile_cache.h" #include "sp_quad_pipe.h" enum format { RGBA, RGB, LUMINANCE, LUMINANCE_ALPHA, INTENSITY }; /** Subclass of quad_stage */ struct blend_quad_stage { struct quad_stage base; boolean clamp[PIPE_MAX_COLOR_BUFS]; /**< clamp colors to [0,1]? */ enum format base_format[PIPE_MAX_COLOR_BUFS]; enum util_format_type format_type[PIPE_MAX_COLOR_BUFS]; }; /** cast wrapper */ static INLINE struct blend_quad_stage * blend_quad_stage(struct quad_stage *stage) { return (struct blend_quad_stage *) stage; } #define VEC4_COPY(DST, SRC) \ do { \ DST[0] = SRC[0]; \ DST[1] = SRC[1]; \ DST[2] = SRC[2]; \ DST[3] = SRC[3]; \ } while(0) #define VEC4_SCALAR(DST, SRC) \ do { \ DST[0] = SRC; \ DST[1] = SRC; \ DST[2] = SRC; \ DST[3] = SRC; \ } while(0) #define VEC4_ADD(R, A, B) \ do { \ R[0] = A[0] + B[0]; \ R[1] = A[1] + B[1]; \ R[2] = A[2] + B[2]; \ R[3] = A[3] + B[3]; \ } while (0) #define VEC4_SUB(R, A, B) \ do { \ R[0] = A[0] - B[0]; \ R[1] = A[1] - B[1]; \ R[2] = A[2] - B[2]; \ R[3] = A[3] - B[3]; \ } while (0) /** Add and limit result to ceiling of 1.0 */ #define VEC4_ADD_SAT(R, A, B) \ do { \ R[0] = A[0] + B[0]; if (R[0] > 1.0f) R[0] = 1.0f; \ R[1] = A[1] + B[1]; if (R[1] > 1.0f) R[1] = 1.0f; \ R[2] = A[2] + B[2]; if (R[2] > 1.0f) R[2] = 1.0f; \ R[3] = A[3] + B[3]; if (R[3] > 1.0f) R[3] = 1.0f; \ } while (0) /** Subtract and limit result to floor of 0.0 */ #define VEC4_SUB_SAT(R, A, B) \ do { \ R[0] = A[0] - B[0]; if (R[0] < 0.0f) R[0] = 0.0f; \ R[1] = A[1] - B[1]; if (R[1] < 0.0f) R[1] = 0.0f; \ R[2] = A[2] - B[2]; if (R[2] < 0.0f) R[2] = 0.0f; \ R[3] = A[3] - B[3]; if (R[3] < 0.0f) R[3] = 0.0f; \ } while (0) #define VEC4_MUL(R, A, B) \ do { \ R[0] = A[0] * B[0]; \ R[1] = A[1] * B[1]; \ R[2] = A[2] * B[2]; \ R[3] = A[3] * B[3]; \ } while (0) #define VEC4_MIN(R, A, B) \ do { \ R[0] = (A[0] < B[0]) ? A[0] : B[0]; \ R[1] = (A[1] < B[1]) ? A[1] : B[1]; \ R[2] = (A[2] < B[2]) ? A[2] : B[2]; \ R[3] = (A[3] < B[3]) ? A[3] : B[3]; \ } while (0) #define VEC4_MAX(R, A, B) \ do { \ R[0] = (A[0] > B[0]) ? A[0] : B[0]; \ R[1] = (A[1] > B[1]) ? A[1] : B[1]; \ R[2] = (A[2] > B[2]) ? A[2] : B[2]; \ R[3] = (A[3] > B[3]) ? A[3] : B[3]; \ } while (0) static void logicop_quad(struct quad_stage *qs, float (*quadColor)[4], float (*dest)[4]) { struct softpipe_context *softpipe = qs->softpipe; ubyte src[4][4], dst[4][4], res[4][4]; uint *src4 = (uint *) src; uint *dst4 = (uint *) dst; uint *res4 = (uint *) res; uint j; /* convert to ubyte */ for (j = 0; j < 4; j++) { /* loop over R,G,B,A channels */ dst[j][0] = float_to_ubyte(dest[j][0]); /* P0 */ dst[j][1] = float_to_ubyte(dest[j][1]); /* P1 */ dst[j][2] = float_to_ubyte(dest[j][2]); /* P2 */ dst[j][3] = float_to_ubyte(dest[j][3]); /* P3 */ src[j][0] = float_to_ubyte(quadColor[j][0]); /* P0 */ src[j][1] = float_to_ubyte(quadColor[j][1]); /* P1 */ src[j][2] = float_to_ubyte(quadColor[j][2]); /* P2 */ src[j][3] = float_to_ubyte(quadColor[j][3]); /* P3 */ } switch (softpipe->blend->logicop_func) { case PIPE_LOGICOP_CLEAR: for (j = 0; j < 4; j++) res4[j] = 0; break; case PIPE_LOGICOP_NOR: for (j = 0; j < 4; j++) res4[j] = ~(src4[j] | dst4[j]); break; case PIPE_LOGICOP_AND_INVERTED: for (j = 0; j < 4; j++) res4[j] = ~src4[j] & dst4[j]; break; case PIPE_LOGICOP_COPY_INVERTED: for (j = 0; j < 4; j++) res4[j] = ~src4[j]; break; case PIPE_LOGICOP_AND_REVERSE: for (j = 0; j < 4; j++) res4[j] = src4[j] & ~dst4[j]; break; case PIPE_LOGICOP_INVERT: for (j = 0; j < 4; j++) res4[j] = ~dst4[j]; break; case PIPE_LOGICOP_XOR: for (j = 0; j < 4; j++) res4[j] = dst4[j] ^ src4[j]; break; case PIPE_LOGICOP_NAND: for (j = 0; j < 4; j++) res4[j] = ~(src4[j] & dst4[j]); break; case PIPE_LOGICOP_AND: for (j = 0; j < 4; j++) res4[j] = src4[j] & dst4[j]; break; case PIPE_LOGICOP_EQUIV: for (j = 0; j < 4; j++) res4[j] = ~(src4[j] ^ dst4[j]); break; case PIPE_LOGICOP_NOOP: for (j = 0; j < 4; j++) res4[j] = dst4[j]; break; case PIPE_LOGICOP_OR_INVERTED: for (j = 0; j < 4; j++) res4[j] = ~src4[j] | dst4[j]; break; case PIPE_LOGICOP_COPY: for (j = 0; j < 4; j++) res4[j] = src4[j]; break; case PIPE_LOGICOP_OR_REVERSE: for (j = 0; j < 4; j++) res4[j] = src4[j] | ~dst4[j]; break; case PIPE_LOGICOP_OR: for (j = 0; j < 4; j++) res4[j] = src4[j] | dst4[j]; break; case PIPE_LOGICOP_SET: for (j = 0; j < 4; j++) res4[j] = ~0; break; default: assert(0 && "invalid logicop mode"); } for (j = 0; j < 4; j++) { quadColor[j][0] = ubyte_to_float(res[j][0]); quadColor[j][1] = ubyte_to_float(res[j][1]); quadColor[j][2] = ubyte_to_float(res[j][2]); quadColor[j][3] = ubyte_to_float(res[j][3]); } } /** * Do blending for a 2x2 quad for one color buffer. * \param quadColor the incoming quad colors * \param dest the destination/framebuffer quad colors * \param const_blend_color the constant blend color * \param blend_index which set of blending terms to use */ static void blend_quad(struct quad_stage *qs, float (*quadColor)[4], float (*dest)[4], const float const_blend_color[4], unsigned blend_index) { static const float zero[4] = { 0, 0, 0, 0 }; static const float one[4] = { 1, 1, 1, 1 }; struct softpipe_context *softpipe = qs->softpipe; float source[4][QUAD_SIZE] = { { 0 } }; float blend_dest[4][QUAD_SIZE]; /* * Compute src/first term RGB */ switch (softpipe->blend->rt[blend_index].rgb_src_factor) { case PIPE_BLENDFACTOR_ONE: VEC4_COPY(source[0], quadColor[0]); /* R */ VEC4_COPY(source[1], quadColor[1]); /* G */ VEC4_COPY(source[2], quadColor[2]); /* B */ break; case PIPE_BLENDFACTOR_SRC_COLOR: VEC4_MUL(source[0], quadColor[0], quadColor[0]); /* R */ VEC4_MUL(source[1], quadColor[1], quadColor[1]); /* G */ VEC4_MUL(source[2], quadColor[2], quadColor[2]); /* B */ break; case PIPE_BLENDFACTOR_SRC_ALPHA: { const float *alpha = quadColor[3]; VEC4_MUL(source[0], quadColor[0], alpha); /* R */ VEC4_MUL(source[1], quadColor[1], alpha); /* G */ VEC4_MUL(source[2], quadColor[2], alpha); /* B */ } break; case PIPE_BLENDFACTOR_DST_COLOR: VEC4_MUL(source[0], quadColor[0], dest[0]); /* R */ VEC4_MUL(source[1], quadColor[1], dest[1]); /* G */ VEC4_MUL(source[2], quadColor[2], dest[2]); /* B */ break; case PIPE_BLENDFACTOR_DST_ALPHA: { const float *alpha = dest[3]; VEC4_MUL(source[0], quadColor[0], alpha); /* R */ VEC4_MUL(source[1], quadColor[1], alpha); /* G */ VEC4_MUL(source[2], quadColor[2], alpha); /* B */ } break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: { const float *alpha = quadColor[3]; float diff[4], temp[4]; VEC4_SUB(diff, one, dest[3]); VEC4_MIN(temp, alpha, diff); VEC4_MUL(source[0], quadColor[0], temp); /* R */ VEC4_MUL(source[1], quadColor[1], temp); /* G */ VEC4_MUL(source[2], quadColor[2], temp); /* B */ } break; case PIPE_BLENDFACTOR_CONST_COLOR: { float comp[4]; VEC4_SCALAR(comp, const_blend_color[0]); /* R */ VEC4_MUL(source[0], quadColor[0], comp); /* R */ VEC4_SCALAR(comp, const_blend_color[1]); /* G */ VEC4_MUL(source[1], quadColor[1], comp); /* G */ VEC4_SCALAR(comp, const_blend_color[2]); /* B */ VEC4_MUL(source[2], quadColor[2], comp); /* B */ } break; case PIPE_BLENDFACTOR_CONST_ALPHA: { float alpha[4]; VEC4_SCALAR(alpha, const_blend_color[3]); VEC4_MUL(source[0], quadColor[0], alpha); /* R */ VEC4_MUL(source[1], quadColor[1], alpha); /* G */ VEC4_MUL(source[2], quadColor[2], alpha); /* B */ } break; case PIPE_BLENDFACTOR_SRC1_COLOR: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_SRC1_ALPHA: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_ZERO: VEC4_COPY(source[0], zero); /* R */ VEC4_COPY(source[1], zero); /* G */ VEC4_COPY(source[2], zero); /* B */ break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: { float inv_comp[4]; VEC4_SUB(inv_comp, one, quadColor[0]); /* R */ VEC4_MUL(source[0], quadColor[0], inv_comp); /* R */ VEC4_SUB(inv_comp, one, quadColor[1]); /* G */ VEC4_MUL(source[1], quadColor[1], inv_comp); /* G */ VEC4_SUB(inv_comp, one, quadColor[2]); /* B */ VEC4_MUL(source[2], quadColor[2], inv_comp); /* B */ } break; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: { float inv_alpha[4]; VEC4_SUB(inv_alpha, one, quadColor[3]); VEC4_MUL(source[0], quadColor[0], inv_alpha); /* R */ VEC4_MUL(source[1], quadColor[1], inv_alpha); /* G */ VEC4_MUL(source[2], quadColor[2], inv_alpha); /* B */ } break; case PIPE_BLENDFACTOR_INV_DST_ALPHA: { float inv_alpha[4]; VEC4_SUB(inv_alpha, one, dest[3]); VEC4_MUL(source[0], quadColor[0], inv_alpha); /* R */ VEC4_MUL(source[1], quadColor[1], inv_alpha); /* G */ VEC4_MUL(source[2], quadColor[2], inv_alpha); /* B */ } break; case PIPE_BLENDFACTOR_INV_DST_COLOR: { float inv_comp[4]; VEC4_SUB(inv_comp, one, dest[0]); /* R */ VEC4_MUL(source[0], quadColor[0], inv_comp); /* R */ VEC4_SUB(inv_comp, one, dest[1]); /* G */ VEC4_MUL(source[1], quadColor[1], inv_comp); /* G */ VEC4_SUB(inv_comp, one, dest[2]); /* B */ VEC4_MUL(source[2], quadColor[2], inv_comp); /* B */ } break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: { float inv_comp[4]; /* R */ VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[0]); VEC4_MUL(source[0], quadColor[0], inv_comp); /* G */ VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[1]); VEC4_MUL(source[1], quadColor[1], inv_comp); /* B */ VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[2]); VEC4_MUL(source[2], quadColor[2], inv_comp); } break; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: { float inv_alpha[4]; VEC4_SCALAR(inv_alpha, 1.0f - const_blend_color[3]); VEC4_MUL(source[0], quadColor[0], inv_alpha); /* R */ VEC4_MUL(source[1], quadColor[1], inv_alpha); /* G */ VEC4_MUL(source[2], quadColor[2], inv_alpha); /* B */ } break; case PIPE_BLENDFACTOR_INV_SRC1_COLOR: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: assert(0); /* to do */ break; default: assert(0 && "invalid rgb src factor"); } /* * Compute src/first term A */ switch (softpipe->blend->rt[blend_index].alpha_src_factor) { case PIPE_BLENDFACTOR_ONE: VEC4_COPY(source[3], quadColor[3]); /* A */ break; case PIPE_BLENDFACTOR_SRC_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_SRC_ALPHA: { const float *alpha = quadColor[3]; VEC4_MUL(source[3], quadColor[3], alpha); /* A */ } break; case PIPE_BLENDFACTOR_DST_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_DST_ALPHA: VEC4_MUL(source[3], quadColor[3], dest[3]); /* A */ break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* multiply alpha by 1.0 */ VEC4_COPY(source[3], quadColor[3]); /* A */ break; case PIPE_BLENDFACTOR_CONST_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_CONST_ALPHA: { float comp[4]; VEC4_SCALAR(comp, const_blend_color[3]); /* A */ VEC4_MUL(source[3], quadColor[3], comp); /* A */ } break; case PIPE_BLENDFACTOR_ZERO: VEC4_COPY(source[3], zero); /* A */ break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_INV_SRC_ALPHA: { float inv_alpha[4]; VEC4_SUB(inv_alpha, one, quadColor[3]); VEC4_MUL(source[3], quadColor[3], inv_alpha); /* A */ } break; case PIPE_BLENDFACTOR_INV_DST_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_INV_DST_ALPHA: { float inv_alpha[4]; VEC4_SUB(inv_alpha, one, dest[3]); VEC4_MUL(source[3], quadColor[3], inv_alpha); /* A */ } break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_INV_CONST_ALPHA: { float inv_comp[4]; /* A */ VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[3]); VEC4_MUL(source[3], quadColor[3], inv_comp); } break; default: assert(0 && "invalid alpha src factor"); } /* Save the original dest for use in masking */ VEC4_COPY(blend_dest[0], dest[0]); VEC4_COPY(blend_dest[1], dest[1]); VEC4_COPY(blend_dest[2], dest[2]); VEC4_COPY(blend_dest[3], dest[3]); /* * Compute blend_dest/second term RGB */ switch (softpipe->blend->rt[blend_index].rgb_dst_factor) { case PIPE_BLENDFACTOR_ONE: /* blend_dest = blend_dest * 1 NO-OP, leave blend_dest as-is */ break; case PIPE_BLENDFACTOR_SRC_COLOR: VEC4_MUL(blend_dest[0], blend_dest[0], quadColor[0]); /* R */ VEC4_MUL(blend_dest[1], blend_dest[1], quadColor[1]); /* G */ VEC4_MUL(blend_dest[2], blend_dest[2], quadColor[2]); /* B */ break; case PIPE_BLENDFACTOR_SRC_ALPHA: VEC4_MUL(blend_dest[0], blend_dest[0], quadColor[3]); /* R * A */ VEC4_MUL(blend_dest[1], blend_dest[1], quadColor[3]); /* G * A */ VEC4_MUL(blend_dest[2], blend_dest[2], quadColor[3]); /* B * A */ break; case PIPE_BLENDFACTOR_DST_ALPHA: VEC4_MUL(blend_dest[0], blend_dest[0], blend_dest[3]); /* R * A */ VEC4_MUL(blend_dest[1], blend_dest[1], blend_dest[3]); /* G * A */ VEC4_MUL(blend_dest[2], blend_dest[2], blend_dest[3]); /* B * A */ break; case PIPE_BLENDFACTOR_DST_COLOR: VEC4_MUL(blend_dest[0], blend_dest[0], blend_dest[0]); /* R */ VEC4_MUL(blend_dest[1], blend_dest[1], blend_dest[1]); /* G */ VEC4_MUL(blend_dest[2], blend_dest[2], blend_dest[2]); /* B */ break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: { const float *alpha = quadColor[3]; float diff[4], temp[4]; VEC4_SUB(diff, one, blend_dest[3]); VEC4_MIN(temp, alpha, diff); VEC4_MUL(blend_dest[0], quadColor[0], temp); /* R */ VEC4_MUL(blend_dest[1], quadColor[1], temp); /* G */ VEC4_MUL(blend_dest[2], quadColor[2], temp); /* B */ } break; case PIPE_BLENDFACTOR_CONST_COLOR: { float comp[4]; VEC4_SCALAR(comp, const_blend_color[0]); /* R */ VEC4_MUL(blend_dest[0], blend_dest[0], comp); /* R */ VEC4_SCALAR(comp, const_blend_color[1]); /* G */ VEC4_MUL(blend_dest[1], blend_dest[1], comp); /* G */ VEC4_SCALAR(comp, const_blend_color[2]); /* B */ VEC4_MUL(blend_dest[2], blend_dest[2], comp); /* B */ } break; case PIPE_BLENDFACTOR_CONST_ALPHA: { float comp[4]; VEC4_SCALAR(comp, const_blend_color[3]); /* A */ VEC4_MUL(blend_dest[0], blend_dest[0], comp); /* R */ VEC4_MUL(blend_dest[1], blend_dest[1], comp); /* G */ VEC4_MUL(blend_dest[2], blend_dest[2], comp); /* B */ } break; case PIPE_BLENDFACTOR_ZERO: VEC4_COPY(blend_dest[0], zero); /* R */ VEC4_COPY(blend_dest[1], zero); /* G */ VEC4_COPY(blend_dest[2], zero); /* B */ break; case PIPE_BLENDFACTOR_SRC1_COLOR: case PIPE_BLENDFACTOR_SRC1_ALPHA: /* XXX what are these? */ assert(0); break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: { float inv_comp[4]; VEC4_SUB(inv_comp, one, quadColor[0]); /* R */ VEC4_MUL(blend_dest[0], inv_comp, blend_dest[0]); /* R */ VEC4_SUB(inv_comp, one, quadColor[1]); /* G */ VEC4_MUL(blend_dest[1], inv_comp, blend_dest[1]); /* G */ VEC4_SUB(inv_comp, one, quadColor[2]); /* B */ VEC4_MUL(blend_dest[2], inv_comp, blend_dest[2]); /* B */ } break; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: { float one_minus_alpha[QUAD_SIZE]; VEC4_SUB(one_minus_alpha, one, quadColor[3]); VEC4_MUL(blend_dest[0], blend_dest[0], one_minus_alpha); /* R */ VEC4_MUL(blend_dest[1], blend_dest[1], one_minus_alpha); /* G */ VEC4_MUL(blend_dest[2], blend_dest[2], one_minus_alpha); /* B */ } break; case PIPE_BLENDFACTOR_INV_DST_ALPHA: { float inv_comp[4]; VEC4_SUB(inv_comp, one, blend_dest[3]); /* A */ VEC4_MUL(blend_dest[0], inv_comp, blend_dest[0]); /* R */ VEC4_MUL(blend_dest[1], inv_comp, blend_dest[1]); /* G */ VEC4_MUL(blend_dest[2], inv_comp, blend_dest[2]); /* B */ } break; case PIPE_BLENDFACTOR_INV_DST_COLOR: { float inv_comp[4]; VEC4_SUB(inv_comp, one, blend_dest[0]); /* R */ VEC4_MUL(blend_dest[0], blend_dest[0], inv_comp); /* R */ VEC4_SUB(inv_comp, one, blend_dest[1]); /* G */ VEC4_MUL(blend_dest[1], blend_dest[1], inv_comp); /* G */ VEC4_SUB(inv_comp, one, blend_dest[2]); /* B */ VEC4_MUL(blend_dest[2], blend_dest[2], inv_comp); /* B */ } break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: { float inv_comp[4]; /* R */ VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[0]); VEC4_MUL(blend_dest[0], blend_dest[0], inv_comp); /* G */ VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[1]); VEC4_MUL(blend_dest[1], blend_dest[1], inv_comp); /* B */ VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[2]); VEC4_MUL(blend_dest[2], blend_dest[2], inv_comp); } break; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: { float inv_comp[4]; VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[3]); VEC4_MUL(blend_dest[0], blend_dest[0], inv_comp); VEC4_MUL(blend_dest[1], blend_dest[1], inv_comp); VEC4_MUL(blend_dest[2], blend_dest[2], inv_comp); } break; case PIPE_BLENDFACTOR_INV_SRC1_COLOR: case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: /* XXX what are these? */ assert(0); break; default: assert(0 && "invalid rgb dst factor"); } /* * Compute blend_dest/second term A */ switch (softpipe->blend->rt[blend_index].alpha_dst_factor) { case PIPE_BLENDFACTOR_ONE: /* blend_dest = blend_dest * 1 NO-OP, leave blend_dest as-is */ break; case PIPE_BLENDFACTOR_SRC_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_SRC_ALPHA: VEC4_MUL(blend_dest[3], blend_dest[3], quadColor[3]); /* A * A */ break; case PIPE_BLENDFACTOR_DST_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_DST_ALPHA: VEC4_MUL(blend_dest[3], blend_dest[3], blend_dest[3]); /* A */ break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* blend_dest = blend_dest * 1 NO-OP, leave blend_dest as-is */ break; case PIPE_BLENDFACTOR_CONST_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_CONST_ALPHA: { float comp[4]; VEC4_SCALAR(comp, const_blend_color[3]); /* A */ VEC4_MUL(blend_dest[3], blend_dest[3], comp); /* A */ } break; case PIPE_BLENDFACTOR_ZERO: VEC4_COPY(blend_dest[3], zero); /* A */ break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_INV_SRC_ALPHA: { float one_minus_alpha[QUAD_SIZE]; VEC4_SUB(one_minus_alpha, one, quadColor[3]); VEC4_MUL(blend_dest[3], blend_dest[3], one_minus_alpha); /* A */ } break; case PIPE_BLENDFACTOR_INV_DST_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_INV_DST_ALPHA: { float inv_comp[4]; VEC4_SUB(inv_comp, one, blend_dest[3]); /* A */ VEC4_MUL(blend_dest[3], inv_comp, blend_dest[3]); /* A */ } break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: /* fall-through */ case PIPE_BLENDFACTOR_INV_CONST_ALPHA: { float inv_comp[4]; VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[3]); VEC4_MUL(blend_dest[3], blend_dest[3], inv_comp); } break; default: assert(0 && "invalid alpha dst factor"); } /* * Combine RGB terms */ switch (softpipe->blend->rt[blend_index].rgb_func) { case PIPE_BLEND_ADD: VEC4_ADD(quadColor[0], source[0], blend_dest[0]); /* R */ VEC4_ADD(quadColor[1], source[1], blend_dest[1]); /* G */ VEC4_ADD(quadColor[2], source[2], blend_dest[2]); /* B */ break; case PIPE_BLEND_SUBTRACT: VEC4_SUB(quadColor[0], source[0], blend_dest[0]); /* R */ VEC4_SUB(quadColor[1], source[1], blend_dest[1]); /* G */ VEC4_SUB(quadColor[2], source[2], blend_dest[2]); /* B */ break; case PIPE_BLEND_REVERSE_SUBTRACT: VEC4_SUB(quadColor[0], blend_dest[0], source[0]); /* R */ VEC4_SUB(quadColor[1], blend_dest[1], source[1]); /* G */ VEC4_SUB(quadColor[2], blend_dest[2], source[2]); /* B */ break; case PIPE_BLEND_MIN: VEC4_MIN(quadColor[0], source[0], blend_dest[0]); /* R */ VEC4_MIN(quadColor[1], source[1], blend_dest[1]); /* G */ VEC4_MIN(quadColor[2], source[2], blend_dest[2]); /* B */ break; case PIPE_BLEND_MAX: VEC4_MAX(quadColor[0], source[0], blend_dest[0]); /* R */ VEC4_MAX(quadColor[1], source[1], blend_dest[1]); /* G */ VEC4_MAX(quadColor[2], source[2], blend_dest[2]); /* B */ break; default: assert(0 && "invalid rgb blend func"); } /* * Combine A terms */ switch (softpipe->blend->rt[blend_index].alpha_func) { case PIPE_BLEND_ADD: VEC4_ADD(quadColor[3], source[3], blend_dest[3]); /* A */ break; case PIPE_BLEND_SUBTRACT: VEC4_SUB(quadColor[3], source[3], blend_dest[3]); /* A */ break; case PIPE_BLEND_REVERSE_SUBTRACT: VEC4_SUB(quadColor[3], blend_dest[3], source[3]); /* A */ break; case PIPE_BLEND_MIN: VEC4_MIN(quadColor[3], source[3], blend_dest[3]); /* A */ break; case PIPE_BLEND_MAX: VEC4_MAX(quadColor[3], source[3], blend_dest[3]); /* A */ break; default: assert(0 && "invalid alpha blend func"); } } static void colormask_quad(unsigned colormask, float (*quadColor)[4], float (*dest)[4]) { /* R */ if (!(colormask & PIPE_MASK_R)) COPY_4V(quadColor[0], dest[0]); /* G */ if (!(colormask & PIPE_MASK_G)) COPY_4V(quadColor[1], dest[1]); /* B */ if (!(colormask & PIPE_MASK_B)) COPY_4V(quadColor[2], dest[2]); /* A */ if (!(colormask & PIPE_MASK_A)) COPY_4V(quadColor[3], dest[3]); } /** * Clamp all colors in a quad to [0, 1] */ static void clamp_colors(float (*quadColor)[4]) { unsigned i, j; for (j = 0; j < QUAD_SIZE; j++) { for (i = 0; i < 4; i++) { quadColor[i][j] = CLAMP(quadColor[i][j], 0.0F, 1.0F); } } } /** * If we're drawing to a luminance, luminance/alpha or intensity surface * we have to adjust (rebase) the fragment/quad colors before writing them * to the tile cache. The tile cache always stores RGBA colors but if * we're caching a L/A surface (for example) we need to be sure that R=G=B * so that subsequent reads from the surface cache appear to return L/A * values. * The piglit fbo-blending-formats test will exercise this. */ static void rebase_colors(enum format base_format, float (*quadColor)[4]) { unsigned i; switch (base_format) { case RGB: for (i = 0; i < 4; i++) { /* A = 1 */ quadColor[3][i] = 1.0F; } break; case LUMINANCE: for (i = 0; i < 4; i++) { /* B = G = R */ quadColor[2][i] = quadColor[1][i] = quadColor[0][i]; /* A = 1 */ quadColor[3][i] = 1.0F; } break; case LUMINANCE_ALPHA: for (i = 0; i < 4; i++) { /* B = G = R */ quadColor[2][i] = quadColor[1][i] = quadColor[0][i]; } break; case INTENSITY: for (i = 0; i < 4; i++) { /* A = B = G = R */ quadColor[3][i] = quadColor[2][i] = quadColor[1][i] = quadColor[0][i]; } break; default: ; /* nothing */ } } static void blend_fallback(struct quad_stage *qs, struct quad_header *quads[], unsigned nr) { const struct blend_quad_stage *bqs = blend_quad_stage(qs); struct softpipe_context *softpipe = qs->softpipe; const struct pipe_blend_state *blend = softpipe->blend; unsigned cbuf; boolean write_all; write_all = softpipe->fs_variant->info.color0_writes_all_cbufs; for (cbuf = 0; cbuf < softpipe->framebuffer.nr_cbufs; cbuf++) { /* which blend/mask state index to use: */ const uint blend_buf = blend->independent_blend_enable ? cbuf : 0; float dest[4][QUAD_SIZE]; struct softpipe_cached_tile *tile = sp_get_cached_tile(softpipe->cbuf_cache[cbuf], quads[0]->input.x0, quads[0]->input.y0); const boolean clamp = bqs->clamp[cbuf]; const float *blend_color; uint q, i, j; if (clamp) blend_color = softpipe->blend_color_clamped.color; else blend_color = softpipe->blend_color.color; for (q = 0; q < nr; q++) { struct quad_header *quad = quads[q]; float (*quadColor)[4]; float temp_quad_color[QUAD_SIZE][4]; const int itx = (quad->input.x0 & (TILE_SIZE-1)); const int ity = (quad->input.y0 & (TILE_SIZE-1)); if (write_all) { for (j = 0; j < QUAD_SIZE; j++) { for (i = 0; i < 4; i++) { temp_quad_color[i][j] = quad->output.color[0][i][j]; } } quadColor = temp_quad_color; } else { quadColor = quad->output.color[cbuf]; } /* If fixed-point dest color buffer, need to clamp the incoming * fragment colors now. */ if (clamp || softpipe->rasterizer->clamp_fragment_color) { clamp_colors(quadColor); } /* get/swizzle dest colors */ for (j = 0; j < QUAD_SIZE; j++) { int x = itx + (j & 1); int y = ity + (j >> 1); for (i = 0; i < 4; i++) { dest[i][j] = tile->data.color[y][x][i]; } } if (blend->logicop_enable) { if (bqs->format_type[cbuf] != UTIL_FORMAT_TYPE_FLOAT) { logicop_quad( qs, quadColor, dest ); } } else if (blend->rt[blend_buf].blend_enable) { blend_quad(qs, quadColor, dest, blend_color, blend_buf); /* If fixed-point dest color buffer, need to clamp the outgoing * fragment colors now. */ if (clamp) { clamp_colors(quadColor); } } rebase_colors(bqs->base_format[cbuf], quadColor); if (blend->rt[blend_buf].colormask != 0xf) colormask_quad( blend->rt[cbuf].colormask, quadColor, dest); /* Output color values */ for (j = 0; j < QUAD_SIZE; j++) { if (quad->inout.mask & (1 << j)) { int x = itx + (j & 1); int y = ity + (j >> 1); for (i = 0; i < 4; i++) { /* loop over color chans */ tile->data.color[y][x][i] = quadColor[i][j]; } } } } } } static void blend_single_add_src_alpha_inv_src_alpha(struct quad_stage *qs, struct quad_header *quads[], unsigned nr) { const struct blend_quad_stage *bqs = blend_quad_stage(qs); static const float one[4] = { 1, 1, 1, 1 }; float one_minus_alpha[QUAD_SIZE]; float dest[4][QUAD_SIZE]; float source[4][QUAD_SIZE]; uint i, j, q; struct softpipe_cached_tile *tile = sp_get_cached_tile(qs->softpipe->cbuf_cache[0], quads[0]->input.x0, quads[0]->input.y0); for (q = 0; q < nr; q++) { struct quad_header *quad = quads[q]; float (*quadColor)[4] = quad->output.color[0]; const float *alpha = quadColor[3]; const int itx = (quad->input.x0 & (TILE_SIZE-1)); const int ity = (quad->input.y0 & (TILE_SIZE-1)); /* get/swizzle dest colors */ for (j = 0; j < QUAD_SIZE; j++) { int x = itx + (j & 1); int y = ity + (j >> 1); for (i = 0; i < 4; i++) { dest[i][j] = tile->data.color[y][x][i]; } } /* If fixed-point dest color buffer, need to clamp the incoming * fragment colors now. */ if (bqs->clamp[0] || qs->softpipe->rasterizer->clamp_fragment_color) { clamp_colors(quadColor); } VEC4_MUL(source[0], quadColor[0], alpha); /* R */ VEC4_MUL(source[1], quadColor[1], alpha); /* G */ VEC4_MUL(source[2], quadColor[2], alpha); /* B */ VEC4_MUL(source[3], quadColor[3], alpha); /* A */ VEC4_SUB(one_minus_alpha, one, alpha); VEC4_MUL(dest[0], dest[0], one_minus_alpha); /* R */ VEC4_MUL(dest[1], dest[1], one_minus_alpha); /* G */ VEC4_MUL(dest[2], dest[2], one_minus_alpha); /* B */ VEC4_MUL(dest[3], dest[3], one_minus_alpha); /* A */ VEC4_ADD(quadColor[0], source[0], dest[0]); /* R */ VEC4_ADD(quadColor[1], source[1], dest[1]); /* G */ VEC4_ADD(quadColor[2], source[2], dest[2]); /* B */ VEC4_ADD(quadColor[3], source[3], dest[3]); /* A */ /* If fixed-point dest color buffer, need to clamp the outgoing * fragment colors now. */ if (bqs->clamp[0]) { clamp_colors(quadColor); } rebase_colors(bqs->base_format[0], quadColor); for (j = 0; j < QUAD_SIZE; j++) { if (quad->inout.mask & (1 << j)) { int x = itx + (j & 1); int y = ity + (j >> 1); for (i = 0; i < 4; i++) { /* loop over color chans */ tile->data.color[y][x][i] = quadColor[i][j]; } } } } } static void blend_single_add_one_one(struct quad_stage *qs, struct quad_header *quads[], unsigned nr) { const struct blend_quad_stage *bqs = blend_quad_stage(qs); float dest[4][QUAD_SIZE]; uint i, j, q; struct softpipe_cached_tile *tile = sp_get_cached_tile(qs->softpipe->cbuf_cache[0], quads[0]->input.x0, quads[0]->input.y0); for (q = 0; q < nr; q++) { struct quad_header *quad = quads[q]; float (*quadColor)[4] = quad->output.color[0]; const int itx = (quad->input.x0 & (TILE_SIZE-1)); const int ity = (quad->input.y0 & (TILE_SIZE-1)); /* get/swizzle dest colors */ for (j = 0; j < QUAD_SIZE; j++) { int x = itx + (j & 1); int y = ity + (j >> 1); for (i = 0; i < 4; i++) { dest[i][j] = tile->data.color[y][x][i]; } } /* If fixed-point dest color buffer, need to clamp the incoming * fragment colors now. */ if (bqs->clamp[0] || qs->softpipe->rasterizer->clamp_fragment_color) { clamp_colors(quadColor); } VEC4_ADD(quadColor[0], quadColor[0], dest[0]); /* R */ VEC4_ADD(quadColor[1], quadColor[1], dest[1]); /* G */ VEC4_ADD(quadColor[2], quadColor[2], dest[2]); /* B */ VEC4_ADD(quadColor[3], quadColor[3], dest[3]); /* A */ /* If fixed-point dest color buffer, need to clamp the outgoing * fragment colors now. */ if (bqs->clamp[0]) { clamp_colors(quadColor); } rebase_colors(bqs->base_format[0], quadColor); for (j = 0; j < QUAD_SIZE; j++) { if (quad->inout.mask & (1 << j)) { int x = itx + (j & 1); int y = ity + (j >> 1); for (i = 0; i < 4; i++) { /* loop over color chans */ tile->data.color[y][x][i] = quadColor[i][j]; } } } } } /** * Just copy the quad color to the framebuffer tile (respecting the writemask), * for one color buffer. * Clamping will be done, if needed (depending on the color buffer's * datatype) when we write/pack the colors later. */ static void single_output_color(struct quad_stage *qs, struct quad_header *quads[], unsigned nr) { const struct blend_quad_stage *bqs = blend_quad_stage(qs); uint i, j, q; struct softpipe_cached_tile *tile = sp_get_cached_tile(qs->softpipe->cbuf_cache[0], quads[0]->input.x0, quads[0]->input.y0); for (q = 0; q < nr; q++) { struct quad_header *quad = quads[q]; float (*quadColor)[4] = quad->output.color[0]; const int itx = (quad->input.x0 & (TILE_SIZE-1)); const int ity = (quad->input.y0 & (TILE_SIZE-1)); if (qs->softpipe->rasterizer->clamp_fragment_color) clamp_colors(quadColor); rebase_colors(bqs->base_format[0], quadColor); for (j = 0; j < QUAD_SIZE; j++) { if (quad->inout.mask & (1 << j)) { int x = itx + (j & 1); int y = ity + (j >> 1); for (i = 0; i < 4; i++) { /* loop over color chans */ tile->data.color[y][x][i] = quadColor[i][j]; } } } } } static void blend_noop(struct quad_stage *qs, struct quad_header *quads[], unsigned nr) { } static void choose_blend_quad(struct quad_stage *qs, struct quad_header *quads[], unsigned nr) { struct blend_quad_stage *bqs = blend_quad_stage(qs); struct softpipe_context *softpipe = qs->softpipe; const struct pipe_blend_state *blend = softpipe->blend; unsigned i; qs->run = blend_fallback; if (softpipe->framebuffer.nr_cbufs == 0) { qs->run = blend_noop; } else if (!softpipe->blend->logicop_enable && softpipe->blend->rt[0].colormask == 0xf && softpipe->framebuffer.nr_cbufs == 1) { if (!blend->rt[0].blend_enable) { qs->run = single_output_color; } else if (blend->rt[0].rgb_src_factor == blend->rt[0].alpha_src_factor && blend->rt[0].rgb_dst_factor == blend->rt[0].alpha_dst_factor && blend->rt[0].rgb_func == blend->rt[0].alpha_func) { if (blend->rt[0].alpha_func == PIPE_BLEND_ADD) { if (blend->rt[0].rgb_src_factor == PIPE_BLENDFACTOR_ONE && blend->rt[0].rgb_dst_factor == PIPE_BLENDFACTOR_ONE) { qs->run = blend_single_add_one_one; } else if (blend->rt[0].rgb_src_factor == PIPE_BLENDFACTOR_SRC_ALPHA && blend->rt[0].rgb_dst_factor == PIPE_BLENDFACTOR_INV_SRC_ALPHA) qs->run = blend_single_add_src_alpha_inv_src_alpha; } } } /* For each color buffer, determine if the buffer has destination alpha and * whether color clamping is needed. */ for (i = 0; i < softpipe->framebuffer.nr_cbufs; i++) { const enum pipe_format format = softpipe->framebuffer.cbufs[i]->format; const struct util_format_description *desc = util_format_description(format); /* assuming all or no color channels are normalized: */ bqs->clamp[i] = desc->channel[0].normalized; bqs->format_type[i] = desc->channel[0].type; if (util_format_is_intensity(format)) bqs->base_format[i] = INTENSITY; else if (util_format_is_luminance(format)) bqs->base_format[i] = LUMINANCE; else if (util_format_is_luminance_alpha(format)) bqs->base_format[i] = LUMINANCE_ALPHA; else if (util_format_is_rgb_no_alpha(format)) bqs->base_format[i] = RGB; else bqs->base_format[i] = RGBA; } qs->run(qs, quads, nr); } static void blend_begin(struct quad_stage *qs) { qs->run = choose_blend_quad; } static void blend_destroy(struct quad_stage *qs) { FREE( qs ); } struct quad_stage *sp_quad_blend_stage( struct softpipe_context *softpipe ) { struct blend_quad_stage *stage = CALLOC_STRUCT(blend_quad_stage); if (!stage) return NULL; stage->base.softpipe = softpipe; stage->base.begin = blend_begin; stage->base.run = choose_blend_quad; stage->base.destroy = blend_destroy; return &stage->base; }