/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Tom Stellard * Michel Dänzer * Christian König */ /* The compiler middle-end architecture: Explaining (non-)monolithic shaders * ------------------------------------------------------------------------- * * Typically, there is one-to-one correspondence between API and HW shaders, * that is, for every API shader, there is exactly one shader binary in * the driver. * * The problem with that is that we also have to emulate some API states * (e.g. alpha-test, and many others) in shaders too. The two obvious ways * to deal with it are: * - each shader has multiple variants for each combination of emulated states, * and the variants are compiled on demand, possibly relying on a shader * cache for good performance * - patch shaders at the binary level * * This driver uses something completely different. The emulated states are * usually implemented at the beginning or end of shaders. Therefore, we can * split the shader into 3 parts: * - prolog part (shader code dependent on states) * - main part (the API shader) * - epilog part (shader code dependent on states) * * Each part is compiled as a separate shader and the final binaries are * concatenated. This type of shader is called non-monolithic, because it * consists of multiple independent binaries. Creating a new shader variant * is therefore only a concatenation of shader parts (binaries) and doesn't * involve any compilation. The main shader parts are the only parts that are * compiled when applications create shader objects. The prolog and epilog * parts are compiled on the first use and saved, so that their binaries can * be reused by many other shaders. * * One of the roles of the prolog part is to compute vertex buffer addresses * for vertex shaders. A few of the roles of the epilog part are color buffer * format conversions in pixel shaders that we have to do manually, and write * tessellation factors in tessellation control shaders. The prolog and epilog * have many other important responsibilities in various shader stages. * They don't just "emulate legacy stuff". * * Monolithic shaders are shaders where the parts are combined before LLVM * compilation, and the whole thing is compiled and optimized as one unit with * one binary on the output. The result is the same as the non-monolithic * shader, but the final code can be better, because LLVM can optimize across * all shader parts. Monolithic shaders aren't usually used except for these * special cases: * * 1) Some rarely-used states require modification of the main shader part * itself, and in such cases, only the monolithic shader variant is * compiled, and that's always done on the first use. * * 2) When we do cross-stage optimizations for separate shader objects and * e.g. eliminate unused shader varyings, the resulting optimized shader * variants are always compiled as monolithic shaders, and always * asynchronously (i.e. not stalling ongoing rendering). We call them * "optimized monolithic" shaders. The important property here is that * the non-monolithic unoptimized shader variant is always available for use * when the asynchronous compilation of the optimized shader is not done * yet. * * Starting with GFX9 chips, some shader stages are merged, and the number of * shader parts per shader increased. The complete new list of shader parts is: * - 1st shader: prolog part * - 1st shader: main part * - 2nd shader: prolog part * - 2nd shader: main part * - 2nd shader: epilog part */ /* How linking shader inputs and outputs between vertex, tessellation, and * geometry shaders works. * * Inputs and outputs between shaders are stored in a buffer. This buffer * lives in LDS (typical case for tessellation), but it can also live * in memory (ESGS). Each input or output has a fixed location within a vertex. * The highest used input or output determines the stride between vertices. * * Since GS and tessellation are only possible in the OpenGL core profile, * only these semantics are valid for per-vertex data: * * Name Location * * POSITION 0 * PSIZE 1 * CLIPDIST0..1 2..3 * CULLDIST0..1 (not implemented) * GENERIC0..31 4..35 * * For example, a shader only writing GENERIC0 has the output stride of 5. * * Only these semantics are valid for per-patch data: * * Name Location * * TESSOUTER 0 * TESSINNER 1 * PATCH0..29 2..31 * * That's how independent shaders agree on input and output locations. * The si_shader_io_get_unique_index function assigns the locations. * * For tessellation, other required information for calculating the input and * output addresses like the vertex stride, the patch stride, and the offsets * where per-vertex and per-patch data start, is passed to the shader via * user data SGPRs. The offsets and strides are calculated at draw time and * aren't available at compile time. */ #ifndef SI_SHADER_H #define SI_SHADER_H #include /* LLVMModuleRef */ #include #include "tgsi/tgsi_scan.h" #include "util/u_queue.h" #include "ac_binary.h" #include "si_state.h" struct nir_shader; #define SI_MAX_VS_OUTPUTS 40 /* Shader IO unique indices are supported for TGSI_SEMANTIC_GENERIC with an * index smaller than this. */ #define SI_MAX_IO_GENERIC 46 /* SGPR user data indices */ enum { /* GFX9 merged shaders have RW_BUFFERS among the first 8 system SGPRs, * and these two are used for other purposes. */ SI_SGPR_RW_BUFFERS, /* rings (& stream-out, VS only) */ SI_SGPR_RW_BUFFERS_HI, SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES, SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES_HI, SI_SGPR_CONST_AND_SHADER_BUFFERS, SI_SGPR_CONST_AND_SHADER_BUFFERS_HI, SI_SGPR_SAMPLERS_AND_IMAGES, SI_SGPR_SAMPLERS_AND_IMAGES_HI, SI_NUM_RESOURCE_SGPRS, /* all VS variants */ SI_SGPR_VERTEX_BUFFERS = SI_NUM_RESOURCE_SGPRS, SI_SGPR_VERTEX_BUFFERS_HI, SI_SGPR_BASE_VERTEX, SI_SGPR_START_INSTANCE, SI_SGPR_DRAWID, SI_SGPR_VS_STATE_BITS, SI_VS_NUM_USER_SGPR, SI_SGPR_VS_BLIT_DATA = SI_SGPR_CONST_AND_SHADER_BUFFERS, /* TES */ SI_SGPR_TES_OFFCHIP_LAYOUT = SI_NUM_RESOURCE_SGPRS, SI_SGPR_TES_OFFCHIP_ADDR_BASE64K, SI_TES_NUM_USER_SGPR, /* GFX6-8: TCS only */ GFX6_SGPR_TCS_OFFCHIP_LAYOUT = SI_NUM_RESOURCE_SGPRS, GFX6_SGPR_TCS_OUT_OFFSETS, GFX6_SGPR_TCS_OUT_LAYOUT, GFX6_SGPR_TCS_IN_LAYOUT, GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K, GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K, GFX6_TCS_NUM_USER_SGPR, /* GFX9: Merged LS-HS (VS-TCS) only. */ GFX9_SGPR_TCS_OFFCHIP_LAYOUT = SI_VS_NUM_USER_SGPR, GFX9_SGPR_TCS_OUT_OFFSETS, GFX9_SGPR_TCS_OUT_LAYOUT, GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K, GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K, GFX9_SGPR_unused_to_align_the_next_pointer, GFX9_SGPR_TCS_CONST_AND_SHADER_BUFFERS, GFX9_SGPR_TCS_CONST_AND_SHADER_BUFFERS_HI, GFX9_SGPR_TCS_SAMPLERS_AND_IMAGES, GFX9_SGPR_TCS_SAMPLERS_AND_IMAGES_HI, GFX9_TCS_NUM_USER_SGPR, /* GFX9: Merged ES-GS (VS-GS or TES-GS). */ GFX9_SGPR_GS_CONST_AND_SHADER_BUFFERS = SI_VS_NUM_USER_SGPR, GFX9_SGPR_GS_CONST_AND_SHADER_BUFFERS_HI, GFX9_SGPR_GS_SAMPLERS_AND_IMAGES, GFX9_SGPR_GS_SAMPLERS_AND_IMAGES_HI, GFX9_GS_NUM_USER_SGPR, /* GS limits */ GFX6_GS_NUM_USER_SGPR = SI_NUM_RESOURCE_SGPRS, SI_GSCOPY_NUM_USER_SGPR = SI_SGPR_RW_BUFFERS_HI + 1, /* PS only */ SI_SGPR_ALPHA_REF = SI_NUM_RESOURCE_SGPRS, SI_PS_NUM_USER_SGPR, }; /* LLVM function parameter indices */ enum { SI_NUM_RESOURCE_PARAMS = 4, /* PS only parameters */ SI_PARAM_ALPHA_REF = SI_NUM_RESOURCE_PARAMS, SI_PARAM_PRIM_MASK, SI_PARAM_PERSP_SAMPLE, SI_PARAM_PERSP_CENTER, SI_PARAM_PERSP_CENTROID, SI_PARAM_PERSP_PULL_MODEL, SI_PARAM_LINEAR_SAMPLE, SI_PARAM_LINEAR_CENTER, SI_PARAM_LINEAR_CENTROID, SI_PARAM_LINE_STIPPLE_TEX, SI_PARAM_POS_X_FLOAT, SI_PARAM_POS_Y_FLOAT, SI_PARAM_POS_Z_FLOAT, SI_PARAM_POS_W_FLOAT, SI_PARAM_FRONT_FACE, SI_PARAM_ANCILLARY, SI_PARAM_SAMPLE_COVERAGE, SI_PARAM_POS_FIXED_PT, SI_NUM_PARAMS = SI_PARAM_POS_FIXED_PT + 9, /* +8 for COLOR[0..1] */ }; /* Fields of driver-defined VS state SGPR. */ /* Clamp vertex color output (only used in VS as VS). */ #define S_VS_STATE_CLAMP_VERTEX_COLOR(x) (((unsigned)(x) & 0x1) << 0) #define C_VS_STATE_CLAMP_VERTEX_COLOR 0xFFFFFFFE #define S_VS_STATE_INDEXED(x) (((unsigned)(x) & 0x1) << 1) #define C_VS_STATE_INDEXED 0xFFFFFFFD #define S_VS_STATE_LS_OUT_PATCH_SIZE(x) (((unsigned)(x) & 0x1FFF) << 8) #define C_VS_STATE_LS_OUT_PATCH_SIZE 0xFFE000FF #define S_VS_STATE_LS_OUT_VERTEX_SIZE(x) (((unsigned)(x) & 0xFF) << 24) #define C_VS_STATE_LS_OUT_VERTEX_SIZE 0x00FFFFFF /* SI-specific system values. */ enum { TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI = TGSI_SEMANTIC_COUNT, TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, }; enum { /* Use a property enum that VS wouldn't use. */ TGSI_PROPERTY_VS_BLIT_SGPRS = TGSI_PROPERTY_FS_COORD_ORIGIN, /* These represent the number of SGPRs the shader uses. */ SI_VS_BLIT_SGPRS_POS = 3, SI_VS_BLIT_SGPRS_POS_COLOR = 7, SI_VS_BLIT_SGPRS_POS_TEXCOORD = 9, }; /* For VS shader key fix_fetch. */ enum { SI_FIX_FETCH_NONE = 0, SI_FIX_FETCH_A2_SNORM, SI_FIX_FETCH_A2_SSCALED, SI_FIX_FETCH_A2_SINT, SI_FIX_FETCH_RGBA_32_UNORM, SI_FIX_FETCH_RGBX_32_UNORM, SI_FIX_FETCH_RGBA_32_SNORM, SI_FIX_FETCH_RGBX_32_SNORM, SI_FIX_FETCH_RGBA_32_USCALED, SI_FIX_FETCH_RGBA_32_SSCALED, SI_FIX_FETCH_RGBA_32_FIXED, SI_FIX_FETCH_RGBX_32_FIXED, SI_FIX_FETCH_RG_64_FLOAT, SI_FIX_FETCH_RGB_64_FLOAT, SI_FIX_FETCH_RGBA_64_FLOAT, SI_FIX_FETCH_RGB_8, /* A = 1.0 */ SI_FIX_FETCH_RGB_8_INT, /* A = 1 */ SI_FIX_FETCH_RGB_16, SI_FIX_FETCH_RGB_16_INT, }; struct si_shader; /* State of the context creating the shader object. */ struct si_compiler_ctx_state { /* Should only be used by si_init_shader_selector_async and * si_build_shader_variant if thread_index == -1 (non-threaded). */ LLVMTargetMachineRef tm; /* Used if thread_index == -1 or if debug.async is true. */ struct pipe_debug_callback debug; /* Used for creating the log string for gallium/ddebug. */ bool is_debug_context; }; /* A shader selector is a gallium CSO and contains shader variants and * binaries for one TGSI program. This can be shared by multiple contexts. */ struct si_shader_selector { struct pipe_reference reference; struct si_screen *screen; struct util_queue_fence ready; struct si_compiler_ctx_state compiler_ctx_state; mtx_t mutex; struct si_shader *first_variant; /* immutable after the first variant */ struct si_shader *last_variant; /* mutable */ /* The compiled TGSI shader expecting a prolog and/or epilog (not * uploaded to a buffer). */ struct si_shader *main_shader_part; struct si_shader *main_shader_part_ls; /* as_ls is set in the key */ struct si_shader *main_shader_part_es; /* as_es is set in the key */ struct si_shader *gs_copy_shader; struct tgsi_token *tokens; struct nir_shader *nir; struct pipe_stream_output_info so; struct tgsi_shader_info info; struct tgsi_tessctrl_info tcs_info; /* PIPE_SHADER_[VERTEX|FRAGMENT|...] */ unsigned type; bool vs_needs_prolog; unsigned pa_cl_vs_out_cntl; ubyte clipdist_mask; ubyte culldist_mask; /* GS parameters. */ unsigned esgs_itemsize; unsigned gs_input_verts_per_prim; unsigned gs_output_prim; unsigned gs_max_out_vertices; unsigned gs_num_invocations; unsigned max_gs_stream; /* count - 1 */ unsigned gsvs_vertex_size; unsigned max_gsvs_emit_size; unsigned enabled_streamout_buffer_mask; /* PS parameters. */ unsigned color_attr_index[2]; unsigned db_shader_control; /* Set 0xf or 0x0 (4 bits) per each written output. * ANDed with spi_shader_col_format. */ unsigned colors_written_4bit; /* CS parameters */ unsigned local_size; uint64_t outputs_written; /* "get_unique_index" bits */ uint32_t patch_outputs_written; /* "get_unique_index_patch" bits */ uint64_t inputs_read; /* "get_unique_index" bits */ /* bitmasks of used descriptor slots */ uint32_t active_const_and_shader_buffers; uint64_t active_samplers_and_images; }; /* Valid shader configurations: * * API shaders VS | TCS | TES | GS |pass| PS * are compiled as: | | | |thru| * | | | | | * Only VS & PS: VS | | | | | PS * GFX6 - with GS: ES | | | GS | VS | PS * - with tess: LS | HS | VS | | | PS * - with both: LS | HS | ES | GS | VS | PS * GFX9 - with GS: -> | | | GS | VS | PS * - with tess: -> | HS | VS | | | PS * - with both: -> | HS | -> | GS | VS | PS * * -> = merged with the next stage */ /* Use the byte alignment for all following structure members for optimal * shader key memory footprint. */ #pragma pack(push, 1) /* Common VS bits between the shader key and the prolog key. */ struct si_vs_prolog_bits { /* - If neither "is_one" nor "is_fetched" has a bit set, the instance * divisor is 0. * - If "is_one" has a bit set, the instance divisor is 1. * - If "is_fetched" has a bit set, the instance divisor will be loaded * from the constant buffer. */ uint16_t instance_divisor_is_one; /* bitmask of inputs */ uint16_t instance_divisor_is_fetched; /* bitmask of inputs */ unsigned ls_vgpr_fix:1; }; /* Common TCS bits between the shader key and the epilog key. */ struct si_tcs_epilog_bits { unsigned prim_mode:3; unsigned invoc0_tess_factors_are_def:1; unsigned tes_reads_tess_factors:1; }; struct si_gs_prolog_bits { unsigned tri_strip_adj_fix:1; }; /* Common PS bits between the shader key and the prolog key. */ struct si_ps_prolog_bits { unsigned color_two_side:1; unsigned flatshade_colors:1; unsigned poly_stipple:1; unsigned force_persp_sample_interp:1; unsigned force_linear_sample_interp:1; unsigned force_persp_center_interp:1; unsigned force_linear_center_interp:1; unsigned bc_optimize_for_persp:1; unsigned bc_optimize_for_linear:1; unsigned samplemask_log_ps_iter:3; }; /* Common PS bits between the shader key and the epilog key. */ struct si_ps_epilog_bits { unsigned spi_shader_col_format; unsigned color_is_int8:8; unsigned color_is_int10:8; unsigned last_cbuf:3; unsigned alpha_func:3; unsigned alpha_to_one:1; unsigned poly_line_smoothing:1; unsigned clamp_color:1; }; union si_shader_part_key { struct { struct si_vs_prolog_bits states; unsigned num_input_sgprs:6; /* For merged stages such as LS-HS, HS input VGPRs are first. */ unsigned num_merged_next_stage_vgprs:3; unsigned last_input:4; unsigned as_ls:1; /* Prologs for monolithic shaders shouldn't set EXEC. */ unsigned is_monolithic:1; } vs_prolog; struct { struct si_tcs_epilog_bits states; } tcs_epilog; struct { struct si_gs_prolog_bits states; /* Prologs of monolithic shaders shouldn't set EXEC. */ unsigned is_monolithic:1; } gs_prolog; struct { struct si_ps_prolog_bits states; unsigned num_input_sgprs:6; unsigned num_input_vgprs:5; /* Color interpolation and two-side color selection. */ unsigned colors_read:8; /* color input components read */ unsigned num_interp_inputs:5; /* BCOLOR is at this location */ unsigned face_vgpr_index:5; unsigned ancillary_vgpr_index:5; unsigned wqm:1; char color_attr_index[2]; char color_interp_vgpr_index[2]; /* -1 == constant */ } ps_prolog; struct { struct si_ps_epilog_bits states; unsigned colors_written:8; unsigned writes_z:1; unsigned writes_stencil:1; unsigned writes_samplemask:1; } ps_epilog; }; struct si_shader_key { /* Prolog and epilog flags. */ union { struct { struct si_vs_prolog_bits prolog; } vs; struct { struct si_vs_prolog_bits ls_prolog; /* for merged LS-HS */ struct si_shader_selector *ls; /* for merged LS-HS */ struct si_tcs_epilog_bits epilog; } tcs; /* tessellation control shader */ struct { struct si_vs_prolog_bits vs_prolog; /* for merged ES-GS */ struct si_shader_selector *es; /* for merged ES-GS */ struct si_gs_prolog_bits prolog; } gs; struct { struct si_ps_prolog_bits prolog; struct si_ps_epilog_bits epilog; } ps; } part; /* These two are initially set according to the NEXT_SHADER property, * or guessed if the property doesn't seem correct. */ unsigned as_es:1; /* export shader, which precedes GS */ unsigned as_ls:1; /* local shader, which precedes TCS */ /* Flags for monolithic compilation only. */ struct { /* One byte for every input: SI_FIX_FETCH_* enums. */ uint8_t vs_fix_fetch[SI_MAX_ATTRIBS]; union { uint64_t ff_tcs_inputs_to_copy; /* for fixed-func TCS */ /* When PS needs PrimID and GS is disabled. */ unsigned vs_export_prim_id:1; struct { unsigned interpolate_at_sample_force_center:1; } ps; } u; } mono; /* Optimization flags for asynchronous compilation only. */ struct { /* For HW VS (it can be VS, TES, GS) */ uint64_t kill_outputs; /* "get_unique_index" bits */ unsigned clip_disable:1; /* For shaders where monolithic variants have better code. * * This is a flag that has no effect on code generation, * but forces monolithic shaders to be used as soon as * possible, because it's in the "opt" group. */ unsigned prefer_mono:1; } opt; }; /* Restore the pack alignment to default. */ #pragma pack(pop) struct si_shader_config { unsigned num_sgprs; unsigned num_vgprs; unsigned spilled_sgprs; unsigned spilled_vgprs; unsigned private_mem_vgprs; unsigned lds_size; unsigned spi_ps_input_ena; unsigned spi_ps_input_addr; unsigned float_mode; unsigned scratch_bytes_per_wave; unsigned rsrc1; unsigned rsrc2; }; /* GCN-specific shader info. */ struct si_shader_info { ubyte vs_output_param_offset[SI_MAX_VS_OUTPUTS]; ubyte num_input_sgprs; ubyte num_input_vgprs; signed char face_vgpr_index; signed char ancillary_vgpr_index; bool uses_instanceid; ubyte nr_pos_exports; ubyte nr_param_exports; }; struct si_shader { struct si_compiler_ctx_state compiler_ctx_state; struct si_shader_selector *selector; struct si_shader_selector *previous_stage_sel; /* for refcounting */ struct si_shader *next_variant; struct si_shader_part *prolog; struct si_shader *previous_stage; /* for GFX9 */ struct si_shader_part *prolog2; struct si_shader_part *epilog; struct si_pm4_state *pm4; struct r600_resource *bo; struct r600_resource *scratch_bo; struct si_shader_key key; struct util_queue_fence optimized_ready; bool compilation_failed; bool is_monolithic; bool is_optimized; bool is_binary_shared; bool is_gs_copy_shader; /* The following data is all that's needed for binary shaders. */ struct ac_shader_binary binary; struct si_shader_config config; struct si_shader_info info; /* Shader key + LLVM IR + disassembly + statistics. * Generated for debug contexts only. */ char *shader_log; size_t shader_log_size; }; struct si_shader_part { struct si_shader_part *next; union si_shader_part_key key; struct ac_shader_binary binary; struct si_shader_config config; }; /* si_shader.c */ struct si_shader * si_generate_gs_copy_shader(struct si_screen *sscreen, LLVMTargetMachineRef tm, struct si_shader_selector *gs_selector, struct pipe_debug_callback *debug); int si_compile_tgsi_shader(struct si_screen *sscreen, LLVMTargetMachineRef tm, struct si_shader *shader, bool is_monolithic, struct pipe_debug_callback *debug); int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm, struct si_shader *shader, struct pipe_debug_callback *debug); void si_shader_destroy(struct si_shader *shader); unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index); unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index); int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader); void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader, struct pipe_debug_callback *debug, unsigned processor, FILE *f, bool check_debug_option); void si_multiwave_lds_size_workaround(struct si_screen *sscreen, unsigned *lds_size); void si_shader_apply_scratch_relocs(struct si_shader *shader, uint64_t scratch_va); void si_shader_binary_read_config(struct ac_shader_binary *binary, struct si_shader_config *conf, unsigned symbol_offset); unsigned si_get_spi_shader_z_format(bool writes_z, bool writes_stencil, bool writes_samplemask); const char *si_get_shader_name(const struct si_shader *shader, unsigned processor); /* si_shader_nir.c */ void si_nir_scan_shader(const struct nir_shader *nir, struct tgsi_shader_info *info); void si_lower_nir(struct si_shader_selector *sel); /* Inline helpers. */ /* Return the pointer to the main shader part's pointer. */ static inline struct si_shader ** si_get_main_shader_part(struct si_shader_selector *sel, struct si_shader_key *key) { if (key->as_ls) return &sel->main_shader_part_ls; if (key->as_es) return &sel->main_shader_part_es; return &sel->main_shader_part; } static inline bool si_shader_uses_bindless_samplers(struct si_shader_selector *selector) { return selector ? selector->info.uses_bindless_samplers : false; } static inline bool si_shader_uses_bindless_images(struct si_shader_selector *selector) { return selector ? selector->info.uses_bindless_images : false; } void si_destroy_shader_selector(struct si_context *sctx, struct si_shader_selector *sel); static inline void si_shader_selector_reference(struct si_context *sctx, struct si_shader_selector **dst, struct si_shader_selector *src) { if (pipe_reference(&(*dst)->reference, &src->reference)) si_destroy_shader_selector(sctx, *dst); *dst = src; } #endif