/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "si_pipe.h" #include "si_state.h" #include "sid.h" #include "radeon/r600_cs.h" #include "util/u_memory.h" static void si_set_streamout_enable(struct si_context *sctx, bool enable); static inline void si_so_target_reference(struct si_streamout_target **dst, struct pipe_stream_output_target *src) { pipe_so_target_reference((struct pipe_stream_output_target**)dst, src); } static struct pipe_stream_output_target * si_create_so_target(struct pipe_context *ctx, struct pipe_resource *buffer, unsigned buffer_offset, unsigned buffer_size) { struct si_context *sctx = (struct si_context *)ctx; struct si_streamout_target *t; struct r600_resource *rbuffer = (struct r600_resource*)buffer; t = CALLOC_STRUCT(si_streamout_target); if (!t) { return NULL; } u_suballocator_alloc(sctx->b.allocator_zeroed_memory, 4, 4, &t->buf_filled_size_offset, (struct pipe_resource**)&t->buf_filled_size); if (!t->buf_filled_size) { FREE(t); return NULL; } t->b.reference.count = 1; t->b.context = ctx; pipe_resource_reference(&t->b.buffer, buffer); t->b.buffer_offset = buffer_offset; t->b.buffer_size = buffer_size; util_range_add(&rbuffer->valid_buffer_range, buffer_offset, buffer_offset + buffer_size); return &t->b; } static void si_so_target_destroy(struct pipe_context *ctx, struct pipe_stream_output_target *target) { struct si_streamout_target *t = (struct si_streamout_target*)target; pipe_resource_reference(&t->b.buffer, NULL); r600_resource_reference(&t->buf_filled_size, NULL); FREE(t); } void si_streamout_buffers_dirty(struct si_context *sctx) { if (!sctx->streamout.enabled_mask) return; si_mark_atom_dirty(sctx, &sctx->streamout.begin_atom); si_set_streamout_enable(sctx, true); } static void si_set_streamout_targets(struct pipe_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; unsigned old_num_targets = sctx->streamout.num_targets; unsigned i, bufidx; /* We are going to unbind the buffers. Mark which caches need to be flushed. */ if (sctx->streamout.num_targets && sctx->streamout.begin_emitted) { /* Since streamout uses vector writes which go through TC L2 * and most other clients can use TC L2 as well, we don't need * to flush it. * * The only cases which requires flushing it is VGT DMA index * fetching (on <= CIK) and indirect draw data, which are rare * cases. Thus, flag the TC L2 dirtiness in the resource and * handle it at draw call time. */ for (i = 0; i < sctx->streamout.num_targets; i++) if (sctx->streamout.targets[i]) r600_resource(sctx->streamout.targets[i]->b.buffer)->TC_L2_dirty = true; /* Invalidate the scalar cache in case a streamout buffer is * going to be used as a constant buffer. * * Invalidate TC L1, because streamout bypasses it (done by * setting GLC=1 in the store instruction), but it can contain * outdated data of streamout buffers. * * VS_PARTIAL_FLUSH is required if the buffers are going to be * used as an input immediately. */ sctx->b.flags |= SI_CONTEXT_INV_SMEM_L1 | SI_CONTEXT_INV_VMEM_L1 | SI_CONTEXT_VS_PARTIAL_FLUSH; } /* All readers of the streamout targets need to be finished before we can * start writing to the targets. */ if (num_targets) sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH; /* Streamout buffers must be bound in 2 places: * 1) in VGT by setting the VGT_STRMOUT registers * 2) as shader resources */ /* Stop streamout. */ if (sctx->streamout.num_targets && sctx->streamout.begin_emitted) si_emit_streamout_end(sctx); /* Set the new targets. */ unsigned enabled_mask = 0, append_bitmask = 0; for (i = 0; i < num_targets; i++) { si_so_target_reference(&sctx->streamout.targets[i], targets[i]); if (!targets[i]) continue; r600_context_add_resource_size(ctx, targets[i]->buffer); enabled_mask |= 1 << i; if (offsets[i] == ((unsigned)-1)) append_bitmask |= 1 << i; } for (; i < sctx->streamout.num_targets; i++) si_so_target_reference(&sctx->streamout.targets[i], NULL); sctx->streamout.enabled_mask = enabled_mask; sctx->streamout.num_targets = num_targets; sctx->streamout.append_bitmask = append_bitmask; /* Update dirty state bits. */ if (num_targets) { si_streamout_buffers_dirty(sctx); } else { si_set_atom_dirty(sctx, &sctx->streamout.begin_atom, false); si_set_streamout_enable(sctx, false); } /* Set the shader resources.*/ for (i = 0; i < num_targets; i++) { bufidx = SI_VS_STREAMOUT_BUF0 + i; if (targets[i]) { struct pipe_resource *buffer = targets[i]->buffer; uint64_t va = r600_resource(buffer)->gpu_address; /* Set the descriptor. * * On VI, the format must be non-INVALID, otherwise * the buffer will be considered not bound and store * instructions will be no-ops. */ uint32_t *desc = descs->list + bufidx*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32); desc[2] = 0xffffffff; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); /* Set the resource. */ pipe_resource_reference(&buffers->buffers[bufidx], buffer); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, RADEON_PRIO_SHADER_RW_BUFFER, true); r600_resource(buffer)->bind_history |= PIPE_BIND_STREAM_OUTPUT; buffers->enabled_mask |= 1u << bufidx; } else { /* Clear the descriptor and unset the resource. */ memset(descs->list + bufidx*4, 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->enabled_mask &= ~(1u << bufidx); } } for (; i < old_num_targets; i++) { bufidx = SI_VS_STREAMOUT_BUF0 + i; /* Clear the descriptor and unset the resource. */ memset(descs->list + bufidx*4, 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->enabled_mask &= ~(1u << bufidx); } sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS; } static void si_flush_vgt_streamout(struct si_context *sctx) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; unsigned reg_strmout_cntl; /* The register is at different places on different ASICs. */ if (sctx->b.chip_class >= CIK) { reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL; radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0); } else { reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL; radeon_set_config_reg(cs, reg_strmout_cntl, 0); } radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0)); radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); radeon_emit(cs, WAIT_REG_MEM_EQUAL); /* wait until the register is equal to the reference value */ radeon_emit(cs, reg_strmout_cntl >> 2); /* register */ radeon_emit(cs, 0); radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */ radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */ radeon_emit(cs, 4); /* poll interval */ } static void si_emit_streamout_begin(struct r600_common_context *rctx, struct r600_atom *atom) { struct si_context *sctx = (struct si_context*)rctx; struct radeon_winsys_cs *cs = sctx->b.gfx.cs; struct si_streamout_target **t = sctx->streamout.targets; uint16_t *stride_in_dw = sctx->streamout.stride_in_dw; unsigned i; si_flush_vgt_streamout(sctx); for (i = 0; i < sctx->streamout.num_targets; i++) { if (!t[i]) continue; t[i]->stride_in_dw = stride_in_dw[i]; /* SI binds streamout buffers as shader resources. * VGT only counts primitives and tells the shader * through SGPRs what to do. */ radeon_set_context_reg_seq(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16*i, 2); radeon_emit(cs, (t[i]->b.buffer_offset + t[i]->b.buffer_size) >> 2); /* BUFFER_SIZE (in DW) */ radeon_emit(cs, stride_in_dw[i]); /* VTX_STRIDE (in DW) */ if (sctx->streamout.append_bitmask & (1 << i) && t[i]->buf_filled_size_valid) { uint64_t va = t[i]->buf_filled_size->gpu_address + t[i]->buf_filled_size_offset; /* Append. */ radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, va); /* src address lo */ radeon_emit(cs, va >> 32); /* src address hi */ radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, t[i]->buf_filled_size, RADEON_USAGE_READ, RADEON_PRIO_SO_FILLED_SIZE); } else { /* Start from the beginning. */ radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, t[i]->b.buffer_offset >> 2); /* buffer offset in DW */ radeon_emit(cs, 0); /* unused */ } } sctx->streamout.begin_emitted = true; } void si_emit_streamout_end(struct si_context *sctx) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; struct si_streamout_target **t = sctx->streamout.targets; unsigned i; uint64_t va; si_flush_vgt_streamout(sctx); for (i = 0; i < sctx->streamout.num_targets; i++) { if (!t[i]) continue; va = t[i]->buf_filled_size->gpu_address + t[i]->buf_filled_size_offset; radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) | STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */ radeon_emit(cs, va); /* dst address lo */ radeon_emit(cs, va >> 32); /* dst address hi */ radeon_emit(cs, 0); /* unused */ radeon_emit(cs, 0); /* unused */ radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, t[i]->buf_filled_size, RADEON_USAGE_WRITE, RADEON_PRIO_SO_FILLED_SIZE); /* Zero the buffer size. The counters (primitives generated, * primitives emitted) may be enabled even if there is not * buffer bound. This ensures that the primitives-emitted query * won't increment. */ radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16*i, 0); t[i]->buf_filled_size_valid = true; } sctx->streamout.begin_emitted = false; sctx->b.flags |= R600_CONTEXT_STREAMOUT_FLUSH; } /* STREAMOUT CONFIG DERIVED STATE * * Streamout must be enabled for the PRIMITIVES_GENERATED query to work. * The buffer mask is an independent state, so no writes occur if there * are no buffers bound. */ static void si_emit_streamout_enable(struct r600_common_context *rctx, struct r600_atom *atom) { struct si_context *sctx = (struct si_context*)rctx; radeon_set_context_reg_seq(sctx->b.gfx.cs, R_028B94_VGT_STRMOUT_CONFIG, 2); radeon_emit(sctx->b.gfx.cs, S_028B94_STREAMOUT_0_EN(si_get_strmout_en(sctx)) | S_028B94_RAST_STREAM(0) | S_028B94_STREAMOUT_1_EN(si_get_strmout_en(sctx)) | S_028B94_STREAMOUT_2_EN(si_get_strmout_en(sctx)) | S_028B94_STREAMOUT_3_EN(si_get_strmout_en(sctx))); radeon_emit(sctx->b.gfx.cs, sctx->streamout.hw_enabled_mask & sctx->streamout.enabled_stream_buffers_mask); } static void si_set_streamout_enable(struct si_context *sctx, bool enable) { bool old_strmout_en = si_get_strmout_en(sctx); unsigned old_hw_enabled_mask = sctx->streamout.hw_enabled_mask; sctx->streamout.streamout_enabled = enable; sctx->streamout.hw_enabled_mask = sctx->streamout.enabled_mask | (sctx->streamout.enabled_mask << 4) | (sctx->streamout.enabled_mask << 8) | (sctx->streamout.enabled_mask << 12); if ((old_strmout_en != si_get_strmout_en(sctx)) || (old_hw_enabled_mask != sctx->streamout.hw_enabled_mask)) si_mark_atom_dirty(sctx, &sctx->streamout.enable_atom); } void si_update_prims_generated_query_state(struct si_context *sctx, unsigned type, int diff) { if (type == PIPE_QUERY_PRIMITIVES_GENERATED) { bool old_strmout_en = si_get_strmout_en(sctx); sctx->streamout.num_prims_gen_queries += diff; assert(sctx->streamout.num_prims_gen_queries >= 0); sctx->streamout.prims_gen_query_enabled = sctx->streamout.num_prims_gen_queries != 0; if (old_strmout_en != si_get_strmout_en(sctx)) si_mark_atom_dirty(sctx, &sctx->streamout.enable_atom); } } void si_init_streamout_functions(struct si_context *sctx) { sctx->b.b.create_stream_output_target = si_create_so_target; sctx->b.b.stream_output_target_destroy = si_so_target_destroy; sctx->b.b.set_stream_output_targets = si_set_streamout_targets; sctx->streamout.begin_atom.emit = si_emit_streamout_begin; sctx->streamout.enable_atom.emit = si_emit_streamout_enable; }