/* * Copyright 2016 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_shader_internal.h" #include "si_pipe.h" #include "ac_rtld.h" #include "ac_nir_to_llvm.h" #include "sid.h" #include "tgsi/tgsi_from_mesa.h" #include "util/u_memory.h" struct si_llvm_diagnostics { struct pipe_debug_callback *debug; unsigned retval; }; static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context) { struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context; LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di); const char *severity_str = NULL; switch (severity) { case LLVMDSError: severity_str = "error"; break; case LLVMDSWarning: severity_str = "warning"; break; case LLVMDSRemark: case LLVMDSNote: default: return; } char *description = LLVMGetDiagInfoDescription(di); pipe_debug_message(diag->debug, SHADER_INFO, "LLVM diagnostic (%s): %s", severity_str, description); if (severity == LLVMDSError) { diag->retval = 1; fprintf(stderr,"LLVM triggered Diagnostic Handler: %s\n", description); } LLVMDisposeMessage(description); } bool si_compile_llvm(struct si_screen *sscreen, struct si_shader_binary *binary, struct ac_shader_config *conf, struct ac_llvm_compiler *compiler, struct ac_llvm_context *ac, struct pipe_debug_callback *debug, enum pipe_shader_type shader_type, const char *name, bool less_optimized) { unsigned count = p_atomic_inc_return(&sscreen->num_compilations); if (si_can_dump_shader(sscreen, shader_type)) { fprintf(stderr, "radeonsi: Compiling shader %d\n", count); if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) { fprintf(stderr, "%s LLVM IR:\n\n", name); ac_dump_module(ac->module); fprintf(stderr, "\n"); } } if (sscreen->record_llvm_ir) { char *ir = LLVMPrintModuleToString(ac->module); binary->llvm_ir_string = strdup(ir); LLVMDisposeMessage(ir); } if (!si_replace_shader(count, binary)) { struct ac_compiler_passes *passes = compiler->passes; if (ac->wave_size == 32) passes = compiler->passes_wave32; else if (less_optimized && compiler->low_opt_passes) passes = compiler->low_opt_passes; struct si_llvm_diagnostics diag = {debug}; LLVMContextSetDiagnosticHandler(ac->context, si_diagnostic_handler, &diag); if (!ac_compile_module_to_elf(passes, ac->module, (char **)&binary->elf_buffer, &binary->elf_size)) diag.retval = 1; if (diag.retval != 0) { pipe_debug_message(debug, SHADER_INFO, "LLVM compilation failed"); return false; } } struct ac_rtld_binary rtld; if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){ .info = &sscreen->info, .shader_type = tgsi_processor_to_shader_stage(shader_type), .wave_size = ac->wave_size, .num_parts = 1, .elf_ptrs = &binary->elf_buffer, .elf_sizes = &binary->elf_size })) return false; bool ok = ac_rtld_read_config(&rtld, conf); ac_rtld_close(&rtld); return ok; } void si_llvm_context_init(struct si_shader_context *ctx, struct si_screen *sscreen, struct ac_llvm_compiler *compiler, unsigned wave_size) { memset(ctx, 0, sizeof(*ctx)); ctx->screen = sscreen; ctx->compiler = compiler; ac_llvm_context_init(&ctx->ac, compiler, sscreen->info.chip_class, sscreen->info.family, AC_FLOAT_MODE_NO_SIGNED_ZEROS_FP_MATH, wave_size, 64); } void si_llvm_create_func(struct si_shader_context *ctx, const char *name, LLVMTypeRef *return_types, unsigned num_return_elems, unsigned max_workgroup_size) { LLVMTypeRef ret_type; enum ac_llvm_calling_convention call_conv; enum pipe_shader_type real_shader_type; if (num_return_elems) ret_type = LLVMStructTypeInContext(ctx->ac.context, return_types, num_return_elems, true); else ret_type = ctx->ac.voidt; real_shader_type = ctx->type; /* LS is merged into HS (TCS), and ES is merged into GS. */ if (ctx->screen->info.chip_class >= GFX9) { if (ctx->shader->key.as_ls) real_shader_type = PIPE_SHADER_TESS_CTRL; else if (ctx->shader->key.as_es || ctx->shader->key.as_ngg) real_shader_type = PIPE_SHADER_GEOMETRY; } switch (real_shader_type) { case PIPE_SHADER_VERTEX: case PIPE_SHADER_TESS_EVAL: call_conv = AC_LLVM_AMDGPU_VS; break; case PIPE_SHADER_TESS_CTRL: call_conv = AC_LLVM_AMDGPU_HS; break; case PIPE_SHADER_GEOMETRY: call_conv = AC_LLVM_AMDGPU_GS; break; case PIPE_SHADER_FRAGMENT: call_conv = AC_LLVM_AMDGPU_PS; break; case PIPE_SHADER_COMPUTE: call_conv = AC_LLVM_AMDGPU_CS; break; default: unreachable("Unhandle shader type"); } /* Setup the function */ ctx->return_type = ret_type; ctx->main_fn = ac_build_main(&ctx->args, &ctx->ac, call_conv, name, ret_type, ctx->ac.module); ctx->return_value = LLVMGetUndef(ctx->return_type); if (ctx->screen->info.address32_hi) { ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-32bit-address-high-bits", ctx->screen->info.address32_hi); } LLVMAddTargetDependentFunctionAttr(ctx->main_fn, "no-signed-zeros-fp-math", "true"); ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size); } void si_llvm_optimize_module(struct si_shader_context *ctx) { /* Dump LLVM IR before any optimization passes */ if (ctx->screen->debug_flags & DBG(PREOPT_IR) && si_can_dump_shader(ctx->screen, ctx->type)) LLVMDumpModule(ctx->ac.module); /* Run the pass */ LLVMRunPassManager(ctx->compiler->passmgr, ctx->ac.module); LLVMDisposeBuilder(ctx->ac.builder); } void si_llvm_dispose(struct si_shader_context *ctx) { LLVMDisposeModule(ctx->ac.module); LLVMContextDispose(ctx->ac.context); ac_llvm_context_dispose(&ctx->ac); } /** * Load a dword from a constant buffer. */ LLVMValueRef si_buffer_load_const(struct si_shader_context *ctx, LLVMValueRef resource, LLVMValueRef offset) { return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL, 0, 0, true, true); } void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret) { if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind) LLVMBuildRetVoid(ctx->ac.builder); else LLVMBuildRet(ctx->ac.builder, ret); } LLVMValueRef si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret, struct ac_arg param, unsigned return_index) { return LLVMBuildInsertValue(ctx->ac.builder, ret, ac_get_arg(&ctx->ac, param), return_index, ""); } LLVMValueRef si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret, struct ac_arg param, unsigned return_index) { LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef p = ac_get_arg(&ctx->ac, param); return LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, p), return_index, ""); } LLVMValueRef si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret, struct ac_arg param, unsigned return_index) { LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef ptr = ac_get_arg(&ctx->ac, param); ptr = LLVMBuildPtrToInt(builder, ptr, ctx->ac.i32, ""); return LLVMBuildInsertValue(builder, ret, ptr, return_index, ""); } LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx) { LLVMValueRef ptr[2], list; bool merged_shader = si_is_merged_shader(ctx->shader); ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS); list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0], ac_array_in_const32_addr_space(ctx->ac.v4i32), ""); return list; } LLVMValueRef si_build_gather_64bit(struct si_shader_context *ctx, LLVMTypeRef type, LLVMValueRef val1, LLVMValueRef val2) { LLVMValueRef values[2] = { ac_to_integer(&ctx->ac, val1), ac_to_integer(&ctx->ac, val2), }; LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, 2); return LLVMBuildBitCast(ctx->ac.builder, result, type, ""); } void si_llvm_emit_barrier(struct si_shader_context *ctx) { /* GFX6 only (thanks to a hw bug workaround): * The real barrier instruction isn’t needed, because an entire patch * always fits into a single wave. */ if (ctx->screen->info.chip_class == GFX6 && ctx->type == PIPE_SHADER_TESS_CTRL) { ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE); return; } ac_build_s_barrier(&ctx->ac); } /* Ensure that the esgs ring is declared. * * We declare it with 64KB alignment as a hint that the * pointer value will always be 0. */ void si_llvm_declare_esgs_ring(struct si_shader_context *ctx) { if (ctx->esgs_ring) return; assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring")); ctx->esgs_ring = LLVMAddGlobalInAddressSpace( ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0), "esgs_ring", AC_ADDR_SPACE_LDS); LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage); LLVMSetAlignment(ctx->esgs_ring, 64 * 1024); } void si_init_exec_from_input(struct si_shader_context *ctx, struct ac_arg param, unsigned bitoffset) { LLVMValueRef args[] = { ac_get_arg(&ctx->ac, param), LLVMConstInt(ctx->ac.i32, bitoffset, 0), }; ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.init.exec.from.input", ctx->ac.voidt, args, 2, AC_FUNC_ATTR_CONVERGENT); } /** * Get the value of a shader input parameter and extract a bitfield. */ static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx, LLVMValueRef value, unsigned rshift, unsigned bitwidth) { if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind) value = ac_to_integer(&ctx->ac, value); if (rshift) value = LLVMBuildLShr(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, rshift, 0), ""); if (rshift + bitwidth < 32) { unsigned mask = (1 << bitwidth) - 1; value = LLVMBuildAnd(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, mask, 0), ""); } return value; } LLVMValueRef si_unpack_param(struct si_shader_context *ctx, struct ac_arg param, unsigned rshift, unsigned bitwidth) { LLVMValueRef value = ac_get_arg(&ctx->ac, param); return unpack_llvm_param(ctx, value, rshift, bitwidth); } LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx, unsigned swizzle) { if (swizzle > 0) return ctx->ac.i32_0; switch (ctx->type) { case PIPE_SHADER_VERTEX: return ac_get_arg(&ctx->ac, ctx->vs_prim_id); case PIPE_SHADER_TESS_CTRL: return ac_get_arg(&ctx->ac, ctx->args.tcs_patch_id); case PIPE_SHADER_TESS_EVAL: return ac_get_arg(&ctx->ac, ctx->args.tes_patch_id); case PIPE_SHADER_GEOMETRY: return ac_get_arg(&ctx->ac, ctx->args.gs_prim_id); default: assert(0); return ctx->ac.i32_0; } } LLVMValueRef si_llvm_get_block_size(struct ac_shader_abi *abi) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); LLVMValueRef values[3]; LLVMValueRef result; unsigned i; unsigned *properties = ctx->shader->selector->info.properties; if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) { unsigned sizes[3] = { properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH], properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT], properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH] }; for (i = 0; i < 3; ++i) values[i] = LLVMConstInt(ctx->ac.i32, sizes[i], 0); result = ac_build_gather_values(&ctx->ac, values, 3); } else { result = ac_get_arg(&ctx->ac, ctx->block_size); } return result; } void si_llvm_declare_compute_memory(struct si_shader_context *ctx) { struct si_shader_selector *sel = ctx->shader->selector; unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE]; LLVMTypeRef i8p = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS); LLVMValueRef var; assert(!ctx->ac.lds); var = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i8, lds_size), "compute_lds", AC_ADDR_SPACE_LDS); LLVMSetAlignment(var, 64 * 1024); ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, ""); } bool si_nir_build_llvm(struct si_shader_context *ctx, struct nir_shader *nir) { if (nir->info.stage == MESA_SHADER_VERTEX) { si_llvm_load_vs_inputs(ctx, nir); } else if (nir->info.stage == MESA_SHADER_FRAGMENT) { unsigned colors_read = ctx->shader->selector->info.colors_read; LLVMValueRef main_fn = ctx->main_fn; LLVMValueRef undef = LLVMGetUndef(ctx->ac.f32); unsigned offset = SI_PARAM_POS_FIXED_PT + 1; if (colors_read & 0x0f) { unsigned mask = colors_read & 0x0f; LLVMValueRef values[4]; values[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef; values[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef; values[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef; values[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef; ctx->abi.color0 = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4)); } if (colors_read & 0xf0) { unsigned mask = (colors_read & 0xf0) >> 4; LLVMValueRef values[4]; values[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef; values[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef; values[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef; values[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef; ctx->abi.color1 = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4)); } ctx->abi.interp_at_sample_force_center = ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center; } else if (nir->info.stage == MESA_SHADER_COMPUTE) { if (nir->info.cs.user_data_components_amd) { ctx->abi.user_data = ac_get_arg(&ctx->ac, ctx->cs_user_data); ctx->abi.user_data = ac_build_expand_to_vec4(&ctx->ac, ctx->abi.user_data, nir->info.cs.user_data_components_amd); } } ctx->abi.inputs = &ctx->inputs[0]; ctx->abi.clamp_shadow_reference = true; ctx->abi.robust_buffer_access = true; if (ctx->shader->selector->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE]) { assert(gl_shader_stage_is_compute(nir->info.stage)); si_llvm_declare_compute_memory(ctx); } ac_nir_translate(&ctx->ac, &ctx->abi, &ctx->args, nir); return true; } /** * Given a list of shader part functions, build a wrapper function that * runs them in sequence to form a monolithic shader. */ void si_build_wrapper_function(struct si_shader_context *ctx, LLVMValueRef *parts, unsigned num_parts, unsigned main_part, unsigned next_shader_first_part) { LLVMBuilderRef builder = ctx->ac.builder; /* PS epilog has one arg per color component; gfx9 merged shader * prologs need to forward 40 SGPRs. */ LLVMValueRef initial[AC_MAX_ARGS], out[AC_MAX_ARGS]; LLVMTypeRef function_type; unsigned num_first_params; unsigned num_out, initial_num_out; ASSERTED unsigned num_out_sgpr; /* used in debug checks */ ASSERTED unsigned initial_num_out_sgpr; /* used in debug checks */ unsigned num_sgprs, num_vgprs; unsigned gprs; memset(&ctx->args, 0, sizeof(ctx->args)); for (unsigned i = 0; i < num_parts; ++i) { ac_add_function_attr(ctx->ac.context, parts[i], -1, AC_FUNC_ATTR_ALWAYSINLINE); LLVMSetLinkage(parts[i], LLVMPrivateLinkage); } /* The parameters of the wrapper function correspond to those of the * first part in terms of SGPRs and VGPRs, but we use the types of the * main part to get the right types. This is relevant for the * dereferenceable attribute on descriptor table pointers. */ num_sgprs = 0; num_vgprs = 0; function_type = LLVMGetElementType(LLVMTypeOf(parts[0])); num_first_params = LLVMCountParamTypes(function_type); for (unsigned i = 0; i < num_first_params; ++i) { LLVMValueRef param = LLVMGetParam(parts[0], i); if (ac_is_sgpr_param(param)) { assert(num_vgprs == 0); num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4; } else { num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4; } } gprs = 0; while (gprs < num_sgprs + num_vgprs) { LLVMValueRef param = LLVMGetParam(parts[main_part], ctx->args.arg_count); LLVMTypeRef type = LLVMTypeOf(param); unsigned size = ac_get_type_size(type) / 4; /* This is going to get casted anyways, so we don't have to * have the exact same type. But we do have to preserve the * pointer-ness so that LLVM knows about it. */ enum ac_arg_type arg_type = AC_ARG_INT; if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) { type = LLVMGetElementType(type); if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) { if (LLVMGetVectorSize(type) == 4) arg_type = AC_ARG_CONST_DESC_PTR; else if (LLVMGetVectorSize(type) == 8) arg_type = AC_ARG_CONST_IMAGE_PTR; else assert(0); } else if (type == ctx->ac.f32) { arg_type = AC_ARG_CONST_FLOAT_PTR; } else { assert(0); } } ac_add_arg(&ctx->args, gprs < num_sgprs ? AC_ARG_SGPR : AC_ARG_VGPR, size, arg_type, NULL); assert(ac_is_sgpr_param(param) == (gprs < num_sgprs)); assert(gprs + size <= num_sgprs + num_vgprs && (gprs >= num_sgprs || gprs + size <= num_sgprs)); gprs += size; } /* Prepare the return type. */ unsigned num_returns = 0; LLVMTypeRef returns[AC_MAX_ARGS], last_func_type, return_type; last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1])); return_type = LLVMGetReturnType(last_func_type); switch (LLVMGetTypeKind(return_type)) { case LLVMStructTypeKind: num_returns = LLVMCountStructElementTypes(return_type); assert(num_returns <= ARRAY_SIZE(returns)); LLVMGetStructElementTypes(return_type, returns); break; case LLVMVoidTypeKind: break; default: unreachable("unexpected type"); } si_llvm_create_func(ctx, "wrapper", returns, num_returns, si_get_max_workgroup_size(ctx->shader)); if (si_is_merged_shader(ctx->shader)) ac_init_exec_full_mask(&ctx->ac); /* Record the arguments of the function as if they were an output of * a previous part. */ num_out = 0; num_out_sgpr = 0; for (unsigned i = 0; i < ctx->args.arg_count; ++i) { LLVMValueRef param = LLVMGetParam(ctx->main_fn, i); LLVMTypeRef param_type = LLVMTypeOf(param); LLVMTypeRef out_type = ctx->args.args[i].file == AC_ARG_SGPR ? ctx->ac.i32 : ctx->ac.f32; unsigned size = ac_get_type_size(param_type) / 4; if (size == 1) { if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) { param = LLVMBuildPtrToInt(builder, param, ctx->ac.i32, ""); param_type = ctx->ac.i32; } if (param_type != out_type) param = LLVMBuildBitCast(builder, param, out_type, ""); out[num_out++] = param; } else { LLVMTypeRef vector_type = LLVMVectorType(out_type, size); if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) { param = LLVMBuildPtrToInt(builder, param, ctx->ac.i64, ""); param_type = ctx->ac.i64; } if (param_type != vector_type) param = LLVMBuildBitCast(builder, param, vector_type, ""); for (unsigned j = 0; j < size; ++j) out[num_out++] = LLVMBuildExtractElement( builder, param, LLVMConstInt(ctx->ac.i32, j, 0), ""); } if (ctx->args.args[i].file == AC_ARG_SGPR) num_out_sgpr = num_out; } memcpy(initial, out, sizeof(out)); initial_num_out = num_out; initial_num_out_sgpr = num_out_sgpr; /* Now chain the parts. */ LLVMValueRef ret = NULL; for (unsigned part = 0; part < num_parts; ++part) { LLVMValueRef in[AC_MAX_ARGS]; LLVMTypeRef ret_type; unsigned out_idx = 0; unsigned num_params = LLVMCountParams(parts[part]); /* Merged shaders are executed conditionally depending * on the number of enabled threads passed in the input SGPRs. */ if (si_is_multi_part_shader(ctx->shader) && part == 0) { LLVMValueRef ena, count = initial[3]; count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), ""); ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, ""); ac_build_ifcc(&ctx->ac, ena, 6506); } /* Derive arguments for the next part from outputs of the * previous one. */ for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) { LLVMValueRef param; LLVMTypeRef param_type; bool is_sgpr; unsigned param_size; LLVMValueRef arg = NULL; param = LLVMGetParam(parts[part], param_idx); param_type = LLVMTypeOf(param); param_size = ac_get_type_size(param_type) / 4; is_sgpr = ac_is_sgpr_param(param); if (is_sgpr) { ac_add_function_attr(ctx->ac.context, parts[part], param_idx + 1, AC_FUNC_ATTR_INREG); } else if (out_idx < num_out_sgpr) { /* Skip returned SGPRs the current part doesn't * declare on the input. */ out_idx = num_out_sgpr; } assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out)); if (param_size == 1) arg = out[out_idx]; else arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size); if (LLVMTypeOf(arg) != param_type) { if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) { if (LLVMGetPointerAddressSpace(param_type) == AC_ADDR_SPACE_CONST_32BIT) { arg = LLVMBuildBitCast(builder, arg, ctx->ac.i32, ""); arg = LLVMBuildIntToPtr(builder, arg, param_type, ""); } else { arg = LLVMBuildBitCast(builder, arg, ctx->ac.i64, ""); arg = LLVMBuildIntToPtr(builder, arg, param_type, ""); } } else { arg = LLVMBuildBitCast(builder, arg, param_type, ""); } } in[param_idx] = arg; out_idx += param_size; } ret = ac_build_call(&ctx->ac, parts[part], in, num_params); if (si_is_multi_part_shader(ctx->shader) && part + 1 == next_shader_first_part) { ac_build_endif(&ctx->ac, 6506); /* The second half of the merged shader should use * the inputs from the toplevel (wrapper) function, * not the return value from the last call. * * That's because the last call was executed condi- * tionally, so we can't consume it in the main * block. */ memcpy(out, initial, sizeof(initial)); num_out = initial_num_out; num_out_sgpr = initial_num_out_sgpr; continue; } /* Extract the returned GPRs. */ ret_type = LLVMTypeOf(ret); num_out = 0; num_out_sgpr = 0; if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) { assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind); unsigned ret_size = LLVMCountStructElementTypes(ret_type); for (unsigned i = 0; i < ret_size; ++i) { LLVMValueRef val = LLVMBuildExtractValue(builder, ret, i, ""); assert(num_out < ARRAY_SIZE(out)); out[num_out++] = val; if (LLVMTypeOf(val) == ctx->ac.i32) { assert(num_out_sgpr + 1 == num_out); num_out_sgpr = num_out; } } } } /* Return the value from the last part. */ if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind) LLVMBuildRetVoid(builder); else LLVMBuildRet(builder, ret); }