/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Christian König * Marek Olšák */ #include "si_pipe.h" #include "sid.h" #include "gfx9d.h" #include "radeon/r600_cs.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_ureg.h" #include "util/hash_table.h" #include "util/crc32.h" #include "util/u_memory.h" #include "util/u_prim.h" #include "util/disk_cache.h" #include "util/mesa-sha1.h" #include "ac_exp_param.h" /* SHADER_CACHE */ /** * Return the TGSI binary in a buffer. The first 4 bytes contain its size as * integer. */ static void *si_get_tgsi_binary(struct si_shader_selector *sel) { unsigned tgsi_size = tgsi_num_tokens(sel->tokens) * sizeof(struct tgsi_token); unsigned size = 4 + tgsi_size + sizeof(sel->so); char *result = (char*)MALLOC(size); if (!result) return NULL; *((uint32_t*)result) = size; memcpy(result + 4, sel->tokens, tgsi_size); memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so)); return result; } /** Copy "data" to "ptr" and return the next dword following copied data. */ static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size) { /* data may be NULL if size == 0 */ if (size) memcpy(ptr, data, size); ptr += DIV_ROUND_UP(size, 4); return ptr; } /** Read data from "ptr". Return the next dword following the data. */ static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size) { memcpy(data, ptr, size); ptr += DIV_ROUND_UP(size, 4); return ptr; } /** * Write the size as uint followed by the data. Return the next dword * following the copied data. */ static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size) { *ptr++ = size; return write_data(ptr, data, size); } /** * Read the size as uint followed by the data. Return both via parameters. * Return the next dword following the data. */ static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size) { *size = *ptr++; assert(*data == NULL); if (!*size) return ptr; *data = malloc(*size); return read_data(ptr, *data, *size); } /** * Return the shader binary in a buffer. The first 4 bytes contain its size * as integer. */ static void *si_get_shader_binary(struct si_shader *shader) { /* There is always a size of data followed by the data itself. */ unsigned relocs_size = shader->binary.reloc_count * sizeof(shader->binary.relocs[0]); unsigned disasm_size = shader->binary.disasm_string ? strlen(shader->binary.disasm_string) + 1 : 0; unsigned llvm_ir_size = shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0; unsigned size = 4 + /* total size */ 4 + /* CRC32 of the data below */ align(sizeof(shader->config), 4) + align(sizeof(shader->info), 4) + 4 + align(shader->binary.code_size, 4) + 4 + align(shader->binary.rodata_size, 4) + 4 + align(relocs_size, 4) + 4 + align(disasm_size, 4) + 4 + align(llvm_ir_size, 4); void *buffer = CALLOC(1, size); uint32_t *ptr = (uint32_t*)buffer; if (!buffer) return NULL; *ptr++ = size; ptr++; /* CRC32 is calculated at the end. */ ptr = write_data(ptr, &shader->config, sizeof(shader->config)); ptr = write_data(ptr, &shader->info, sizeof(shader->info)); ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size); ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size); ptr = write_chunk(ptr, shader->binary.relocs, relocs_size); ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size); ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size); assert((char *)ptr - (char *)buffer == size); /* Compute CRC32. */ ptr = (uint32_t*)buffer; ptr++; *ptr = util_hash_crc32(ptr + 1, size - 8); return buffer; } static bool si_load_shader_binary(struct si_shader *shader, void *binary) { uint32_t *ptr = (uint32_t*)binary; uint32_t size = *ptr++; uint32_t crc32 = *ptr++; unsigned chunk_size; if (util_hash_crc32(ptr, size - 8) != crc32) { fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n"); return false; } ptr = read_data(ptr, &shader->config, sizeof(shader->config)); ptr = read_data(ptr, &shader->info, sizeof(shader->info)); ptr = read_chunk(ptr, (void**)&shader->binary.code, &shader->binary.code_size); ptr = read_chunk(ptr, (void**)&shader->binary.rodata, &shader->binary.rodata_size); ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size); shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]); ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size); ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size); return true; } /** * Insert a shader into the cache. It's assumed the shader is not in the cache. * Use si_shader_cache_load_shader before calling this. * * Returns false on failure, in which case the tgsi_binary should be freed. */ static bool si_shader_cache_insert_shader(struct si_screen *sscreen, void *tgsi_binary, struct si_shader *shader, bool insert_into_disk_cache) { void *hw_binary; struct hash_entry *entry; uint8_t key[CACHE_KEY_SIZE]; entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary); if (entry) return false; /* already added */ hw_binary = si_get_shader_binary(shader); if (!hw_binary) return false; if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary, hw_binary) == NULL) { FREE(hw_binary); return false; } if (sscreen->b.disk_shader_cache && insert_into_disk_cache) { disk_cache_compute_key(sscreen->b.disk_shader_cache, tgsi_binary, *((uint32_t *)tgsi_binary), key); disk_cache_put(sscreen->b.disk_shader_cache, key, hw_binary, *((uint32_t *) hw_binary)); } return true; } static bool si_shader_cache_load_shader(struct si_screen *sscreen, void *tgsi_binary, struct si_shader *shader) { struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary); if (!entry) { if (sscreen->b.disk_shader_cache) { unsigned char sha1[CACHE_KEY_SIZE]; size_t tg_size = *((uint32_t *) tgsi_binary); disk_cache_compute_key(sscreen->b.disk_shader_cache, tgsi_binary, tg_size, sha1); size_t binary_size; uint8_t *buffer = disk_cache_get(sscreen->b.disk_shader_cache, sha1, &binary_size); if (!buffer) return false; if (binary_size < sizeof(uint32_t) || *((uint32_t*)buffer) != binary_size) { /* Something has gone wrong discard the item * from the cache and rebuild/link from * source. */ assert(!"Invalid radeonsi shader disk cache " "item!"); disk_cache_remove(sscreen->b.disk_shader_cache, sha1); free(buffer); return false; } if (!si_load_shader_binary(shader, buffer)) { free(buffer); return false; } free(buffer); if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader, false)) FREE(tgsi_binary); } else { return false; } } else { if (si_load_shader_binary(shader, entry->data)) FREE(tgsi_binary); else return false; } p_atomic_inc(&sscreen->b.num_shader_cache_hits); return true; } static uint32_t si_shader_cache_key_hash(const void *key) { /* The first dword is the key size. */ return util_hash_crc32(key, *(uint32_t*)key); } static bool si_shader_cache_key_equals(const void *a, const void *b) { uint32_t *keya = (uint32_t*)a; uint32_t *keyb = (uint32_t*)b; /* The first dword is the key size. */ if (*keya != *keyb) return false; return memcmp(keya, keyb, *keya) == 0; } static void si_destroy_shader_cache_entry(struct hash_entry *entry) { FREE((void*)entry->key); FREE(entry->data); } bool si_init_shader_cache(struct si_screen *sscreen) { (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain); sscreen->shader_cache = _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals); return sscreen->shader_cache != NULL; } void si_destroy_shader_cache(struct si_screen *sscreen) { if (sscreen->shader_cache) _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry); mtx_destroy(&sscreen->shader_cache_mutex); } /* SHADER STATES */ static void si_set_tesseval_regs(struct si_screen *sscreen, struct si_shader_selector *tes, struct si_pm4_state *pm4) { struct tgsi_shader_info *info = &tes->info; unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE]; unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING]; bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW]; bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE]; unsigned type, partitioning, topology, distribution_mode; switch (tes_prim_mode) { case PIPE_PRIM_LINES: type = V_028B6C_TESS_ISOLINE; break; case PIPE_PRIM_TRIANGLES: type = V_028B6C_TESS_TRIANGLE; break; case PIPE_PRIM_QUADS: type = V_028B6C_TESS_QUAD; break; default: assert(0); return; } switch (tes_spacing) { case PIPE_TESS_SPACING_FRACTIONAL_ODD: partitioning = V_028B6C_PART_FRAC_ODD; break; case PIPE_TESS_SPACING_FRACTIONAL_EVEN: partitioning = V_028B6C_PART_FRAC_EVEN; break; case PIPE_TESS_SPACING_EQUAL: partitioning = V_028B6C_PART_INTEGER; break; default: assert(0); return; } if (tes_point_mode) topology = V_028B6C_OUTPUT_POINT; else if (tes_prim_mode == PIPE_PRIM_LINES) topology = V_028B6C_OUTPUT_LINE; else if (tes_vertex_order_cw) /* for some reason, this must be the other way around */ topology = V_028B6C_OUTPUT_TRIANGLE_CCW; else topology = V_028B6C_OUTPUT_TRIANGLE_CW; if (sscreen->has_distributed_tess) { if (sscreen->b.family == CHIP_FIJI || sscreen->b.family >= CHIP_POLARIS10) distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS; else distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS; } else distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST; si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM, S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) | S_028B6C_DISTRIBUTION_MODE(distribution_mode)); } /* Polaris needs different VTX_REUSE_DEPTH settings depending on * whether the "fractional odd" tessellation spacing is used. * * Possible VGT configurations and which state should set the register: * * Reg set in | VGT shader configuration | Value * ------------------------------------------------------ * VS as VS | VS | 30 * VS as ES | ES -> GS -> VS | 30 * TES as VS | LS -> HS -> VS | 14 or 30 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30 * * If "shader" is NULL, it's assumed it's not LS or GS copy shader. */ static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel, struct si_shader *shader, struct si_pm4_state *pm4) { unsigned type = sel->type; if (sscreen->b.family < CHIP_POLARIS10) return; /* VS as VS, or VS as ES: */ if ((type == PIPE_SHADER_VERTEX && (!shader || (!shader->key.as_ls && !shader->is_gs_copy_shader))) || /* TES as VS, or TES as ES: */ type == PIPE_SHADER_TESS_EVAL) { unsigned vtx_reuse_depth = 30; if (type == PIPE_SHADER_TESS_EVAL && sel->info.properties[TGSI_PROPERTY_TES_SPACING] == PIPE_TESS_SPACING_FRACTIONAL_ODD) vtx_reuse_depth = 14; si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, vtx_reuse_depth); } } static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader) { if (shader->pm4) si_pm4_clear_state(shader->pm4); else shader->pm4 = CALLOC_STRUCT(si_pm4_state); return shader->pm4; } static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader) { struct si_pm4_state *pm4; unsigned vgpr_comp_cnt; uint64_t va; assert(sscreen->b.chip_class <= VI); pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY); /* We need at least 2 components for LS. * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID). * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. */ vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1; si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8); si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40); shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B528_DX10_CLAMP(1) | S_00B528_FLOAT_MODE(shader->config.float_mode); shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_VS_NUM_USER_SGPR) | S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0); } static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader) { struct si_pm4_state *pm4; uint64_t va; unsigned ls_vgpr_comp_cnt = 0; pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY); if (sscreen->b.chip_class >= GFX9) { si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8); si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, va >> 40); /* We need at least 2 components for LS. * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID). * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. */ ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1; shader->config.rsrc2 = S_00B42C_USER_SGPR(GFX9_TCS_NUM_USER_SGPR) | S_00B42C_USER_SGPR_MSB(GFX9_TCS_NUM_USER_SGPR >> 5) | S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0); } else { si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8); si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40); shader->config.rsrc2 = S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) | S_00B42C_OC_LDS_EN(1) | S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0); } si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS, S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B428_DX10_CLAMP(1) | S_00B428_FLOAT_MODE(shader->config.float_mode) | S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt)); if (sscreen->b.chip_class <= VI) { si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2); } } static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader) { struct si_pm4_state *pm4; unsigned num_user_sgprs; unsigned vgpr_comp_cnt; uint64_t va; unsigned oc_lds_en; assert(sscreen->b.chip_class <= VI); pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY); if (shader->selector->type == PIPE_SHADER_VERTEX) { /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */ vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0; num_user_sgprs = SI_VS_NUM_USER_SGPR; } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) { vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2; num_user_sgprs = SI_TES_NUM_USER_SGPR; } else unreachable("invalid shader selector type"); oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0; si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE, shader->selector->esgs_itemsize / 4); si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40); si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES, S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B328_DX10_CLAMP(1) | S_00B328_FLOAT_MODE(shader->config.float_mode)); si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES, S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) | S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0)); if (shader->selector->type == PIPE_SHADER_TESS_EVAL) si_set_tesseval_regs(sscreen, shader->selector, pm4); polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4); } /** * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a * geometry shader. */ static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel) { enum chip_class chip_class = sel->screen->b.chip_class; unsigned gs_max_vert_out = sel->gs_max_out_vertices; unsigned cut_mode; if (gs_max_vert_out <= 128) { cut_mode = V_028A40_GS_CUT_128; } else if (gs_max_vert_out <= 256) { cut_mode = V_028A40_GS_CUT_256; } else if (gs_max_vert_out <= 512) { cut_mode = V_028A40_GS_CUT_512; } else { assert(gs_max_vert_out <= 1024); cut_mode = V_028A40_GS_CUT_1024; } return S_028A40_MODE(V_028A40_GS_SCENARIO_G) | S_028A40_CUT_MODE(cut_mode)| S_028A40_ES_WRITE_OPTIMIZE(chip_class <= VI) | S_028A40_GS_WRITE_OPTIMIZE(1) | S_028A40_ONCHIP(chip_class >= GFX9 ? 1 : 0); } struct gfx9_gs_info { unsigned es_verts_per_subgroup; unsigned gs_prims_per_subgroup; unsigned gs_inst_prims_in_subgroup; unsigned max_prims_per_subgroup; unsigned lds_size; }; static void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs, struct gfx9_gs_info *out) { unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1); unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]; bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY; /* All these are in dwords: */ /* We can't allow using the whole LDS, because GS waves compete with * other shader stages for LDS space. */ const unsigned max_lds_size = 8 * 1024; const unsigned esgs_itemsize = es->esgs_itemsize / 4; unsigned esgs_lds_size; /* All these are per subgroup: */ const unsigned max_out_prims = 32 * 1024; const unsigned max_es_verts = 255; const unsigned ideal_gs_prims = 64; unsigned max_gs_prims, gs_prims; unsigned min_es_verts, es_verts, worst_case_es_verts; assert(gs_num_invocations <= 32); /* GL maximum */ if (uses_adjacency || gs_num_invocations > 1) max_gs_prims = 127 / gs_num_invocations; else max_gs_prims = 255; /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations. * Make sure we don't go over the maximum value. */ max_gs_prims = MIN2(max_gs_prims, max_out_prims / (gs->gs_max_out_vertices * gs_num_invocations)); assert(max_gs_prims > 0); /* If the primitive has adjacency, halve the number of vertices * that will be reused in multiple primitives. */ min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1); gs_prims = MIN2(ideal_gs_prims, max_gs_prims); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); /* Compute ESGS LDS size based on the worst case number of ES vertices * needed to create the target number of GS prims per subgroup. */ esgs_lds_size = esgs_itemsize * worst_case_es_verts; /* If total LDS usage is too big, refactor partitions based on ratio * of ESGS item sizes. */ if (esgs_lds_size > max_lds_size) { /* Our target GS Prims Per Subgroup was too large. Calculate * the maximum number of GS Prims Per Subgroup that will fit * into LDS, capped by the maximum that the hardware can support. */ gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims); assert(gs_prims > 0); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); esgs_lds_size = esgs_itemsize * worst_case_es_verts; assert(esgs_lds_size <= max_lds_size); } /* Now calculate remaining ESGS information. */ if (esgs_lds_size) es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts); else es_verts = max_es_verts; /* Vertices for adjacency primitives are not always reused, so restore * it for ES_VERTS_PER_SUBGRP. */ min_es_verts = gs->gs_input_verts_per_prim; /* For normal primitives, the VGT only checks if they are past the ES * verts per subgroup after allocating a full GS primitive and if they * are, kick off a new subgroup. But if those additional ES verts are * unique (e.g. not reused) we need to make sure there is enough LDS * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP. */ es_verts -= min_es_verts - 1; out->es_verts_per_subgroup = es_verts; out->gs_prims_per_subgroup = gs_prims; out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations; out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->gs_max_out_vertices; out->lds_size = align(esgs_lds_size, 128) / 128; assert(out->max_prims_per_subgroup <= max_out_prims); } static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader) { struct si_shader_selector *sel = shader->selector; const ubyte *num_components = sel->info.num_stream_output_components; unsigned gs_num_invocations = sel->gs_num_invocations; struct si_pm4_state *pm4; uint64_t va; unsigned max_stream = sel->max_gs_stream; unsigned offset; pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; offset = num_components[0] * sel->gs_max_out_vertices; si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset); if (max_stream >= 1) offset += num_components[1] * sel->gs_max_out_vertices; si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset); if (max_stream >= 2) offset += num_components[2] * sel->gs_max_out_vertices; si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset); if (max_stream >= 3) offset += num_components[3] * sel->gs_max_out_vertices; si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset); /* The GSVS_RING_ITEMSIZE register takes 15 bits */ assert(offset < (1 << 15)); si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices); si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]); si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0); si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0); si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0); si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT, S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0)); va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY); if (sscreen->b.chip_class >= GFX9) { unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]; unsigned es_type = shader->key.part.gs.es->type; unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt; struct gfx9_gs_info gs_info; if (es_type == PIPE_SHADER_VERTEX) /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */ es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0; else if (es_type == PIPE_SHADER_TESS_EVAL) es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2; else unreachable("invalid shader selector type"); /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and * VGPR[0:4] are always loaded. */ if (sel->info.uses_invocationid) gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ else if (sel->info.uses_primid) gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ else if (input_prim >= PIPE_PRIM_TRIANGLES) gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ else gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info); si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8); si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, va >> 40); si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B228_DX10_CLAMP(1) | S_00B228_FLOAT_MODE(shader->config.float_mode) | S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt)); si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, S_00B22C_USER_SGPR(GFX9_GS_NUM_USER_SGPR) | S_00B22C_USER_SGPR_MSB(GFX9_GS_NUM_USER_SGPR >> 5) | S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) | S_00B22C_LDS_SIZE(gs_info.lds_size) | S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0)); si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL, S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) | S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup)); si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup)); si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE, shader->key.part.gs.es->esgs_itemsize / 4); if (es_type == PIPE_SHADER_TESS_EVAL) si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4); polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es, NULL, pm4); } else { si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8); si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40); si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B228_DX10_CLAMP(1) | S_00B228_FLOAT_MODE(shader->config.float_mode)); si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) | S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0)); } } /** * Compute the state for \p shader, which will run as a vertex shader on the * hardware. * * If \p gs is non-NULL, it points to the geometry shader for which this shader * is the copy shader. */ static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader, struct si_shader_selector *gs) { struct si_pm4_state *pm4; unsigned num_user_sgprs; unsigned nparams, vgpr_comp_cnt; uint64_t va; unsigned oc_lds_en; unsigned window_space = shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION]; bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || shader->selector->info.uses_primid; pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; /* We always write VGT_GS_MODE in the VS state, because every switch * between different shader pipelines involving a different GS or no * GS at all involves a switch of the VS (different GS use different * copy shaders). On the other hand, when the API switches from a GS to * no GS and then back to the same GS used originally, the GS state is * not sent again. */ if (!gs) { unsigned mode = 0; /* PrimID needs GS scenario A. * GFX9 also needs it when ViewportIndex is enabled. */ if (enable_prim_id || (sscreen->b.chip_class >= GFX9 && shader->selector->info.writes_viewport_index)) mode = V_028A40_GS_SCENARIO_A; si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode)); si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id); } else { si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs)); si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0); } va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY); if (gs) { vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */ num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR; } else if (shader->selector->type == PIPE_SHADER_VERTEX) { /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID) * If PrimID is disabled. InstanceID / StepRate1 is loaded instead. * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. */ vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0); num_user_sgprs = SI_VS_NUM_USER_SGPR; } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) { vgpr_comp_cnt = enable_prim_id ? 3 : 2; num_user_sgprs = SI_TES_NUM_USER_SGPR; } else unreachable("invalid shader selector type"); /* VS is required to export at least one param. */ nparams = MAX2(shader->info.nr_param_exports, 1); si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG, S_0286C4_VS_EXPORT_COUNT(nparams - 1)); si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT, S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE)); oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0; si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8); si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40); si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B128_DX10_CLAMP(1) | S_00B128_FLOAT_MODE(shader->config.float_mode)); si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) | S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) | S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) | S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) | S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) | S_00B12C_SO_EN(!!shader->selector->so.num_outputs) | S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0)); if (window_space) si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL, S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1)); else si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL, S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) | S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1)); if (shader->selector->type == PIPE_SHADER_TESS_EVAL) si_set_tesseval_regs(sscreen, shader->selector, pm4); polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4); } static unsigned si_get_ps_num_interp(struct si_shader *ps) { struct tgsi_shader_info *info = &ps->selector->info; unsigned num_colors = !!(info->colors_read & 0x0f) + !!(info->colors_read & 0xf0); unsigned num_interp = ps->selector->info.num_inputs + (ps->key.part.ps.prolog.color_two_side ? num_colors : 0); assert(num_interp <= 32); return MIN2(num_interp, 32); } static unsigned si_get_spi_shader_col_format(struct si_shader *shader) { unsigned value = shader->key.part.ps.epilog.spi_shader_col_format; unsigned i, num_targets = (util_last_bit(value) + 3) / 4; /* If the i-th target format is set, all previous target formats must * be non-zero to avoid hangs. */ for (i = 0; i < num_targets; i++) if (!(value & (0xf << (i * 4)))) value |= V_028714_SPI_SHADER_32_R << (i * 4); return value; } static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format) { unsigned i, cb_shader_mask = 0; for (i = 0; i < 8; i++) { switch ((spi_shader_col_format >> (i * 4)) & 0xf) { case V_028714_SPI_SHADER_ZERO: break; case V_028714_SPI_SHADER_32_R: cb_shader_mask |= 0x1 << (i * 4); break; case V_028714_SPI_SHADER_32_GR: cb_shader_mask |= 0x3 << (i * 4); break; case V_028714_SPI_SHADER_32_AR: cb_shader_mask |= 0x9 << (i * 4); break; case V_028714_SPI_SHADER_FP16_ABGR: case V_028714_SPI_SHADER_UNORM16_ABGR: case V_028714_SPI_SHADER_SNORM16_ABGR: case V_028714_SPI_SHADER_UINT16_ABGR: case V_028714_SPI_SHADER_SINT16_ABGR: case V_028714_SPI_SHADER_32_ABGR: cb_shader_mask |= 0xf << (i * 4); break; default: assert(0); } } return cb_shader_mask; } static void si_shader_ps(struct si_shader *shader) { struct tgsi_shader_info *info = &shader->selector->info; struct si_pm4_state *pm4; unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask; unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1); uint64_t va; unsigned input_ena = shader->config.spi_ps_input_ena; /* we need to enable at least one of them, otherwise we hang the GPU */ assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) || G_0286CC_LINEAR_SAMPLE_ENA(input_ena) || G_0286CC_LINEAR_CENTER_ENA(input_ena) || G_0286CC_LINEAR_CENTROID_ENA(input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena)); /* POS_W_FLOAT_ENA requires one of the perspective weights. */ assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena)); /* Validate interpolation optimization flags (read as implications). */ assert(!shader->key.part.ps.prolog.bc_optimize_for_persp || (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena))); assert(!shader->key.part.ps.prolog.bc_optimize_for_linear || (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena))); assert(!shader->key.part.ps.prolog.force_persp_center_interp || (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena))); assert(!shader->key.part.ps.prolog.force_linear_center_interp || (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena))); assert(!shader->key.part.ps.prolog.force_persp_sample_interp || (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena))); assert(!shader->key.part.ps.prolog.force_linear_sample_interp || (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena))); /* Validate cases when the optimizations are off (read as implications). */ assert(shader->key.part.ps.prolog.bc_optimize_for_persp || !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena)); assert(shader->key.part.ps.prolog.bc_optimize_for_linear || !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena)); pm4 = si_get_shader_pm4_state(shader); if (!pm4) return; /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION * Possible vaules: * 0 -> Position = pixel center * 1 -> Position = pixel centroid * 2 -> Position = at sample position * * From GLSL 4.5 specification, section 7.1: * "The variable gl_FragCoord is available as an input variable from * within fragment shaders and it holds the window relative coordinates * (x, y, z, 1/w) values for the fragment. If multi-sampling, this * value can be for any location within the pixel, or one of the * fragment samples. The use of centroid does not further restrict * this value to be inside the current primitive." * * Meaning that centroid has no effect and we can return anything within * the pixel. Thus, return the value at sample position, because that's * the most accurate one shaders can get. */ spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2); if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] == TGSI_FS_COORD_PIXEL_CENTER_INTEGER) spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1); spi_shader_col_format = si_get_spi_shader_col_format(shader); cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format); /* Ensure that some export memory is always allocated, for two reasons: * * 1) Correctness: The hardware ignores the EXEC mask if no export * memory is allocated, so KILL and alpha test do not work correctly * without this. * 2) Performance: Every shader needs at least a NULL export, even when * it writes no color/depth output. The NULL export instruction * stalls without this setting. * * Don't add this to CB_SHADER_MASK. */ if (!spi_shader_col_format && !info->writes_z && !info->writes_stencil && !info->writes_samplemask) spi_shader_col_format = V_028714_SPI_SHADER_32_R; si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena); si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR, shader->config.spi_ps_input_addr); /* Set interpolation controls. */ spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader)); /* Set registers. */ si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl); si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control); si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT, si_get_spi_shader_z_format(info->writes_z, info->writes_stencil, info->writes_samplemask)); si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format); si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask); va = shader->bo->gpu_address; si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY); si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8); si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40); si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS, S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) | S_00B028_DX10_CLAMP(1) | S_00B028_FLOAT_MODE(shader->config.float_mode)); si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS, S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) | S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) | S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0)); } static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader) { switch (shader->selector->type) { case PIPE_SHADER_VERTEX: if (shader->key.as_ls) si_shader_ls(sscreen, shader); else if (shader->key.as_es) si_shader_es(sscreen, shader); else si_shader_vs(sscreen, shader, NULL); break; case PIPE_SHADER_TESS_CTRL: si_shader_hs(sscreen, shader); break; case PIPE_SHADER_TESS_EVAL: if (shader->key.as_es) si_shader_es(sscreen, shader); else si_shader_vs(sscreen, shader, NULL); break; case PIPE_SHADER_GEOMETRY: si_shader_gs(sscreen, shader); break; case PIPE_SHADER_FRAGMENT: si_shader_ps(shader); break; default: assert(0); } } static unsigned si_get_alpha_test_func(struct si_context *sctx) { /* Alpha-test should be disabled if colorbuffer 0 is integer. */ if (sctx->queued.named.dsa) return sctx->queued.named.dsa->alpha_func; return PIPE_FUNC_ALWAYS; } static void si_shader_selector_key_vs(struct si_context *sctx, struct si_shader_selector *vs, struct si_shader_key *key, struct si_vs_prolog_bits *prolog_key) { if (!sctx->vertex_elements) return; prolog_key->instance_divisor_is_one = sctx->vertex_elements->instance_divisor_is_one; prolog_key->instance_divisor_is_fetched = sctx->vertex_elements->instance_divisor_is_fetched; /* Prefer a monolithic shader to allow scheduling divisions around * VBO loads. */ if (prolog_key->instance_divisor_is_fetched) key->opt.prefer_mono = 1; unsigned count = MIN2(vs->info.num_inputs, sctx->vertex_elements->count); memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count); } static void si_shader_selector_key_hw_vs(struct si_context *sctx, struct si_shader_selector *vs, struct si_shader_key *key) { struct si_shader_selector *ps = sctx->ps_shader.cso; key->opt.clip_disable = sctx->queued.named.rasterizer->clip_plane_enable == 0 && (vs->info.clipdist_writemask || vs->info.writes_clipvertex) && !vs->info.culldist_writemask; /* Find out if PS is disabled. */ bool ps_disabled = true; if (ps) { bool ps_modifies_zs = ps->info.uses_kill || ps->info.writes_z || ps->info.writes_stencil || ps->info.writes_samplemask || si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS; unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit & sctx->queued.named.blend->cb_target_mask; if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS]) ps_colormask &= ps->colors_written_4bit; ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard || (!ps_colormask && !ps_modifies_zs && !ps->info.writes_memory); } /* Find out which VS outputs aren't used by the PS. */ uint64_t outputs_written = vs->outputs_written; uint64_t inputs_read = 0; /* ignore POSITION, PSIZE */ outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0) | (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0)))); if (!ps_disabled) { inputs_read = ps->inputs_read; } uint64_t linked = outputs_written & inputs_read; key->opt.kill_outputs = ~linked & outputs_written; } /* Compute the key for the hw shader variant */ static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel, struct si_shader_key *key) { struct si_context *sctx = (struct si_context *)ctx; memset(key, 0, sizeof(*key)); switch (sel->type) { case PIPE_SHADER_VERTEX: si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog); if (sctx->tes_shader.cso) key->as_ls = 1; else if (sctx->gs_shader.cso) key->as_es = 1; else { si_shader_selector_key_hw_vs(sctx, sel, key); if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid) key->mono.u.vs_export_prim_id = 1; } break; case PIPE_SHADER_TESS_CTRL: if (sctx->b.chip_class >= GFX9) { si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, key, &key->part.tcs.ls_prolog); key->part.tcs.ls = sctx->vs_shader.cso; } key->part.tcs.epilog.prim_mode = sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE]; key->part.tcs.epilog.tes_reads_tess_factors = sctx->tes_shader.cso->info.reads_tess_factors; if (sel == sctx->fixed_func_tcs_shader.cso) key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written; break; case PIPE_SHADER_TESS_EVAL: if (sctx->gs_shader.cso) key->as_es = 1; else { si_shader_selector_key_hw_vs(sctx, sel, key); if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid) key->mono.u.vs_export_prim_id = 1; } break; case PIPE_SHADER_GEOMETRY: if (sctx->b.chip_class >= GFX9) { if (sctx->tes_shader.cso) { key->part.gs.es = sctx->tes_shader.cso; } else { si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, key, &key->part.gs.vs_prolog); key->part.gs.es = sctx->vs_shader.cso; } /* Merged ES-GS can have unbalanced wave usage. * * ES threads are per-vertex, while GS threads are * per-primitive. So without any amplification, there * are fewer GS threads than ES threads, which can result * in empty (no-op) GS waves. With too much amplification, * there are more GS threads than ES threads, which * can result in empty (no-op) ES waves. * * Non-monolithic shaders are implemented by setting EXEC * at the beginning of shader parts, and don't jump to * the end if EXEC is 0. * * Monolithic shaders use conditional blocks, so they can * jump and skip empty waves of ES or GS. So set this to * always use optimized variants, which are monolithic. */ key->opt.prefer_mono = 1; } key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix; break; case PIPE_SHADER_FRAGMENT: { struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; struct si_state_blend *blend = sctx->queued.named.blend; if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] && sel->info.colors_written == 0x1) key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1; if (blend) { /* Select the shader color format based on whether * blending or alpha are needed. */ key->part.ps.epilog.spi_shader_col_format = (blend->blend_enable_4bit & blend->need_src_alpha_4bit & sctx->framebuffer.spi_shader_col_format_blend_alpha) | (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit & sctx->framebuffer.spi_shader_col_format_blend) | (~blend->blend_enable_4bit & blend->need_src_alpha_4bit & sctx->framebuffer.spi_shader_col_format_alpha) | (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit & sctx->framebuffer.spi_shader_col_format); /* The output for dual source blending should have * the same format as the first output. */ if (blend->dual_src_blend) key->part.ps.epilog.spi_shader_col_format |= (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4; } else key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format; /* If alpha-to-coverage is enabled, we have to export alpha * even if there is no color buffer. */ if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) && blend && blend->alpha_to_coverage) key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR; /* On SI and CIK except Hawaii, the CB doesn't clamp outputs * to the range supported by the type if a channel has less * than 16 bits and the export format is 16_ABGR. */ if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) { key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8; key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10; } /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */ if (!key->part.ps.epilog.last_cbuf) { key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit; key->part.ps.epilog.color_is_int8 &= sel->info.colors_written; key->part.ps.epilog.color_is_int10 &= sel->info.colors_written; } if (rs) { bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES && sctx->current_rast_prim <= PIPE_PRIM_POLYGON) || sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY; bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS; key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read; key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read; if (sctx->queued.named.blend) { key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one && rs->multisample_enable; } key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly; key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) || (is_line && rs->line_smooth)) && sctx->framebuffer.nr_samples <= 1; key->part.ps.epilog.clamp_color = rs->clamp_fragment_color; if (rs->force_persample_interp && rs->multisample_enable && sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) { key->part.ps.prolog.force_persp_sample_interp = sel->info.uses_persp_center || sel->info.uses_persp_centroid; key->part.ps.prolog.force_linear_sample_interp = sel->info.uses_linear_center || sel->info.uses_linear_centroid; } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) { key->part.ps.prolog.bc_optimize_for_persp = sel->info.uses_persp_center && sel->info.uses_persp_centroid; key->part.ps.prolog.bc_optimize_for_linear = sel->info.uses_linear_center && sel->info.uses_linear_centroid; } else { /* Make sure SPI doesn't compute more than 1 pair * of (i,j), which is the optimization here. */ key->part.ps.prolog.force_persp_center_interp = sel->info.uses_persp_center + sel->info.uses_persp_centroid + sel->info.uses_persp_sample > 1; key->part.ps.prolog.force_linear_center_interp = sel->info.uses_linear_center + sel->info.uses_linear_centroid + sel->info.uses_linear_sample > 1; } } key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx); break; } default: assert(0); } if (unlikely(sctx->screen->b.debug_flags & DBG_NO_OPT_VARIANT)) memset(&key->opt, 0, sizeof(key->opt)); } static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority) { struct si_shader_selector *sel = shader->selector; struct si_screen *sscreen = sel->screen; LLVMTargetMachineRef tm; struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug; int r; if (thread_index >= 0) { if (low_priority) { assert(thread_index < ARRAY_SIZE(sscreen->tm_low_priority)); tm = sscreen->tm_low_priority[thread_index]; } else { assert(thread_index < ARRAY_SIZE(sscreen->tm)); tm = sscreen->tm[thread_index]; } if (!debug->async) debug = NULL; } else { assert(!low_priority); tm = shader->compiler_ctx_state.tm; } r = si_shader_create(sscreen, tm, shader, debug); if (unlikely(r)) { R600_ERR("Failed to build shader variant (type=%u) %d\n", sel->type, r); shader->compilation_failed = true; return; } if (shader->compiler_ctx_state.is_debug_context) { FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size); if (f) { si_shader_dump(sscreen, shader, NULL, sel->type, f, false); fclose(f); } } si_shader_init_pm4_state(sscreen, shader); } static void si_build_shader_variant_low_priority(void *job, int thread_index) { struct si_shader *shader = (struct si_shader *)job; assert(thread_index >= 0); si_build_shader_variant(shader, thread_index, true); } static const struct si_shader_key zeroed; static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel, struct si_compiler_ctx_state *compiler_state, struct si_shader_key *key) { struct si_shader **mainp = si_get_main_shader_part(sel, key); if (!*mainp) { struct si_shader *main_part = CALLOC_STRUCT(si_shader); if (!main_part) return false; main_part->selector = sel; main_part->key.as_es = key->as_es; main_part->key.as_ls = key->as_ls; if (si_compile_tgsi_shader(sscreen, compiler_state->tm, main_part, false, &compiler_state->debug) != 0) { FREE(main_part); return false; } *mainp = main_part; } return true; } static void si_destroy_shader_selector(struct si_context *sctx, struct si_shader_selector *sel); static void si_shader_selector_reference(struct si_context *sctx, struct si_shader_selector **dst, struct si_shader_selector *src) { if (pipe_reference(&(*dst)->reference, &src->reference)) si_destroy_shader_selector(sctx, *dst); *dst = src; } /* Select the hw shader variant depending on the current state. */ static int si_shader_select_with_key(struct si_screen *sscreen, struct si_shader_ctx_state *state, struct si_compiler_ctx_state *compiler_state, struct si_shader_key *key, int thread_index) { struct si_shader_selector *sel = state->cso; struct si_shader_selector *previous_stage_sel = NULL; struct si_shader *current = state->current; struct si_shader *iter, *shader = NULL; again: /* Check if we don't need to change anything. * This path is also used for most shaders that don't need multiple * variants, it will cost just a computation of the key and this * test. */ if (likely(current && memcmp(¤t->key, key, sizeof(*key)) == 0 && (!current->is_optimized || util_queue_fence_is_signalled(¤t->optimized_ready)))) return current->compilation_failed ? -1 : 0; /* This must be done before the mutex is locked, because async GS * compilation calls this function too, and therefore must enter * the mutex first. * * Only wait if we are in a draw call. Don't wait if we are * in a compiler thread. */ if (thread_index < 0) util_queue_fence_wait(&sel->ready); mtx_lock(&sel->mutex); /* Find the shader variant. */ for (iter = sel->first_variant; iter; iter = iter->next_variant) { /* Don't check the "current" shader. We checked it above. */ if (current != iter && memcmp(&iter->key, key, sizeof(*key)) == 0) { /* If it's an optimized shader and its compilation has * been started but isn't done, use the unoptimized * shader so as not to cause a stall due to compilation. */ if (iter->is_optimized && !util_queue_fence_is_signalled(&iter->optimized_ready)) { memset(&key->opt, 0, sizeof(key->opt)); mtx_unlock(&sel->mutex); goto again; } if (iter->compilation_failed) { mtx_unlock(&sel->mutex); return -1; /* skip the draw call */ } state->current = iter; mtx_unlock(&sel->mutex); return 0; } } /* Build a new shader. */ shader = CALLOC_STRUCT(si_shader); if (!shader) { mtx_unlock(&sel->mutex); return -ENOMEM; } shader->selector = sel; shader->key = *key; shader->compiler_ctx_state = *compiler_state; /* If this is a merged shader, get the first shader's selector. */ if (sscreen->b.chip_class >= GFX9) { if (sel->type == PIPE_SHADER_TESS_CTRL) previous_stage_sel = key->part.tcs.ls; else if (sel->type == PIPE_SHADER_GEOMETRY) previous_stage_sel = key->part.gs.es; /* We need to wait for the previous shader. */ if (previous_stage_sel && thread_index < 0) util_queue_fence_wait(&previous_stage_sel->ready); } /* Compile the main shader part if it doesn't exist. This can happen * if the initial guess was wrong. */ bool is_pure_monolithic = sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0; if (!is_pure_monolithic) { bool ok; /* Make sure the main shader part is present. This is needed * for shaders that can be compiled as VS, LS, or ES, and only * one of them is compiled at creation. * * For merged shaders, check that the starting shader's main * part is present. */ if (previous_stage_sel) { struct si_shader_key shader1_key = zeroed; if (sel->type == PIPE_SHADER_TESS_CTRL) shader1_key.as_ls = 1; else if (sel->type == PIPE_SHADER_GEOMETRY) shader1_key.as_es = 1; else assert(0); mtx_lock(&previous_stage_sel->mutex); ok = si_check_missing_main_part(sscreen, previous_stage_sel, compiler_state, &shader1_key); mtx_unlock(&previous_stage_sel->mutex); } else { ok = si_check_missing_main_part(sscreen, sel, compiler_state, key); } if (!ok) { FREE(shader); mtx_unlock(&sel->mutex); return -ENOMEM; /* skip the draw call */ } } /* Keep the reference to the 1st shader of merged shaders, so that * Gallium can't destroy it before we destroy the 2nd shader. * * Set sctx = NULL, because it's unused if we're not releasing * the shader, and we don't have any sctx here. */ si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel); /* Monolithic-only shaders don't make a distinction between optimized * and unoptimized. */ shader->is_monolithic = is_pure_monolithic || memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0; shader->is_optimized = !is_pure_monolithic && memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0; if (shader->is_optimized) util_queue_fence_init(&shader->optimized_ready); if (!sel->last_variant) { sel->first_variant = shader; sel->last_variant = shader; } else { sel->last_variant->next_variant = shader; sel->last_variant = shader; } /* If it's an optimized shader, compile it asynchronously. */ if (shader->is_optimized && !is_pure_monolithic && thread_index < 0) { /* Compile it asynchronously. */ util_queue_add_job(&sscreen->shader_compiler_queue_low_priority, shader, &shader->optimized_ready, si_build_shader_variant_low_priority, NULL); /* Use the default (unoptimized) shader for now. */ memset(&key->opt, 0, sizeof(key->opt)); mtx_unlock(&sel->mutex); goto again; } assert(!shader->is_optimized); si_build_shader_variant(shader, thread_index, false); if (!shader->compilation_failed) state->current = shader; mtx_unlock(&sel->mutex); return shader->compilation_failed ? -1 : 0; } static int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state, struct si_compiler_ctx_state *compiler_state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_key key; si_shader_selector_key(ctx, state->cso, &key); return si_shader_select_with_key(sctx->screen, state, compiler_state, &key, -1); } static void si_parse_next_shader_property(const struct tgsi_shader_info *info, struct si_shader_key *key) { unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER]; switch (info->processor) { case PIPE_SHADER_VERTEX: switch (next_shader) { case PIPE_SHADER_GEOMETRY: key->as_es = 1; break; case PIPE_SHADER_TESS_CTRL: case PIPE_SHADER_TESS_EVAL: key->as_ls = 1; break; default: /* If POSITION isn't written, it can't be a HW VS. * Assume that it's a HW LS. (the next shader is TCS) * This heuristic is needed for separate shader objects. */ if (!info->writes_position) key->as_ls = 1; } break; case PIPE_SHADER_TESS_EVAL: if (next_shader == PIPE_SHADER_GEOMETRY || !info->writes_position) key->as_es = 1; break; } } /** * Compile the main shader part or the monolithic shader as part of * si_shader_selector initialization. Since it can be done asynchronously, * there is no way to report compile failures to applications. */ void si_init_shader_selector_async(void *job, int thread_index) { struct si_shader_selector *sel = (struct si_shader_selector *)job; struct si_screen *sscreen = sel->screen; LLVMTargetMachineRef tm; struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug; unsigned i; if (thread_index >= 0) { assert(thread_index < ARRAY_SIZE(sscreen->tm)); tm = sscreen->tm[thread_index]; if (!debug->async) debug = NULL; } else { tm = sel->compiler_ctx_state.tm; } /* Compile the main shader part for use with a prolog and/or epilog. * If this fails, the driver will try to compile a monolithic shader * on demand. */ if (!sscreen->use_monolithic_shaders) { struct si_shader *shader = CALLOC_STRUCT(si_shader); void *tgsi_binary; if (!shader) { fprintf(stderr, "radeonsi: can't allocate a main shader part\n"); return; } shader->selector = sel; si_parse_next_shader_property(&sel->info, &shader->key); tgsi_binary = si_get_tgsi_binary(sel); /* Try to load the shader from the shader cache. */ mtx_lock(&sscreen->shader_cache_mutex); if (tgsi_binary && si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) { mtx_unlock(&sscreen->shader_cache_mutex); } else { mtx_unlock(&sscreen->shader_cache_mutex); /* Compile the shader if it hasn't been loaded from the cache. */ if (si_compile_tgsi_shader(sscreen, tm, shader, false, debug) != 0) { FREE(shader); FREE(tgsi_binary); fprintf(stderr, "radeonsi: can't compile a main shader part\n"); return; } if (tgsi_binary) { mtx_lock(&sscreen->shader_cache_mutex); if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader, true)) FREE(tgsi_binary); mtx_unlock(&sscreen->shader_cache_mutex); } } *si_get_main_shader_part(sel, &shader->key) = shader; /* Unset "outputs_written" flags for outputs converted to * DEFAULT_VAL, so that later inter-shader optimizations don't * try to eliminate outputs that don't exist in the final * shader. * * This is only done if non-monolithic shaders are enabled. */ if ((sel->type == PIPE_SHADER_VERTEX || sel->type == PIPE_SHADER_TESS_EVAL) && !shader->key.as_ls && !shader->key.as_es) { unsigned i; for (i = 0; i < sel->info.num_outputs; i++) { unsigned offset = shader->info.vs_output_param_offset[i]; if (offset <= AC_EXP_PARAM_OFFSET_31) continue; unsigned name = sel->info.output_semantic_name[i]; unsigned index = sel->info.output_semantic_index[i]; unsigned id; switch (name) { case TGSI_SEMANTIC_GENERIC: /* don't process indices the function can't handle */ if (index >= SI_MAX_IO_GENERIC) break; /* fall through */ default: id = si_shader_io_get_unique_index(name, index); sel->outputs_written &= ~(1ull << id); break; case TGSI_SEMANTIC_POSITION: /* ignore these */ case TGSI_SEMANTIC_PSIZE: case TGSI_SEMANTIC_CLIPVERTEX: case TGSI_SEMANTIC_EDGEFLAG: break; } } } } /* Pre-compilation. */ if (sscreen->b.debug_flags & DBG_PRECOMPILE) { struct si_shader_ctx_state state = {sel}; struct si_shader_key key; memset(&key, 0, sizeof(key)); si_parse_next_shader_property(&sel->info, &key); /* Set reasonable defaults, so that the shader key doesn't * cause any code to be eliminated. */ switch (sel->type) { case PIPE_SHADER_TESS_CTRL: key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES; break; case PIPE_SHADER_FRAGMENT: key.part.ps.prolog.bc_optimize_for_persp = sel->info.uses_persp_center && sel->info.uses_persp_centroid; key.part.ps.prolog.bc_optimize_for_linear = sel->info.uses_linear_center && sel->info.uses_linear_centroid; key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS; for (i = 0; i < 8; i++) if (sel->info.colors_written & (1 << i)) key.part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_FP16_ABGR << (i * 4); break; } if (si_shader_select_with_key(sscreen, &state, &sel->compiler_ctx_state, &key, thread_index)) fprintf(stderr, "radeonsi: can't create a monolithic shader\n"); } /* The GS copy shader is always pre-compiled. */ if (sel->type == PIPE_SHADER_GEOMETRY) { sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug); if (!sel->gs_copy_shader) { fprintf(stderr, "radeonsi: can't create GS copy shader\n"); return; } si_shader_vs(sscreen, sel->gs_copy_shader, sel); } } /* Return descriptor slot usage masks from the given shader info. */ void si_get_active_slot_masks(const struct tgsi_shader_info *info, uint32_t *const_and_shader_buffers, uint64_t *samplers_and_images) { unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers; num_shaderbufs = util_last_bit(info->shader_buffers_declared); num_constbufs = util_last_bit(info->const_buffers_declared); /* two 8-byte images share one 16-byte slot */ num_images = align(util_last_bit(info->images_declared), 2); num_samplers = util_last_bit(info->samplers_declared); /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */ start = si_get_shaderbuf_slot(num_shaderbufs - 1); *const_and_shader_buffers = u_bit_consecutive(start, num_shaderbufs + num_constbufs); /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */ start = si_get_image_slot(num_images - 1) / 2; *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers); } static void *si_create_shader_selector(struct pipe_context *ctx, const struct pipe_shader_state *state) { struct si_screen *sscreen = (struct si_screen *)ctx->screen; struct si_context *sctx = (struct si_context*)ctx; struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector); int i; if (!sel) return NULL; pipe_reference_init(&sel->reference, 1); sel->screen = sscreen; sel->compiler_ctx_state.tm = sctx->tm; sel->compiler_ctx_state.debug = sctx->b.debug; sel->compiler_ctx_state.is_debug_context = sctx->is_debug; sel->tokens = tgsi_dup_tokens(state->tokens); if (!sel->tokens) { FREE(sel); return NULL; } sel->so = state->stream_output; tgsi_scan_shader(state->tokens, &sel->info); sel->type = sel->info.processor; p_atomic_inc(&sscreen->b.num_shaders_created); si_get_active_slot_masks(&sel->info, &sel->active_const_and_shader_buffers, &sel->active_samplers_and_images); /* Record which streamout buffers are enabled. */ for (i = 0; i < sel->so.num_outputs; i++) { sel->enabled_streamout_buffer_mask |= (1 << sel->so.output[i].output_buffer) << (sel->so.output[i].stream * 4); } /* The prolog is a no-op if there are no inputs. */ sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX && sel->info.num_inputs; /* Set which opcode uses which (i,j) pair. */ if (sel->info.uses_persp_opcode_interp_centroid) sel->info.uses_persp_centroid = true; if (sel->info.uses_linear_opcode_interp_centroid) sel->info.uses_linear_centroid = true; if (sel->info.uses_persp_opcode_interp_offset || sel->info.uses_persp_opcode_interp_sample) sel->info.uses_persp_center = true; if (sel->info.uses_linear_opcode_interp_offset || sel->info.uses_linear_opcode_interp_sample) sel->info.uses_linear_center = true; switch (sel->type) { case PIPE_SHADER_GEOMETRY: sel->gs_output_prim = sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]; sel->gs_max_out_vertices = sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES]; sel->gs_num_invocations = sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS]; sel->gsvs_vertex_size = sel->info.num_outputs * 16; sel->max_gsvs_emit_size = sel->gsvs_vertex_size * sel->gs_max_out_vertices; sel->max_gs_stream = 0; for (i = 0; i < sel->so.num_outputs; i++) sel->max_gs_stream = MAX2(sel->max_gs_stream, sel->so.output[i].stream); sel->gs_input_verts_per_prim = u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]); break; case PIPE_SHADER_TESS_CTRL: /* Always reserve space for these. */ sel->patch_outputs_written |= (1llu << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) | (1llu << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0)); /* fall through */ case PIPE_SHADER_VERTEX: case PIPE_SHADER_TESS_EVAL: for (i = 0; i < sel->info.num_outputs; i++) { unsigned name = sel->info.output_semantic_name[i]; unsigned index = sel->info.output_semantic_index[i]; switch (name) { case TGSI_SEMANTIC_TESSINNER: case TGSI_SEMANTIC_TESSOUTER: case TGSI_SEMANTIC_PATCH: sel->patch_outputs_written |= 1llu << si_shader_io_get_unique_index_patch(name, index); break; case TGSI_SEMANTIC_GENERIC: /* don't process indices the function can't handle */ if (index >= SI_MAX_IO_GENERIC) break; /* fall through */ default: sel->outputs_written |= 1llu << si_shader_io_get_unique_index(name, index); break; case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */ case TGSI_SEMANTIC_EDGEFLAG: break; } } sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16; /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank * conflicts, i.e. each vertex will start at a different bank. */ if (sctx->b.chip_class >= GFX9) sel->esgs_itemsize += 4; break; case PIPE_SHADER_FRAGMENT: for (i = 0; i < sel->info.num_inputs; i++) { unsigned name = sel->info.input_semantic_name[i]; unsigned index = sel->info.input_semantic_index[i]; switch (name) { case TGSI_SEMANTIC_GENERIC: /* don't process indices the function can't handle */ if (index >= SI_MAX_IO_GENERIC) break; /* fall through */ default: sel->inputs_read |= 1llu << si_shader_io_get_unique_index(name, index); break; case TGSI_SEMANTIC_PCOORD: /* ignore this */ break; } } for (i = 0; i < 8; i++) if (sel->info.colors_written & (1 << i)) sel->colors_written_4bit |= 0xf << (4 * i); for (i = 0; i < sel->info.num_inputs; i++) { if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) { int index = sel->info.input_semantic_index[i]; sel->color_attr_index[index] = i; } } break; } /* PA_CL_VS_OUT_CNTL */ bool misc_vec_ena = sel->info.writes_psize || sel->info.writes_edgeflag || sel->info.writes_layer || sel->info.writes_viewport_index; sel->pa_cl_vs_out_cntl = S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) | S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) | S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) | S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) | S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena); sel->clipdist_mask = sel->info.writes_clipvertex ? SIX_BITS : sel->info.clipdist_writemask; sel->culldist_mask = sel->info.culldist_writemask << sel->info.num_written_clipdistance; /* DB_SHADER_CONTROL */ sel->db_shader_control = S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) | S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) | S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) | S_02880C_KILL_ENABLE(sel->info.uses_kill); switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) { case TGSI_FS_DEPTH_LAYOUT_GREATER: sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z); break; case TGSI_FS_DEPTH_LAYOUT_LESS: sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z); break; } /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following: * * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP * --|-----------|------------|------------|--------------------|-------------------|------------- * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0 * 2 | false | true | n/a | LateZ | 1 | 0 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1 * * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register. * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense. * * Don't use ReZ without profiling !!! * * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex * shaders. */ if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) { /* Cases 3, 4. */ sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) | S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) | S_02880C_EXEC_ON_NOOP(sel->info.writes_memory); } else if (sel->info.writes_memory) { /* Case 2. */ sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) | S_02880C_EXEC_ON_HIER_FAIL(1); } else { /* Case 1. */ sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z); } (void) mtx_init(&sel->mutex, mtx_plain); util_queue_fence_init(&sel->ready); if ((sctx->b.debug.debug_message && !sctx->b.debug.async) || sctx->is_debug || r600_can_dump_shader(&sscreen->b, sel->info.processor)) si_init_shader_selector_async(sel, -1); else util_queue_add_job(&sscreen->shader_compiler_queue, sel, &sel->ready, si_init_shader_selector_async, NULL); return sel; } static void si_update_streamout_state(struct si_context *sctx) { struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso; if (!shader_with_so) return; sctx->b.streamout.enabled_stream_buffers_mask = shader_with_so->enabled_streamout_buffer_mask; sctx->b.streamout.stride_in_dw = shader_with_so->so.stride; } static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs, struct si_shader *old_hw_vs_variant, struct si_shader_selector *next_hw_vs, struct si_shader *next_hw_vs_variant) { if (next_hw_vs && (!old_hw_vs || old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] != next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] || old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl || old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask || old_hw_vs->culldist_mask != next_hw_vs->culldist_mask || !old_hw_vs_variant || !next_hw_vs_variant || old_hw_vs_variant->key.opt.clip_disable != next_hw_vs_variant->key.opt.clip_disable)) si_mark_atom_dirty(sctx, &sctx->clip_regs); } static void si_update_common_shader_state(struct si_context *sctx) { sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->vs_shader.cso) || si_shader_uses_bindless_samplers(sctx->gs_shader.cso) || si_shader_uses_bindless_samplers(sctx->ps_shader.cso) || si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) || si_shader_uses_bindless_samplers(sctx->tes_shader.cso); sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->vs_shader.cso) || si_shader_uses_bindless_images(sctx->gs_shader.cso) || si_shader_uses_bindless_images(sctx->ps_shader.cso) || si_shader_uses_bindless_images(sctx->tcs_shader.cso) || si_shader_uses_bindless_images(sctx->tes_shader.cso); sctx->do_update_shaders = true; } static void si_bind_vs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso; struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx); struct si_shader_selector *sel = state; if (sctx->vs_shader.cso == sel) return; sctx->vs_shader.cso = sel; sctx->vs_shader.current = sel ? sel->first_variant : NULL; si_update_common_shader_state(sctx); r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx)); si_set_active_descriptors_for_shader(sctx, sel); si_update_streamout_state(sctx); si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso, si_get_vs_state(sctx)); } static void si_update_tess_uses_prim_id(struct si_context *sctx) { sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id = (sctx->tes_shader.cso && sctx->tes_shader.cso->info.uses_primid) || (sctx->tcs_shader.cso && sctx->tcs_shader.cso->info.uses_primid) || (sctx->gs_shader.cso && sctx->gs_shader.cso->info.uses_primid) || (sctx->ps_shader.cso && !sctx->gs_shader.cso && sctx->ps_shader.cso->info.uses_primid); } static void si_bind_gs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso; struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx); struct si_shader_selector *sel = state; bool enable_changed = !!sctx->gs_shader.cso != !!sel; if (sctx->gs_shader.cso == sel) return; sctx->gs_shader.cso = sel; sctx->gs_shader.current = sel ? sel->first_variant : NULL; sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL; si_update_common_shader_state(sctx); sctx->last_rast_prim = -1; /* reset this so that it gets updated */ if (enable_changed) { si_shader_change_notify(sctx); if (sctx->ia_multi_vgt_param_key.u.uses_tess) si_update_tess_uses_prim_id(sctx); } r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx)); si_set_active_descriptors_for_shader(sctx, sel); si_update_streamout_state(sctx); si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso, si_get_vs_state(sctx)); } static void si_bind_tcs_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = state; bool enable_changed = !!sctx->tcs_shader.cso != !!sel; if (sctx->tcs_shader.cso == sel) return; sctx->tcs_shader.cso = sel; sctx->tcs_shader.current = sel ? sel->first_variant : NULL; si_update_tess_uses_prim_id(sctx); si_update_common_shader_state(sctx); if (enable_changed) sctx->last_tcs = NULL; /* invalidate derived tess state */ si_set_active_descriptors_for_shader(sctx, sel); } static void si_bind_tes_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso; struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx); struct si_shader_selector *sel = state; bool enable_changed = !!sctx->tes_shader.cso != !!sel; if (sctx->tes_shader.cso == sel) return; sctx->tes_shader.cso = sel; sctx->tes_shader.current = sel ? sel->first_variant : NULL; sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL; si_update_tess_uses_prim_id(sctx); si_update_common_shader_state(sctx); sctx->last_rast_prim = -1; /* reset this so that it gets updated */ if (enable_changed) { si_shader_change_notify(sctx); sctx->last_tes_sh_base = -1; /* invalidate derived tess state */ } r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx)); si_set_active_descriptors_for_shader(sctx, sel); si_update_streamout_state(sctx); si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso, si_get_vs_state(sctx)); } static void si_bind_ps_shader(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *old_sel = sctx->ps_shader.cso; struct si_shader_selector *sel = state; /* skip if supplied shader is one already in use */ if (old_sel == sel) return; sctx->ps_shader.cso = sel; sctx->ps_shader.current = sel ? sel->first_variant : NULL; si_update_common_shader_state(sctx); if (sel) { if (sctx->ia_multi_vgt_param_key.u.uses_tess) si_update_tess_uses_prim_id(sctx); if (!old_sel || old_sel->info.colors_written != sel->info.colors_written) si_mark_atom_dirty(sctx, &sctx->cb_render_state); } si_set_active_descriptors_for_shader(sctx, sel); } static void si_delete_shader(struct si_context *sctx, struct si_shader *shader) { if (shader->is_optimized) { util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority, &shader->optimized_ready); util_queue_fence_destroy(&shader->optimized_ready); } if (shader->pm4) { switch (shader->selector->type) { case PIPE_SHADER_VERTEX: if (shader->key.as_ls) { assert(sctx->b.chip_class <= VI); si_pm4_delete_state(sctx, ls, shader->pm4); } else if (shader->key.as_es) { assert(sctx->b.chip_class <= VI); si_pm4_delete_state(sctx, es, shader->pm4); } else { si_pm4_delete_state(sctx, vs, shader->pm4); } break; case PIPE_SHADER_TESS_CTRL: si_pm4_delete_state(sctx, hs, shader->pm4); break; case PIPE_SHADER_TESS_EVAL: if (shader->key.as_es) { assert(sctx->b.chip_class <= VI); si_pm4_delete_state(sctx, es, shader->pm4); } else { si_pm4_delete_state(sctx, vs, shader->pm4); } break; case PIPE_SHADER_GEOMETRY: if (shader->is_gs_copy_shader) si_pm4_delete_state(sctx, vs, shader->pm4); else si_pm4_delete_state(sctx, gs, shader->pm4); break; case PIPE_SHADER_FRAGMENT: si_pm4_delete_state(sctx, ps, shader->pm4); break; } } si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL); si_shader_destroy(shader); free(shader); } static void si_destroy_shader_selector(struct si_context *sctx, struct si_shader_selector *sel) { struct si_shader *p = sel->first_variant, *c; struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = { [PIPE_SHADER_VERTEX] = &sctx->vs_shader, [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader, [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader, [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader, [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader, }; util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready); if (current_shader[sel->type]->cso == sel) { current_shader[sel->type]->cso = NULL; current_shader[sel->type]->current = NULL; } while (p) { c = p->next_variant; si_delete_shader(sctx, p); p = c; } if (sel->main_shader_part) si_delete_shader(sctx, sel->main_shader_part); if (sel->main_shader_part_ls) si_delete_shader(sctx, sel->main_shader_part_ls); if (sel->main_shader_part_es) si_delete_shader(sctx, sel->main_shader_part_es); if (sel->gs_copy_shader) si_delete_shader(sctx, sel->gs_copy_shader); util_queue_fence_destroy(&sel->ready); mtx_destroy(&sel->mutex); free(sel->tokens); free(sel); } static void si_delete_shader_selector(struct pipe_context *ctx, void *state) { struct si_context *sctx = (struct si_context *)ctx; struct si_shader_selector *sel = (struct si_shader_selector *)state; si_shader_selector_reference(sctx, &sel, NULL); } static unsigned si_get_ps_input_cntl(struct si_context *sctx, struct si_shader *vs, unsigned name, unsigned index, unsigned interpolate) { struct tgsi_shader_info *vsinfo = &vs->selector->info; unsigned j, offset, ps_input_cntl = 0; if (interpolate == TGSI_INTERPOLATE_CONSTANT || (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade)) ps_input_cntl |= S_028644_FLAT_SHADE(1); if (name == TGSI_SEMANTIC_PCOORD || (name == TGSI_SEMANTIC_TEXCOORD && sctx->sprite_coord_enable & (1 << index))) { ps_input_cntl |= S_028644_PT_SPRITE_TEX(1); } for (j = 0; j < vsinfo->num_outputs; j++) { if (name == vsinfo->output_semantic_name[j] && index == vsinfo->output_semantic_index[j]) { offset = vs->info.vs_output_param_offset[j]; if (offset <= AC_EXP_PARAM_OFFSET_31) { /* The input is loaded from parameter memory. */ ps_input_cntl |= S_028644_OFFSET(offset); } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) { if (offset == AC_EXP_PARAM_UNDEFINED) { /* This can happen with depth-only rendering. */ offset = 0; } else { /* The input is a DEFAULT_VAL constant. */ assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; } ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset); } break; } } if (name == TGSI_SEMANTIC_PRIMID) /* PrimID is written after the last output. */ ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]); else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) { /* No corresponding output found, load defaults into input. * Don't set any other bits. * (FLAT_SHADE=1 completely changes behavior) */ ps_input_cntl = S_028644_OFFSET(0x20); /* D3D 9 behaviour. GL is undefined */ if (name == TGSI_SEMANTIC_COLOR && index == 0) ps_input_cntl |= S_028644_DEFAULT_VAL(3); } return ps_input_cntl; } static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; struct si_shader *ps = sctx->ps_shader.current; struct si_shader *vs = si_get_vs_state(sctx); struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL; unsigned i, num_interp, num_written = 0, bcol_interp[2]; if (!ps || !ps->selector->info.num_inputs) return; num_interp = si_get_ps_num_interp(ps); assert(num_interp > 0); radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp); for (i = 0; i < psinfo->num_inputs; i++) { unsigned name = psinfo->input_semantic_name[i]; unsigned index = psinfo->input_semantic_index[i]; unsigned interpolate = psinfo->input_interpolate[i]; radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index, interpolate)); num_written++; if (name == TGSI_SEMANTIC_COLOR) { assert(index < ARRAY_SIZE(bcol_interp)); bcol_interp[index] = interpolate; } } if (ps->key.part.ps.prolog.color_two_side) { unsigned bcol = TGSI_SEMANTIC_BCOLOR; for (i = 0; i < 2; i++) { if (!(psinfo->colors_read & (0xf << (i * 4)))) continue; radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol, i, bcol_interp[i])); num_written++; } } assert(num_interp == num_written); } /** * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that. */ static void si_init_config_add_vgt_flush(struct si_context *sctx) { if (sctx->init_config_has_vgt_flush) return; /* Done by Vulkan before VGT_FLUSH. */ si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE); si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); si_pm4_cmd_end(sctx->init_config, false); /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */ si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE); si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); si_pm4_cmd_end(sctx->init_config, false); sctx->init_config_has_vgt_flush = true; } /* Initialize state related to ESGS / GSVS ring buffers */ static bool si_update_gs_ring_buffers(struct si_context *sctx) { struct si_shader_selector *es = sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso; struct si_shader_selector *gs = sctx->gs_shader.cso; struct si_pm4_state *pm4; /* Chip constants. */ unsigned num_se = sctx->screen->b.info.max_se; unsigned wave_size = 64; unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16. * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2). */ unsigned gs_vertex_reuse = (sctx->b.chip_class >= VI ? 32 : 16) * num_se; unsigned alignment = 256 * num_se; /* The maximum size is 63.999 MB per SE. */ unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; /* Calculate the minimum size. */ unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse * wave_size, alignment); /* These are recommended sizes, not minimum sizes. */ unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * es->esgs_itemsize * gs->gs_input_verts_per_prim; unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->max_gsvs_emit_size; min_esgs_ring_size = align(min_esgs_ring_size, alignment); esgs_ring_size = align(esgs_ring_size, alignment); gsvs_ring_size = align(gsvs_ring_size, alignment); esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); gsvs_ring_size = MIN2(gsvs_ring_size, max_size); /* Some rings don't have to be allocated if shaders don't use them. * (e.g. no varyings between ES and GS or GS and VS) * * GFX9 doesn't have the ESGS ring. */ bool update_esgs = sctx->b.chip_class <= VI && esgs_ring_size && (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size); bool update_gsvs = gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size); if (!update_esgs && !update_gsvs) return true; if (update_esgs) { pipe_resource_reference(&sctx->esgs_ring, NULL); sctx->esgs_ring = r600_aligned_buffer_create(sctx->b.b.screen, R600_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, esgs_ring_size, alignment); if (!sctx->esgs_ring) return false; } if (update_gsvs) { pipe_resource_reference(&sctx->gsvs_ring, NULL); sctx->gsvs_ring = r600_aligned_buffer_create(sctx->b.b.screen, R600_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, gsvs_ring_size, alignment); if (!sctx->gsvs_ring) return false; } /* Create the "init_config_gs_rings" state. */ pm4 = CALLOC_STRUCT(si_pm4_state); if (!pm4) return false; if (sctx->b.chip_class >= CIK) { if (sctx->esgs_ring) { assert(sctx->b.chip_class <= VI); si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256); } if (sctx->gsvs_ring) si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256); } else { if (sctx->esgs_ring) si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256); if (sctx->gsvs_ring) si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256); } /* Set the state. */ if (sctx->init_config_gs_rings) si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0); sctx->init_config_gs_rings = pm4; if (!sctx->init_config_has_vgt_flush) { si_init_config_add_vgt_flush(sctx); si_pm4_upload_indirect_buffer(sctx, sctx->init_config); } /* Flush the context to re-emit both init_config states. */ sctx->b.initial_gfx_cs_size = 0; /* force flush */ si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL); /* Set ring bindings. */ if (sctx->esgs_ring) { assert(sctx->b.chip_class <= VI); si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, true, true, 4, 64, 0); si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false, false, 0, 0, 0); } if (sctx->gsvs_ring) { si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false, false, 0, 0, 0); } return true; } static void si_shader_lock(struct si_shader *shader) { mtx_lock(&shader->selector->mutex); if (shader->previous_stage_sel) { assert(shader->previous_stage_sel != shader->selector); mtx_lock(&shader->previous_stage_sel->mutex); } } static void si_shader_unlock(struct si_shader *shader) { if (shader->previous_stage_sel) mtx_unlock(&shader->previous_stage_sel->mutex); mtx_unlock(&shader->selector->mutex); } /** * @returns 1 if \p sel has been updated to use a new scratch buffer * 0 if not * < 0 if there was a failure */ static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader) { uint64_t scratch_va = sctx->scratch_buffer->gpu_address; int r; if (!shader) return 0; /* This shader doesn't need a scratch buffer */ if (shader->config.scratch_bytes_per_wave == 0) return 0; /* Prevent race conditions when updating: * - si_shader::scratch_bo * - si_shader::binary::code * - si_shader::previous_stage::binary::code. */ si_shader_lock(shader); /* This shader is already configured to use the current * scratch buffer. */ if (shader->scratch_bo == sctx->scratch_buffer) { si_shader_unlock(shader); return 0; } assert(sctx->scratch_buffer); if (shader->previous_stage) si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va); si_shader_apply_scratch_relocs(shader, scratch_va); /* Replace the shader bo with a new bo that has the relocs applied. */ r = si_shader_binary_upload(sctx->screen, shader); if (r) { si_shader_unlock(shader); return r; } /* Update the shader state to use the new shader bo. */ si_shader_init_pm4_state(sctx->screen, shader); r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer); si_shader_unlock(shader); return 1; } static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx) { return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0; } static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader) { return shader ? shader->config.scratch_bytes_per_wave : 0; } static struct si_shader *si_get_tcs_current(struct si_context *sctx) { if (!sctx->tes_shader.cso) return NULL; /* tessellation disabled */ return sctx->tcs_shader.cso ? sctx->tcs_shader.current : sctx->fixed_func_tcs_shader.current; } static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx) { unsigned bytes = 0; bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current)); bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current)); bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current)); bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current)); if (sctx->tes_shader.cso) { struct si_shader *tcs = si_get_tcs_current(sctx); bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs)); } return bytes; } static bool si_update_scratch_relocs(struct si_context *sctx) { struct si_shader *tcs = si_get_tcs_current(sctx); int r; /* Update the shaders, so that they are using the latest scratch. * The scratch buffer may have been changed since these shaders were * last used, so we still need to try to update them, even if they * require scratch buffers smaller than the current size. */ r = si_update_scratch_buffer(sctx, sctx->ps_shader.current); if (r < 0) return false; if (r == 1) si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4); r = si_update_scratch_buffer(sctx, sctx->gs_shader.current); if (r < 0) return false; if (r == 1) si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4); r = si_update_scratch_buffer(sctx, tcs); if (r < 0) return false; if (r == 1) si_pm4_bind_state(sctx, hs, tcs->pm4); /* VS can be bound as LS, ES, or VS. */ r = si_update_scratch_buffer(sctx, sctx->vs_shader.current); if (r < 0) return false; if (r == 1) { if (sctx->tes_shader.current) si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4); else if (sctx->gs_shader.current) si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4); else si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4); } /* TES can be bound as ES or VS. */ r = si_update_scratch_buffer(sctx, sctx->tes_shader.current); if (r < 0) return false; if (r == 1) { if (sctx->gs_shader.current) si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4); else si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4); } return true; } static bool si_update_spi_tmpring_size(struct si_context *sctx) { unsigned current_scratch_buffer_size = si_get_current_scratch_buffer_size(sctx); unsigned scratch_bytes_per_wave = si_get_max_scratch_bytes_per_wave(sctx); unsigned scratch_needed_size = scratch_bytes_per_wave * sctx->scratch_waves; unsigned spi_tmpring_size; if (scratch_needed_size > 0) { if (scratch_needed_size > current_scratch_buffer_size) { /* Create a bigger scratch buffer */ r600_resource_reference(&sctx->scratch_buffer, NULL); sctx->scratch_buffer = (struct r600_resource*) r600_aligned_buffer_create(&sctx->screen->b.b, R600_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, scratch_needed_size, 256); if (!sctx->scratch_buffer) return false; si_mark_atom_dirty(sctx, &sctx->scratch_state); r600_context_add_resource_size(&sctx->b.b, &sctx->scratch_buffer->b.b); } if (!si_update_scratch_relocs(sctx)) return false; } /* The LLVM shader backend should be reporting aligned scratch_sizes. */ assert((scratch_needed_size & ~0x3FF) == scratch_needed_size && "scratch size should already be aligned correctly."); spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) | S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10); if (spi_tmpring_size != sctx->spi_tmpring_size) { sctx->spi_tmpring_size = spi_tmpring_size; si_mark_atom_dirty(sctx, &sctx->scratch_state); } return true; } static void si_init_tess_factor_ring(struct si_context *sctx) { bool double_offchip_buffers = sctx->b.chip_class >= CIK && sctx->b.family != CHIP_CARRIZO && sctx->b.family != CHIP_STONEY; unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64; unsigned max_offchip_buffers = max_offchip_buffers_per_se * sctx->screen->b.info.max_se; unsigned offchip_granularity; switch (sctx->screen->tess_offchip_block_dw_size) { default: assert(0); /* fall through */ case 8192: offchip_granularity = V_03093C_X_8K_DWORDS; break; case 4096: offchip_granularity = V_03093C_X_4K_DWORDS; break; } switch (sctx->b.chip_class) { case SI: max_offchip_buffers = MIN2(max_offchip_buffers, 126); break; case CIK: case VI: case GFX9: max_offchip_buffers = MIN2(max_offchip_buffers, 508); break; default: assert(0); return; } assert(!sctx->tf_ring); /* Use 64K alignment for both rings, so that we can pass the address * to shaders as one SGPR containing bits [16:47]. */ sctx->tf_ring = r600_aligned_buffer_create(sctx->b.b.screen, R600_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, 32768 * sctx->screen->b.info.max_se, 64 * 1024); if (!sctx->tf_ring) return; assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0); sctx->tess_offchip_ring = r600_aligned_buffer_create(sctx->b.b.screen, R600_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, max_offchip_buffers * sctx->screen->tess_offchip_block_dw_size * 4, 64 * 1024); if (!sctx->tess_offchip_ring) return; si_init_config_add_vgt_flush(sctx); uint64_t offchip_va = r600_resource(sctx->tess_offchip_ring)->gpu_address; uint64_t factor_va = r600_resource(sctx->tf_ring)->gpu_address; assert((offchip_va & 0xffff) == 0); assert((factor_va & 0xffff) == 0); si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_offchip_ring), RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS); si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tf_ring), RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS); /* Append these registers to the init config state. */ if (sctx->b.chip_class >= CIK) { if (sctx->b.chip_class >= VI) --max_offchip_buffers; si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(sctx->tf_ring->width0 / 4)); si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8); if (sctx->b.chip_class >= GFX9) si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI, factor_va >> 40); si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM, S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) | S_03093C_OFFCHIP_GRANULARITY(offchip_granularity)); } else { assert(offchip_granularity == V_03093C_X_8K_DWORDS); si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(sctx->tf_ring->width0 / 4)); si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8); si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM, S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers)); } if (sctx->b.chip_class >= GFX9) { si_pm4_set_reg(sctx->init_config, R_00B430_SPI_SHADER_USER_DATA_LS_0 + GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4, offchip_va >> 16); si_pm4_set_reg(sctx->init_config, R_00B430_SPI_SHADER_USER_DATA_LS_0 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K * 4, factor_va >> 16); } else { si_pm4_set_reg(sctx->init_config, R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4, offchip_va >> 16); si_pm4_set_reg(sctx->init_config, R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K * 4, factor_va >> 16); } /* Flush the context to re-emit the init_config state. * This is done only once in a lifetime of a context. */ si_pm4_upload_indirect_buffer(sctx, sctx->init_config); sctx->b.initial_gfx_cs_size = 0; /* force flush */ si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL); } /** * This is used when TCS is NULL in the VS->TCS->TES chain. In this case, * VS passes its outputs to TES directly, so the fixed-function shader only * has to write TESSOUTER and TESSINNER. */ static void si_generate_fixed_func_tcs(struct si_context *sctx) { struct ureg_src outer, inner; struct ureg_dst tessouter, tessinner; struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL); if (!ureg) return; /* if we get here, we're screwed */ assert(!sctx->fixed_func_tcs_shader.cso); outer = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0); inner = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0); tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0); tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0); ureg_MOV(ureg, tessouter, outer); ureg_MOV(ureg, tessinner, inner); ureg_END(ureg); sctx->fixed_func_tcs_shader.cso = ureg_create_shader_and_destroy(ureg, &sctx->b.b); } static void si_update_vgt_shader_config(struct si_context *sctx) { /* Calculate the index of the config. * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */ unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso; struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index]; if (!*pm4) { uint32_t stages = 0; *pm4 = CALLOC_STRUCT(si_pm4_state); if (sctx->tes_shader.cso) { stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); if (sctx->gs_shader.cso) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1) | S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); else stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); } else if (sctx->gs_shader.cso) { stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1) | S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); } if (sctx->b.chip_class >= GFX9) stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages); } si_pm4_bind_state(sctx, vgt_shader_config, *pm4); } bool si_update_shaders(struct si_context *sctx) { struct pipe_context *ctx = (struct pipe_context*)sctx; struct si_compiler_ctx_state compiler_state; struct si_state_rasterizer *rs = sctx->queued.named.rasterizer; struct si_shader *old_vs = si_get_vs_state(sctx); bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false; struct si_shader *old_ps = sctx->ps_shader.current; unsigned old_spi_shader_col_format = old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0; int r; compiler_state.tm = sctx->tm; compiler_state.debug = sctx->b.debug; compiler_state.is_debug_context = sctx->is_debug; /* Update stages before GS. */ if (sctx->tes_shader.cso) { if (!sctx->tf_ring) { si_init_tess_factor_ring(sctx); if (!sctx->tf_ring) return false; } /* VS as LS */ if (sctx->b.chip_class <= VI) { r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4); } if (sctx->tcs_shader.cso) { r = si_shader_select(ctx, &sctx->tcs_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4); } else { if (!sctx->fixed_func_tcs_shader.cso) { si_generate_fixed_func_tcs(sctx); if (!sctx->fixed_func_tcs_shader.cso) return false; } r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, hs, sctx->fixed_func_tcs_shader.current->pm4); } if (sctx->gs_shader.cso) { /* TES as ES */ if (sctx->b.chip_class <= VI) { r = si_shader_select(ctx, &sctx->tes_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4); } } else { /* TES as VS */ r = si_shader_select(ctx, &sctx->tes_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4); } } else if (sctx->gs_shader.cso) { if (sctx->b.chip_class <= VI) { /* VS as ES */ r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4); si_pm4_bind_state(sctx, ls, NULL); si_pm4_bind_state(sctx, hs, NULL); } } else { /* VS as VS */ r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4); si_pm4_bind_state(sctx, ls, NULL); si_pm4_bind_state(sctx, hs, NULL); } /* Update GS. */ if (sctx->gs_shader.cso) { r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4); si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4); if (!si_update_gs_ring_buffers(sctx)) return false; } else { si_pm4_bind_state(sctx, gs, NULL); if (sctx->b.chip_class <= VI) si_pm4_bind_state(sctx, es, NULL); } si_update_vgt_shader_config(sctx); if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable) si_mark_atom_dirty(sctx, &sctx->clip_regs); if (sctx->ps_shader.cso) { unsigned db_shader_control; r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state); if (r) return false; si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4); db_shader_control = sctx->ps_shader.cso->db_shader_control | S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS); if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) || sctx->sprite_coord_enable != rs->sprite_coord_enable || sctx->flatshade != rs->flatshade) { sctx->sprite_coord_enable = rs->sprite_coord_enable; sctx->flatshade = rs->flatshade; si_mark_atom_dirty(sctx, &sctx->spi_map); } if (sctx->screen->b.rbplus_allowed && si_pm4_state_changed(sctx, ps) && (!old_ps || old_spi_shader_col_format != sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format)) si_mark_atom_dirty(sctx, &sctx->cb_render_state); if (sctx->ps_db_shader_control != db_shader_control) { sctx->ps_db_shader_control = db_shader_control; si_mark_atom_dirty(sctx, &sctx->db_render_state); } if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) { sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing; si_mark_atom_dirty(sctx, &sctx->msaa_config); if (sctx->b.chip_class == SI) si_mark_atom_dirty(sctx, &sctx->db_render_state); if (sctx->framebuffer.nr_samples <= 1) si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom); } } if (si_pm4_state_changed(sctx, ls) || si_pm4_state_changed(sctx, hs) || si_pm4_state_changed(sctx, es) || si_pm4_state_changed(sctx, gs) || si_pm4_state_changed(sctx, vs) || si_pm4_state_changed(sctx, ps)) { if (!si_update_spi_tmpring_size(sctx)) return false; } if (sctx->b.chip_class >= CIK) si_mark_atom_dirty(sctx, &sctx->prefetch_L2); sctx->do_update_shaders = false; return true; } static void si_emit_scratch_state(struct si_context *sctx, struct r600_atom *atom) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size); if (sctx->scratch_buffer) { radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, sctx->scratch_buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SCRATCH_BUFFER); } } void si_init_shader_functions(struct si_context *sctx) { si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map); si_init_atom(sctx, &sctx->scratch_state, &sctx->atoms.s.scratch_state, si_emit_scratch_state); sctx->b.b.create_vs_state = si_create_shader_selector; sctx->b.b.create_tcs_state = si_create_shader_selector; sctx->b.b.create_tes_state = si_create_shader_selector; sctx->b.b.create_gs_state = si_create_shader_selector; sctx->b.b.create_fs_state = si_create_shader_selector; sctx->b.b.bind_vs_state = si_bind_vs_shader; sctx->b.b.bind_tcs_state = si_bind_tcs_shader; sctx->b.b.bind_tes_state = si_bind_tes_shader; sctx->b.b.bind_gs_state = si_bind_gs_shader; sctx->b.b.bind_fs_state = si_bind_ps_shader; sctx->b.b.delete_vs_state = si_delete_shader_selector; sctx->b.b.delete_tcs_state = si_delete_shader_selector; sctx->b.b.delete_tes_state = si_delete_shader_selector; sctx->b.b.delete_gs_state = si_delete_shader_selector; sctx->b.b.delete_fs_state = si_delete_shader_selector; }