/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Tom Stellard * Michel Dänzer * Christian König */ /* How linking shader inputs and outputs between vertex, tessellation, and * geometry shaders works. * * Inputs and outputs between shaders are stored in a buffer. This buffer * lives in LDS (typical case for tessellation), but it can also live * in memory (ESGS). Each input or output has a fixed location within a vertex. * The highest used input or output determines the stride between vertices. * * Since GS and tessellation are only possible in the OpenGL core profile, * only these semantics are valid for per-vertex data: * * Name Location * * POSITION 0 * PSIZE 1 * CLIPDIST0..1 2..3 * CULLDIST0..1 (not implemented) * GENERIC0..31 4..35 * * For example, a shader only writing GENERIC0 has the output stride of 5. * * Only these semantics are valid for per-patch data: * * Name Location * * TESSOUTER 0 * TESSINNER 1 * PATCH0..29 2..31 * * That's how independent shaders agree on input and output locations. * The si_shader_io_get_unique_index function assigns the locations. * * For tessellation, other required information for calculating the input and * output addresses like the vertex stride, the patch stride, and the offsets * where per-vertex and per-patch data start, is passed to the shader via * user data SGPRs. The offsets and strides are calculated at draw time and * aren't available at compile time. */ #ifndef SI_SHADER_H #define SI_SHADER_H #include /* LLVMModuleRef */ #include "tgsi/tgsi_scan.h" #include "si_state.h" struct radeon_shader_binary; struct radeon_shader_reloc; #define SI_SGPR_RW_BUFFERS 0 /* rings (& stream-out, VS only) */ #define SI_SGPR_CONST 2 #define SI_SGPR_SAMPLER 4 #define SI_SGPR_RESOURCE 6 #define SI_SGPR_VERTEX_BUFFER 8 /* VS only */ #define SI_SGPR_BASE_VERTEX 10 /* VS only */ #define SI_SGPR_START_INSTANCE 11 /* VS only */ #define SI_SGPR_VS_STATE_BITS 12 /* VS(VS) only */ #define SI_SGPR_LS_OUT_LAYOUT 12 /* VS(LS) only */ #define SI_SGPR_TCS_OUT_OFFSETS 8 /* TCS & TES only */ #define SI_SGPR_TCS_OUT_LAYOUT 9 /* TCS & TES only */ #define SI_SGPR_TCS_IN_LAYOUT 10 /* TCS only */ #define SI_SGPR_ALPHA_REF 8 /* PS only */ #define SI_SGPR_PS_STATE_BITS 9 /* PS only */ #define SI_VS_NUM_USER_SGPR 13 /* API VS */ #define SI_ES_NUM_USER_SGPR 12 /* API VS */ #define SI_LS_NUM_USER_SGPR 13 /* API VS */ #define SI_TCS_NUM_USER_SGPR 11 #define SI_TES_NUM_USER_SGPR 10 #define SI_GS_NUM_USER_SGPR 8 #define SI_GSCOPY_NUM_USER_SGPR 4 #define SI_PS_NUM_USER_SGPR 10 /* LLVM function parameter indices */ #define SI_PARAM_RW_BUFFERS 0 #define SI_PARAM_CONST 1 #define SI_PARAM_SAMPLER 2 #define SI_PARAM_RESOURCE 3 /* VS only parameters */ #define SI_PARAM_VERTEX_BUFFER 4 #define SI_PARAM_BASE_VERTEX 5 #define SI_PARAM_START_INSTANCE 6 /* [0] = clamp vertex color */ #define SI_PARAM_VS_STATE_BITS 7 /* the other VS parameters are assigned dynamically */ /* Offsets where TCS outputs and TCS patch outputs live in LDS: * [0:15] = TCS output patch0 offset / 16, max = NUM_PATCHES * 32 * 32 * [16:31] = TCS output patch0 offset for per-patch / 16, max = NUM_PATCHES*32*32* + 32*32 */ #define SI_PARAM_TCS_OUT_OFFSETS 4 /* for TCS & TES */ /* Layout of TCS outputs / TES inputs: * [0:12] = stride between output patches in dwords, num_outputs * num_vertices * 4, max = 32*32*4 * [13:20] = stride between output vertices in dwords = num_inputs * 4, max = 32*4 * [26:31] = gl_PatchVerticesIn, max = 32 */ #define SI_PARAM_TCS_OUT_LAYOUT 5 /* for TCS & TES */ /* Layout of LS outputs / TCS inputs * [0:12] = stride between patches in dwords = num_inputs * num_vertices * 4, max = 32*32*4 * [13:20] = stride between vertices in dwords = num_inputs * 4, max = 32*4 */ #define SI_PARAM_TCS_IN_LAYOUT 6 /* TCS only */ #define SI_PARAM_LS_OUT_LAYOUT 7 /* same value as TCS_IN_LAYOUT, LS only */ /* TCS only parameters. */ #define SI_PARAM_TESS_FACTOR_OFFSET 7 #define SI_PARAM_PATCH_ID 8 #define SI_PARAM_REL_IDS 9 /* GS only parameters */ #define SI_PARAM_GS2VS_OFFSET 4 #define SI_PARAM_GS_WAVE_ID 5 #define SI_PARAM_VTX0_OFFSET 6 #define SI_PARAM_VTX1_OFFSET 7 #define SI_PARAM_PRIMITIVE_ID 8 #define SI_PARAM_VTX2_OFFSET 9 #define SI_PARAM_VTX3_OFFSET 10 #define SI_PARAM_VTX4_OFFSET 11 #define SI_PARAM_VTX5_OFFSET 12 #define SI_PARAM_GS_INSTANCE_ID 13 /* PS only parameters */ #define SI_PARAM_ALPHA_REF 4 /* Bits: * 0: force_persample_interp */ #define SI_PARAM_PS_STATE_BITS 5 #define SI_PARAM_PRIM_MASK 6 #define SI_PARAM_PERSP_SAMPLE 7 #define SI_PARAM_PERSP_CENTER 8 #define SI_PARAM_PERSP_CENTROID 9 #define SI_PARAM_PERSP_PULL_MODEL 10 #define SI_PARAM_LINEAR_SAMPLE 11 #define SI_PARAM_LINEAR_CENTER 12 #define SI_PARAM_LINEAR_CENTROID 13 #define SI_PARAM_LINE_STIPPLE_TEX 14 #define SI_PARAM_POS_X_FLOAT 15 #define SI_PARAM_POS_Y_FLOAT 16 #define SI_PARAM_POS_Z_FLOAT 17 #define SI_PARAM_POS_W_FLOAT 18 #define SI_PARAM_FRONT_FACE 19 #define SI_PARAM_ANCILLARY 20 #define SI_PARAM_SAMPLE_COVERAGE 21 #define SI_PARAM_POS_FIXED_PT 22 #define SI_NUM_PARAMS (SI_PARAM_POS_FIXED_PT + 1) struct si_shader; /* A shader selector is a gallium CSO and contains shader variants and * binaries for one TGSI program. This can be shared by multiple contexts. */ struct si_shader_selector { pipe_mutex mutex; struct si_shader *first_variant; /* immutable after the first variant */ struct si_shader *last_variant; /* mutable */ struct tgsi_token *tokens; struct pipe_stream_output_info so; struct tgsi_shader_info info; /* PIPE_SHADER_[VERTEX|FRAGMENT|...] */ unsigned type; /* Whether the shader has to use a conditional assignment to * choose between weights when emulating * pipe_rasterizer_state::force_persample_interp. * If false, "si_emit_spi_ps_input" will take care of it instead. */ bool forces_persample_interp_for_persp; bool forces_persample_interp_for_linear; unsigned esgs_itemsize; unsigned gs_input_verts_per_prim; unsigned gs_output_prim; unsigned gs_max_out_vertices; unsigned gs_num_invocations; unsigned max_gs_stream; /* count - 1 */ unsigned gsvs_vertex_size; unsigned max_gsvs_emit_size; /* masks of "get_unique_index" bits */ uint64_t inputs_read; uint64_t outputs_written; uint32_t patch_outputs_written; uint32_t ps_colors_written; }; /* Valid shader configurations: * * API shaders VS | TCS | TES | GS |pass| PS * are compiled as: | | | |thru| * | | | | | * Only VS & PS: VS | -- | -- | -- | -- | PS * With GS: ES | -- | -- | GS | VS | PS * With Tessel.: LS | HS | VS | -- | -- | PS * With both: LS | HS | ES | GS | VS | PS */ union si_shader_key { struct { unsigned export_16bpc:8; unsigned last_cbuf:3; unsigned color_two_side:1; unsigned alpha_func:3; unsigned alpha_to_one:1; unsigned poly_stipple:1; unsigned poly_line_smoothing:1; unsigned clamp_color:1; } ps; struct { unsigned instance_divisors[SI_NUM_VERTEX_BUFFERS]; /* Mask of "get_unique_index" bits - which outputs are read * by the next stage (needed by ES). * This describes how outputs are laid out in memory. */ unsigned as_es:1; /* export shader */ unsigned as_ls:1; /* local shader */ unsigned export_prim_id:1; /* when PS needs it and GS is disabled */ } vs; struct { unsigned prim_mode:3; } tcs; /* tessellation control shader */ struct { /* Mask of "get_unique_index" bits - which outputs are read * by the next stage (needed by ES). * This describes how outputs are laid out in memory. */ unsigned as_es:1; /* export shader */ unsigned export_prim_id:1; /* when PS needs it and GS is disabled */ } tes; /* tessellation evaluation shader */ }; struct si_shader { struct si_shader_selector *selector; struct si_shader *next_variant; struct si_shader *gs_copy_shader; struct si_pm4_state *pm4; struct r600_resource *bo; struct r600_resource *scratch_bo; struct radeon_shader_binary binary; unsigned num_sgprs; unsigned num_vgprs; unsigned lds_size; unsigned spi_ps_input_ena; unsigned float_mode; unsigned scratch_bytes_per_wave; unsigned spi_shader_col_format; unsigned spi_shader_z_format; unsigned db_shader_control; unsigned cb_shader_mask; union si_shader_key key; unsigned nparam; unsigned vs_output_param_offset[PIPE_MAX_SHADER_OUTPUTS]; unsigned ps_input_param_offset[PIPE_MAX_SHADER_INPUTS]; unsigned ps_input_interpolate[PIPE_MAX_SHADER_INPUTS]; bool uses_instanceid; unsigned nr_pos_exports; unsigned nr_param_exports; bool is_gs_copy_shader; bool dx10_clamp_mode; /* convert NaNs to 0 */ unsigned ls_rsrc1; unsigned ls_rsrc2; }; static inline struct tgsi_shader_info *si_get_vs_info(struct si_context *sctx) { if (sctx->gs_shader.cso) return &sctx->gs_shader.cso->info; else if (sctx->tes_shader.cso) return &sctx->tes_shader.cso->info; else if (sctx->vs_shader.cso) return &sctx->vs_shader.cso->info; else return NULL; } static inline struct si_shader* si_get_vs_state(struct si_context *sctx) { if (sctx->gs_shader.current) return sctx->gs_shader.current->gs_copy_shader; else if (sctx->tes_shader.current) return sctx->tes_shader.current; else return sctx->vs_shader.current; } static inline bool si_vs_exports_prim_id(struct si_shader *shader) { if (shader->selector->type == PIPE_SHADER_VERTEX) return shader->key.vs.export_prim_id; else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) return shader->key.tes.export_prim_id; else return false; } /* radeonsi_shader.c */ int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm, struct si_shader *shader); void si_dump_shader_key(unsigned shader, union si_shader_key *key, FILE *f); int si_compile_llvm(struct si_screen *sscreen, struct si_shader *shader, LLVMTargetMachineRef tm, LLVMModuleRef mod); void si_shader_destroy(struct si_shader *shader); unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index); int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader); int si_shader_binary_read(struct si_screen *sscreen, struct si_shader *shader); void si_shader_apply_scratch_relocs(struct si_context *sctx, struct si_shader *shader, uint64_t scratch_va); void si_shader_binary_read_config(const struct si_screen *sscreen, struct si_shader *shader, unsigned symbol_offset); #endif