/* * Copyright 2012 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "util/u_memory.h" #include "tgsi/tgsi_strings.h" #include "tgsi/tgsi_from_mesa.h" #include "ac_exp_param.h" #include "ac_shader_util.h" #include "ac_rtld.h" #include "ac_llvm_util.h" #include "si_shader_internal.h" #include "si_pipe.h" #include "sid.h" #include "compiler/nir/nir.h" #include "compiler/nir/nir_serialize.h" static const char scratch_rsrc_dword0_symbol[] = "SCRATCH_RSRC_DWORD0"; static const char scratch_rsrc_dword1_symbol[] = "SCRATCH_RSRC_DWORD1"; static void si_llvm_emit_barrier(struct si_shader_context *ctx); static void si_dump_shader_key(const struct si_shader *shader, FILE *f); static void si_build_vs_prolog_function(struct si_shader_context *ctx, union si_shader_part_key *key); static void si_build_tcs_epilog_function(struct si_shader_context *ctx, union si_shader_part_key *key); static void si_fix_resource_usage(struct si_screen *sscreen, struct si_shader *shader); static bool llvm_type_is_64bit(struct si_shader_context *ctx, LLVMTypeRef type) { if (type == ctx->ac.i64 || type == ctx->ac.f64) return true; return false; } /** Whether the shader runs as a combination of multiple API shaders */ static bool is_multi_part_shader(struct si_shader_context *ctx) { if (ctx->screen->info.chip_class <= GFX8) return false; return ctx->shader->key.as_ls || ctx->shader->key.as_es || ctx->type == PIPE_SHADER_TESS_CTRL || ctx->type == PIPE_SHADER_GEOMETRY; } /** Whether the shader runs on a merged HW stage (LSHS or ESGS) */ bool si_is_merged_shader(struct si_shader_context *ctx) { return ctx->shader->key.as_ngg || is_multi_part_shader(ctx); } /** * Returns a unique index for a per-patch semantic name and index. The index * must be less than 32, so that a 32-bit bitmask of used inputs or outputs * can be calculated. */ unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index) { switch (semantic_name) { case TGSI_SEMANTIC_TESSOUTER: return 0; case TGSI_SEMANTIC_TESSINNER: return 1; case TGSI_SEMANTIC_PATCH: assert(index < 30); return 2 + index; default: assert(!"invalid semantic name"); return 0; } } /** * Returns a unique index for a semantic name and index. The index must be * less than 64, so that a 64-bit bitmask of used inputs or outputs can be * calculated. */ unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index, unsigned is_varying) { switch (semantic_name) { case TGSI_SEMANTIC_POSITION: return 0; case TGSI_SEMANTIC_GENERIC: /* Since some shader stages use the the highest used IO index * to determine the size to allocate for inputs/outputs * (in LDS, tess and GS rings). GENERIC should be placed right * after POSITION to make that size as small as possible. */ if (index < SI_MAX_IO_GENERIC) return 1 + index; assert(!"invalid generic index"); return 0; case TGSI_SEMANTIC_FOG: return SI_MAX_IO_GENERIC + 1; case TGSI_SEMANTIC_COLOR: assert(index < 2); return SI_MAX_IO_GENERIC + 2 + index; case TGSI_SEMANTIC_BCOLOR: assert(index < 2); /* If it's a varying, COLOR and BCOLOR alias. */ if (is_varying) return SI_MAX_IO_GENERIC + 2 + index; else return SI_MAX_IO_GENERIC + 4 + index; case TGSI_SEMANTIC_TEXCOORD: assert(index < 8); return SI_MAX_IO_GENERIC + 6 + index; /* These are rarely used between LS and HS or ES and GS. */ case TGSI_SEMANTIC_CLIPDIST: assert(index < 2); return SI_MAX_IO_GENERIC + 6 + 8 + index; case TGSI_SEMANTIC_CLIPVERTEX: return SI_MAX_IO_GENERIC + 6 + 8 + 2; case TGSI_SEMANTIC_PSIZE: return SI_MAX_IO_GENERIC + 6 + 8 + 3; /* These can't be written by LS, HS, and ES. */ case TGSI_SEMANTIC_LAYER: return SI_MAX_IO_GENERIC + 6 + 8 + 4; case TGSI_SEMANTIC_VIEWPORT_INDEX: return SI_MAX_IO_GENERIC + 6 + 8 + 5; case TGSI_SEMANTIC_PRIMID: STATIC_ASSERT(SI_MAX_IO_GENERIC + 6 + 8 + 6 <= 63); return SI_MAX_IO_GENERIC + 6 + 8 + 6; default: fprintf(stderr, "invalid semantic name = %u\n", semantic_name); assert(!"invalid semantic name"); return 0; } } /** * Get the value of a shader input parameter and extract a bitfield. */ static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx, LLVMValueRef value, unsigned rshift, unsigned bitwidth) { if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind) value = ac_to_integer(&ctx->ac, value); if (rshift) value = LLVMBuildLShr(ctx->ac.builder, value, LLVMConstInt(ctx->i32, rshift, 0), ""); if (rshift + bitwidth < 32) { unsigned mask = (1 << bitwidth) - 1; value = LLVMBuildAnd(ctx->ac.builder, value, LLVMConstInt(ctx->i32, mask, 0), ""); } return value; } LLVMValueRef si_unpack_param(struct si_shader_context *ctx, struct ac_arg param, unsigned rshift, unsigned bitwidth) { LLVMValueRef value = ac_get_arg(&ctx->ac, param); return unpack_llvm_param(ctx, value, rshift, bitwidth); } static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx) { switch (ctx->type) { case PIPE_SHADER_TESS_CTRL: return si_unpack_param(ctx, ctx->args.tcs_rel_ids, 0, 8); case PIPE_SHADER_TESS_EVAL: return ac_get_arg(&ctx->ac, ctx->tes_rel_patch_id); default: assert(0); return NULL; } } /* Tessellation shaders pass outputs to the next shader using LDS. * * LS outputs = TCS inputs * TCS outputs = TES inputs * * The LDS layout is: * - TCS inputs for patch 0 * - TCS inputs for patch 1 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2) * - ... * - TCS outputs for patch 0 = get_tcs_out_patch0_offset * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset * - TCS outputs for patch 1 * - Per-patch TCS outputs for patch 1 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2) * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2) * - ... * * All three shaders VS(LS), TCS, TES share the same LDS space. */ static LLVMValueRef get_tcs_in_patch_stride(struct si_shader_context *ctx) { return si_unpack_param(ctx, ctx->vs_state_bits, 8, 13); } static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx) { assert(ctx->type == PIPE_SHADER_TESS_CTRL); if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4; return util_last_bit64(ctx->shader->selector->outputs_written) * 4; } static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx) { unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx); return LLVMConstInt(ctx->i32, stride, 0); } static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx) { if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) return si_unpack_param(ctx, ctx->tcs_out_lds_layout, 0, 13); const struct si_shader_info *info = &ctx->shader->selector->info; unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT]; unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx); unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written); unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride + num_patch_outputs * 4; return LLVMConstInt(ctx->i32, patch_dw_stride, 0); } static LLVMValueRef get_tcs_out_patch0_offset(struct si_shader_context *ctx) { return LLVMBuildMul(ctx->ac.builder, si_unpack_param(ctx, ctx->tcs_out_lds_offsets, 0, 16), LLVMConstInt(ctx->i32, 4, 0), ""); } static LLVMValueRef get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx) { return LLVMBuildMul(ctx->ac.builder, si_unpack_param(ctx, ctx->tcs_out_lds_offsets, 16, 16), LLVMConstInt(ctx->i32, 4, 0), ""); } static LLVMValueRef get_tcs_in_current_patch_offset(struct si_shader_context *ctx) { LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(ctx); return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, ""); } static LLVMValueRef get_tcs_out_current_patch_offset(struct si_shader_context *ctx) { LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx); LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(ctx); return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_offset); } static LLVMValueRef get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx) { LLVMValueRef patch0_patch_data_offset = get_tcs_out_patch0_patch_data_offset(ctx); LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(ctx); return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_patch_data_offset); } static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx) { unsigned tcs_out_vertices = ctx->shader->selector ? ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0; /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */ if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices) return LLVMConstInt(ctx->i32, tcs_out_vertices, 0); return si_unpack_param(ctx, ctx->tcs_offchip_layout, 6, 6); } static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx) { unsigned stride; switch (ctx->type) { case PIPE_SHADER_VERTEX: stride = ctx->shader->selector->lshs_vertex_stride / 4; return LLVMConstInt(ctx->i32, stride, 0); case PIPE_SHADER_TESS_CTRL: if (ctx->screen->info.chip_class >= GFX9 && ctx->shader->is_monolithic) { stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4; return LLVMConstInt(ctx->i32, stride, 0); } return si_unpack_param(ctx, ctx->vs_state_bits, 24, 8); default: assert(0); return NULL; } } static LLVMValueRef unpack_sint16(struct si_shader_context *ctx, LLVMValueRef i32, unsigned index) { assert(index <= 1); if (index == 1) return LLVMBuildAShr(ctx->ac.builder, i32, LLVMConstInt(ctx->i32, 16, 0), ""); return LLVMBuildSExt(ctx->ac.builder, LLVMBuildTrunc(ctx->ac.builder, i32, ctx->ac.i16, ""), ctx->i32, ""); } void si_llvm_load_input_vs( struct si_shader_context *ctx, unsigned input_index, LLVMValueRef out[4]) { const struct si_shader_info *info = &ctx->shader->selector->info; unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]; if (vs_blit_property) { LLVMValueRef vertex_id = ctx->abi.vertex_id; LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder, LLVMIntULE, vertex_id, ctx->i32_1, ""); /* Use LLVMIntNE, because we have 3 vertices and only * the middle one should use y2. */ LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, vertex_id, ctx->i32_1, ""); unsigned param_vs_blit_inputs = ctx->vs_blit_inputs.arg_index; if (input_index == 0) { /* Position: */ LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs); LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 1); LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0); LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1); LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0); LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1); LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1, x1, x2, ""); LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1, y1, y2, ""); out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, ""); out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, ""); out[2] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 2); out[3] = ctx->ac.f32_1; return; } /* Color or texture coordinates: */ assert(input_index == 1); if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) { for (int i = 0; i < 4; i++) { out[i] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 3 + i); } } else { assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD); LLVMValueRef x1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 3); LLVMValueRef y1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 4); LLVMValueRef x2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 5); LLVMValueRef y2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 6); out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1, x1, x2, ""); out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1, y1, y2, ""); out[2] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 7); out[3] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 8); } return; } unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs; union si_vs_fix_fetch fix_fetch; LLVMValueRef vb_desc; LLVMValueRef vertex_index; LLVMValueRef tmp; if (input_index < num_vbos_in_user_sgprs) { vb_desc = ac_get_arg(&ctx->ac, ctx->vb_descriptors[input_index]); } else { unsigned index= input_index - num_vbos_in_user_sgprs; vb_desc = ac_build_load_to_sgpr(&ctx->ac, ac_get_arg(&ctx->ac, ctx->vertex_buffers), LLVMConstInt(ctx->i32, index, 0)); } vertex_index = LLVMGetParam(ctx->main_fn, ctx->vertex_index0.arg_index + input_index); /* Use the open-coded implementation for all loads of doubles and * of dword-sized data that needs fixups. We need to insert conversion * code anyway, and the amd/common code does it for us. * * Note: On LLVM <= 8, we can only open-code formats with * channel size >= 4 bytes. */ bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index); fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits; if (opencode || (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) || (fix_fetch.u.log_size == 2)) { tmp = ac_build_opencoded_load_format( &ctx->ac, fix_fetch.u.log_size, fix_fetch.u.num_channels_m1 + 1, fix_fetch.u.format, fix_fetch.u.reverse, !opencode, vb_desc, vertex_index, ctx->ac.i32_0, ctx->ac.i32_0, 0, true); for (unsigned i = 0; i < 4; ++i) out[i] = LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->i32, i, false), ""); return; } /* Do multiple loads for special formats. */ unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]); LLVMValueRef fetches[4]; unsigned num_fetches; unsigned fetch_stride; unsigned channels_per_fetch; if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) { num_fetches = MIN2(required_channels, 3); fetch_stride = 1 << fix_fetch.u.log_size; channels_per_fetch = 1; } else { num_fetches = 1; fetch_stride = 0; channels_per_fetch = required_channels; } for (unsigned i = 0; i < num_fetches; ++i) { LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0); fetches[i] = ac_build_buffer_load_format(&ctx->ac, vb_desc, vertex_index, voffset, channels_per_fetch, 0, true); } if (num_fetches == 1 && channels_per_fetch > 1) { LLVMValueRef fetch = fetches[0]; for (unsigned i = 0; i < channels_per_fetch; ++i) { tmp = LLVMConstInt(ctx->i32, i, false); fetches[i] = LLVMBuildExtractElement( ctx->ac.builder, fetch, tmp, ""); } num_fetches = channels_per_fetch; channels_per_fetch = 1; } for (unsigned i = num_fetches; i < 4; ++i) fetches[i] = LLVMGetUndef(ctx->f32); if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 && required_channels == 4) { if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT) fetches[3] = ctx->ac.i32_1; else fetches[3] = ctx->ac.f32_1; } else if (fix_fetch.u.log_size == 3 && (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM || fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED || fix_fetch.u.format == AC_FETCH_FORMAT_SINT) && required_channels == 4) { /* For 2_10_10_10, the hardware returns an unsigned value; * convert it to a signed one. */ LLVMValueRef tmp = fetches[3]; LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0); /* First, recover the sign-extended signed integer value. */ if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, ""); else tmp = ac_to_integer(&ctx->ac, tmp); /* For the integer-like cases, do a natural sign extension. * * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 * and happen to contain 0, 1, 2, 3 as the two LSBs of the * exponent. */ tmp = LLVMBuildShl(ctx->ac.builder, tmp, fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ? LLVMConstInt(ctx->i32, 7, 0) : c30, ""); tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, ""); /* Convert back to the right type. */ if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) { LLVMValueRef clamp; LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0); tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, ""); clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, ""); tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, ""); } else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) { tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, ""); } fetches[3] = tmp; } for (unsigned i = 0; i < 4; ++i) out[i] = ac_to_float(&ctx->ac, fetches[i]); } LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx, unsigned swizzle) { if (swizzle > 0) return ctx->i32_0; switch (ctx->type) { case PIPE_SHADER_VERTEX: return ac_get_arg(&ctx->ac, ctx->vs_prim_id); case PIPE_SHADER_TESS_CTRL: return ac_get_arg(&ctx->ac, ctx->args.tcs_patch_id); case PIPE_SHADER_TESS_EVAL: return ac_get_arg(&ctx->ac, ctx->args.tes_patch_id); case PIPE_SHADER_GEOMETRY: return ac_get_arg(&ctx->ac, ctx->args.gs_prim_id); default: assert(0); return ctx->i32_0; } } static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx, LLVMValueRef vertex_dw_stride, LLVMValueRef base_addr, LLVMValueRef vertex_index, LLVMValueRef param_index, ubyte name, ubyte index) { if (vertex_dw_stride) { base_addr = ac_build_imad(&ctx->ac, vertex_index, vertex_dw_stride, base_addr); } if (param_index) { base_addr = ac_build_imad(&ctx->ac, param_index, LLVMConstInt(ctx->i32, 4, 0), base_addr); } int param = name == TGSI_SEMANTIC_PATCH || name == TGSI_SEMANTIC_TESSINNER || name == TGSI_SEMANTIC_TESSOUTER ? si_shader_io_get_unique_index_patch(name, index) : si_shader_io_get_unique_index(name, index, false); /* Add the base address of the element. */ return LLVMBuildAdd(ctx->ac.builder, base_addr, LLVMConstInt(ctx->i32, param * 4, 0), ""); } /* The offchip buffer layout for TCS->TES is * * - attribute 0 of patch 0 vertex 0 * - attribute 0 of patch 0 vertex 1 * - attribute 0 of patch 0 vertex 2 * ... * - attribute 0 of patch 1 vertex 0 * - attribute 0 of patch 1 vertex 1 * ... * - attribute 1 of patch 0 vertex 0 * - attribute 1 of patch 0 vertex 1 * ... * - per patch attribute 0 of patch 0 * - per patch attribute 0 of patch 1 * ... * * Note that every attribute has 4 components. */ static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx, LLVMValueRef rel_patch_id, LLVMValueRef vertex_index, LLVMValueRef param_index) { LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices; LLVMValueRef param_stride, constant16; vertices_per_patch = get_num_tcs_out_vertices(ctx); num_patches = si_unpack_param(ctx, ctx->tcs_offchip_layout, 0, 6); total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch, num_patches, ""); constant16 = LLVMConstInt(ctx->i32, 16, 0); if (vertex_index) { base_addr = ac_build_imad(&ctx->ac, rel_patch_id, vertices_per_patch, vertex_index); param_stride = total_vertices; } else { base_addr = rel_patch_id; param_stride = num_patches; } base_addr = ac_build_imad(&ctx->ac, param_index, param_stride, base_addr); base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, ""); if (!vertex_index) { LLVMValueRef patch_data_offset = si_unpack_param(ctx, ctx->tcs_offchip_layout, 12, 20); base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr, patch_data_offset, ""); } return base_addr; } static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices( struct si_shader_context *ctx, LLVMValueRef vertex_index, LLVMValueRef param_index, ubyte name, ubyte index) { unsigned param_index_base; param_index_base = name == TGSI_SEMANTIC_PATCH || name == TGSI_SEMANTIC_TESSINNER || name == TGSI_SEMANTIC_TESSOUTER ? si_shader_io_get_unique_index_patch(name, index) : si_shader_io_get_unique_index(name, index, false); if (param_index) { param_index = LLVMBuildAdd(ctx->ac.builder, param_index, LLVMConstInt(ctx->i32, param_index_base, 0), ""); } else { param_index = LLVMConstInt(ctx->i32, param_index_base, 0); } return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), vertex_index, param_index); } static LLVMValueRef si_build_gather_64bit(struct si_shader_context *ctx, LLVMTypeRef type, LLVMValueRef val1, LLVMValueRef val2) { LLVMValueRef values[2] = { ac_to_integer(&ctx->ac, val1), ac_to_integer(&ctx->ac, val2), }; LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, 2); return LLVMBuildBitCast(ctx->ac.builder, result, type, ""); } static LLVMValueRef buffer_load(struct si_shader_context *ctx, LLVMTypeRef type, unsigned swizzle, LLVMValueRef buffer, LLVMValueRef offset, LLVMValueRef base, bool can_speculate) { LLVMValueRef value, value2; LLVMTypeRef vec_type = LLVMVectorType(type, 4); if (swizzle == ~0) { value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset, 0, ac_glc, can_speculate, false); return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, ""); } if (!llvm_type_is_64bit(ctx, type)) { value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset, 0, ac_glc, can_speculate, false); value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, ""); return LLVMBuildExtractElement(ctx->ac.builder, value, LLVMConstInt(ctx->i32, swizzle, 0), ""); } value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset, swizzle * 4, ac_glc, can_speculate, false); value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset, swizzle * 4 + 4, ac_glc, can_speculate, false); return si_build_gather_64bit(ctx, type, value, value2); } /** * Load from LSHS LDS storage. * * \param type output value type * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4 * \param dw_addr address in dwords */ static LLVMValueRef lshs_lds_load(struct si_shader_context *ctx, LLVMTypeRef type, unsigned swizzle, LLVMValueRef dw_addr) { LLVMValueRef value; if (swizzle == ~0) { LLVMValueRef values[4]; for (unsigned chan = 0; chan < 4; chan++) values[chan] = lshs_lds_load(ctx, type, chan, dw_addr); return ac_build_gather_values(&ctx->ac, values, 4); } /* Split 64-bit loads. */ if (llvm_type_is_64bit(ctx, type)) { LLVMValueRef lo, hi; lo = lshs_lds_load(ctx, ctx->i32, swizzle, dw_addr); hi = lshs_lds_load(ctx, ctx->i32, swizzle + 1, dw_addr); return si_build_gather_64bit(ctx, type, lo, hi); } dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, LLVMConstInt(ctx->i32, swizzle, 0), ""); value = ac_lds_load(&ctx->ac, dw_addr); return LLVMBuildBitCast(ctx->ac.builder, value, type, ""); } /** * Store to LSHS LDS storage. * * \param swizzle offset (typically 0..3) * \param dw_addr address in dwords * \param value value to store */ static void lshs_lds_store(struct si_shader_context *ctx, unsigned dw_offset_imm, LLVMValueRef dw_addr, LLVMValueRef value) { dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, LLVMConstInt(ctx->i32, dw_offset_imm, 0), ""); ac_lds_store(&ctx->ac, dw_addr, value); } enum si_tess_ring { TCS_FACTOR_RING, TESS_OFFCHIP_RING_TCS, TESS_OFFCHIP_RING_TES, }; static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx, enum si_tess_ring ring) { LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef addr = ac_get_arg(&ctx->ac, ring == TESS_OFFCHIP_RING_TES ? ctx->tes_offchip_addr : ctx->tcs_out_lds_layout); /* TCS only receives high 13 bits of the address. */ if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) { addr = LLVMBuildAnd(builder, addr, LLVMConstInt(ctx->i32, 0xfff80000, 0), ""); } if (ring == TCS_FACTOR_RING) { unsigned tf_offset = ctx->screen->tess_offchip_ring_size; addr = LLVMBuildAdd(builder, addr, LLVMConstInt(ctx->i32, tf_offset, 0), ""); } uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (ctx->screen->info.chip_class >= GFX10) rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); else rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); LLVMValueRef desc[4]; desc[0] = addr; desc[1] = LLVMConstInt(ctx->i32, S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0); desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0); desc[3] = LLVMConstInt(ctx->i32, rsrc3, false); return ac_build_gather_values(&ctx->ac, desc, 4); } static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi, LLVMTypeRef type, LLVMValueRef vertex_index, LLVMValueRef param_index, unsigned const_index, unsigned location, unsigned driver_location, unsigned component, unsigned num_components, bool is_patch, bool is_compact, bool load_input) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader_info *info = &ctx->shader->selector->info; LLVMValueRef dw_addr, stride; ubyte name, index; driver_location = driver_location / 4; if (load_input) { name = info->input_semantic_name[driver_location]; index = info->input_semantic_index[driver_location]; } else { name = info->output_semantic_name[driver_location]; index = info->output_semantic_index[driver_location]; } assert((name == TGSI_SEMANTIC_PATCH || name == TGSI_SEMANTIC_TESSINNER || name == TGSI_SEMANTIC_TESSOUTER) == is_patch); if (load_input) { stride = get_tcs_in_vertex_dw_stride(ctx); dw_addr = get_tcs_in_current_patch_offset(ctx); } else { if (is_patch) { stride = NULL; dw_addr = get_tcs_out_current_patch_data_offset(ctx); } else { stride = get_tcs_out_vertex_dw_stride(ctx); dw_addr = get_tcs_out_current_patch_offset(ctx); } } if (!param_index) { param_index = LLVMConstInt(ctx->i32, const_index, 0); } dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr, vertex_index, param_index, name, index); LLVMValueRef value[4]; for (unsigned i = 0; i < num_components; i++) { unsigned offset = i; if (llvm_type_is_64bit(ctx, type)) offset *= 2; offset += component; value[i + component] = lshs_lds_load(ctx, type, offset, dw_addr); } return ac_build_varying_gather_values(&ctx->ac, value, num_components, component); } LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi, LLVMTypeRef type, LLVMValueRef vertex_index, LLVMValueRef param_index, unsigned const_index, unsigned location, unsigned driver_location, unsigned component, unsigned num_components, bool is_patch, bool is_compact, bool load_input) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader_info *info = &ctx->shader->selector->info; LLVMValueRef base, addr; driver_location = driver_location / 4; ubyte name = info->input_semantic_name[driver_location]; ubyte index = info->input_semantic_index[driver_location]; assert((name == TGSI_SEMANTIC_PATCH || name == TGSI_SEMANTIC_TESSINNER || name == TGSI_SEMANTIC_TESSOUTER) == is_patch); base = ac_get_arg(&ctx->ac, ctx->tcs_offchip_offset); if (!param_index) { param_index = LLVMConstInt(ctx->i32, const_index, 0); } addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index, param_index, name, index); /* TODO: This will generate rather ordinary llvm code, although it * should be easy for the optimiser to fix up. In future we might want * to refactor buffer_load(). */ LLVMValueRef value[4]; for (unsigned i = 0; i < num_components; i++) { unsigned offset = i; if (llvm_type_is_64bit(ctx, type)) { offset *= 2; if (offset == 4) { ubyte name = info->input_semantic_name[driver_location + 1]; ubyte index = info->input_semantic_index[driver_location + 1]; addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index, param_index, name, index); } offset = offset % 4; } offset += component; value[i + component] = buffer_load(ctx, type, offset, ctx->tess_offchip_ring, base, addr, true); } return ac_build_varying_gather_values(&ctx->ac, value, num_components, component); } static void si_nir_store_output_tcs(struct ac_shader_abi *abi, const struct nir_variable *var, LLVMValueRef vertex_index, LLVMValueRef param_index, unsigned const_index, LLVMValueRef src, unsigned writemask) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader_info *info = &ctx->shader->selector->info; const unsigned component = var->data.location_frac; unsigned driver_location = var->data.driver_location; LLVMValueRef dw_addr, stride; LLVMValueRef buffer, base, addr; LLVMValueRef values[8]; bool skip_lds_store; bool is_tess_factor = false, is_tess_inner = false; driver_location = driver_location / 4; ubyte name = info->output_semantic_name[driver_location]; ubyte index = info->output_semantic_index[driver_location]; bool is_const = !param_index; if (!param_index) param_index = LLVMConstInt(ctx->i32, const_index, 0); const bool is_patch = var->data.patch || var->data.location == VARYING_SLOT_TESS_LEVEL_INNER || var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER; assert((name == TGSI_SEMANTIC_PATCH || name == TGSI_SEMANTIC_TESSINNER || name == TGSI_SEMANTIC_TESSOUTER) == is_patch); if (!is_patch) { stride = get_tcs_out_vertex_dw_stride(ctx); dw_addr = get_tcs_out_current_patch_offset(ctx); dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr, vertex_index, param_index, name, index); skip_lds_store = !info->reads_pervertex_outputs; } else { dw_addr = get_tcs_out_current_patch_data_offset(ctx); dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr, vertex_index, param_index, name, index); skip_lds_store = !info->reads_perpatch_outputs; if (is_const && const_index == 0) { int name = info->output_semantic_name[driver_location]; /* Always write tess factors into LDS for the TCS epilog. */ if (name == TGSI_SEMANTIC_TESSINNER || name == TGSI_SEMANTIC_TESSOUTER) { /* The epilog doesn't read LDS if invocation 0 defines tess factors. */ skip_lds_store = !info->reads_tessfactor_outputs && ctx->shader->selector->info.tessfactors_are_def_in_all_invocs; is_tess_factor = true; is_tess_inner = name == TGSI_SEMANTIC_TESSINNER; } } } buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS); base = ac_get_arg(&ctx->ac, ctx->tcs_offchip_offset); addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index, param_index, name, index); for (unsigned chan = component; chan < 8; chan++) { if (!(writemask & (1 << chan))) continue; LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component); unsigned buffer_store_offset = chan % 4; if (chan == 4) { ubyte name = info->output_semantic_name[driver_location + 1]; ubyte index = info->output_semantic_index[driver_location + 1]; addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index, param_index, name, index); } /* Skip LDS stores if there is no LDS read of this output. */ if (!skip_lds_store) lshs_lds_store(ctx, chan, dw_addr, value); value = ac_to_integer(&ctx->ac, value); values[chan] = value; if (writemask != 0xF && !is_tess_factor) { ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1, addr, base, 4 * buffer_store_offset, ac_glc); } /* Write tess factors into VGPRs for the epilog. */ if (is_tess_factor && ctx->shader->selector->info.tessfactors_are_def_in_all_invocs) { if (!is_tess_inner) { LLVMBuildStore(ctx->ac.builder, value, /* outer */ ctx->invoc0_tess_factors[chan]); } else if (chan < 2) { LLVMBuildStore(ctx->ac.builder, value, /* inner */ ctx->invoc0_tess_factors[4 + chan]); } } } if (writemask == 0xF && !is_tess_factor) { LLVMValueRef value = ac_build_gather_values(&ctx->ac, values, 4); ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr, base, 0, ac_glc); } } static LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi, unsigned input_index, unsigned vtx_offset_param, LLVMTypeRef type, unsigned swizzle) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader *shader = ctx->shader; LLVMValueRef vtx_offset, soffset; struct si_shader_info *info = &shader->selector->info; unsigned semantic_name = info->input_semantic_name[input_index]; unsigned semantic_index = info->input_semantic_index[input_index]; unsigned param; LLVMValueRef value; param = si_shader_io_get_unique_index(semantic_name, semantic_index, false); /* GFX9 has the ESGS ring in LDS. */ if (ctx->screen->info.chip_class >= GFX9) { unsigned index = vtx_offset_param; switch (index / 2) { case 0: vtx_offset = si_unpack_param(ctx, ctx->gs_vtx01_offset, index % 2 ? 16 : 0, 16); break; case 1: vtx_offset = si_unpack_param(ctx, ctx->gs_vtx23_offset, index % 2 ? 16 : 0, 16); break; case 2: vtx_offset = si_unpack_param(ctx, ctx->gs_vtx45_offset, index % 2 ? 16 : 0, 16); break; default: assert(0); return NULL; } unsigned offset = param * 4 + swizzle; vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset, LLVMConstInt(ctx->i32, offset, false), ""); LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->esgs_ring, vtx_offset); LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, ptr, ""); if (llvm_type_is_64bit(ctx, type)) { ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &ctx->ac.i32_1, 1, ""); LLVMValueRef values[2] = { value, LLVMBuildLoad(ctx->ac.builder, ptr, "") }; value = ac_build_gather_values(&ctx->ac, values, 2); } return LLVMBuildBitCast(ctx->ac.builder, value, type, ""); } /* GFX6: input load from the ESGS ring in memory. */ if (swizzle == ~0) { LLVMValueRef values[4]; unsigned chan; for (chan = 0; chan < 4; chan++) { values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param, type, chan); } return ac_build_gather_values(&ctx->ac, values, 4); } /* Get the vertex offset parameter on GFX6. */ LLVMValueRef gs_vtx_offset = ac_get_arg(&ctx->ac, ctx->gs_vtx_offset[vtx_offset_param]); vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset, LLVMConstInt(ctx->i32, 4, 0), ""); soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0); value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0, vtx_offset, soffset, 0, ac_glc, true, false); if (llvm_type_is_64bit(ctx, type)) { LLVMValueRef value2; soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0); value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0, vtx_offset, soffset, 0, ac_glc, true, false); return si_build_gather_64bit(ctx, type, value, value2); } return LLVMBuildBitCast(ctx->ac.builder, value, type, ""); } static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi, unsigned location, unsigned driver_location, unsigned component, unsigned num_components, unsigned vertex_index, unsigned const_index, LLVMTypeRef type) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); LLVMValueRef value[4]; for (unsigned i = 0; i < num_components; i++) { unsigned offset = i; if (llvm_type_is_64bit(ctx, type)) offset *= 2; offset += component; value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4 + const_index, vertex_index, type, offset); } return ac_build_varying_gather_values(&ctx->ac, value, num_components, component); } static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); /* For non-indexed draws, the base vertex set by the driver * (for direct draws) or the CP (for indirect draws) is the * first vertex ID, but GLSL expects 0 to be returned. */ LLVMValueRef vs_state = ac_get_arg(&ctx->ac, ctx->vs_state_bits); LLVMValueRef indexed; indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, ""); indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, ""); return LLVMBuildSelect(ctx->ac.builder, indexed, ac_get_arg(&ctx->ac, ctx->args.base_vertex), ctx->i32_0, ""); } static LLVMValueRef get_block_size(struct ac_shader_abi *abi) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); LLVMValueRef values[3]; LLVMValueRef result; unsigned i; unsigned *properties = ctx->shader->selector->info.properties; if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) { unsigned sizes[3] = { properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH], properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT], properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH] }; for (i = 0; i < 3; ++i) values[i] = LLVMConstInt(ctx->i32, sizes[i], 0); result = ac_build_gather_values(&ctx->ac, values, 3); } else { result = ac_get_arg(&ctx->ac, ctx->block_size); } return result; } static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); LLVMValueRef coord[4] = { ac_get_arg(&ctx->ac, ctx->tes_u), ac_get_arg(&ctx->ac, ctx->tes_v), ctx->ac.f32_0, ctx->ac.f32_0 }; /* For triangles, the vector should be (u, v, 1-u-v). */ if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_TRIANGLES) { coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1, LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), ""); } return ac_build_gather_values(&ctx->ac, coord, 4); } static LLVMValueRef load_tess_level(struct si_shader_context *ctx, unsigned semantic_name) { LLVMValueRef base, addr; int param = si_shader_io_get_unique_index_patch(semantic_name, 0); base = ac_get_arg(&ctx->ac, ctx->tcs_offchip_offset); addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL, LLVMConstInt(ctx->i32, param, 0)); return buffer_load(ctx, ctx->f32, ~0, ctx->tess_offchip_ring, base, addr, true); } static LLVMValueRef load_tess_level_default(struct si_shader_context *ctx, unsigned semantic_name) { LLVMValueRef buf, slot, val[4]; int i, offset; slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0); buf = ac_get_arg(&ctx->ac, ctx->rw_buffers); buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot); offset = semantic_name == TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL ? 4 : 0; for (i = 0; i < 4; i++) val[i] = si_buffer_load_const(ctx, buf, LLVMConstInt(ctx->i32, (offset + i) * 4, 0)); return ac_build_gather_values(&ctx->ac, val, 4); } static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi, unsigned varying_id, bool load_default_state) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); unsigned semantic_name; if (load_default_state) { switch (varying_id) { case VARYING_SLOT_TESS_LEVEL_INNER: semantic_name = TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL; break; case VARYING_SLOT_TESS_LEVEL_OUTER: semantic_name = TGSI_SEMANTIC_TESS_DEFAULT_OUTER_LEVEL; break; default: unreachable("unknown tess level"); } return load_tess_level_default(ctx, semantic_name); } switch (varying_id) { case VARYING_SLOT_TESS_LEVEL_INNER: semantic_name = TGSI_SEMANTIC_TESSINNER; break; case VARYING_SLOT_TESS_LEVEL_OUTER: semantic_name = TGSI_SEMANTIC_TESSOUTER; break; default: unreachable("unknown tess level"); } return load_tess_level(ctx, semantic_name); } static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); if (ctx->type == PIPE_SHADER_TESS_CTRL) return si_unpack_param(ctx, ctx->tcs_out_lds_layout, 13, 6); else if (ctx->type == PIPE_SHADER_TESS_EVAL) return get_num_tcs_out_vertices(ctx); else unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN"); } void si_declare_compute_memory(struct si_shader_context *ctx) { struct si_shader_selector *sel = ctx->shader->selector; unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE]; LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_ADDR_SPACE_LDS); LLVMValueRef var; assert(!ctx->ac.lds); var = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->i8, lds_size), "compute_lds", AC_ADDR_SPACE_LDS); LLVMSetAlignment(var, 64 * 1024); ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, ""); } static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx) { LLVMValueRef ptr = ac_get_arg(&ctx->ac, ctx->const_and_shader_buffers); struct si_shader_selector *sel = ctx->shader->selector; /* Do the bounds checking with a descriptor, because * doing computation and manual bounds checking of 64-bit * addresses generates horrible VALU code with very high * VGPR usage and very low SIMD occupancy. */ ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, ""); LLVMValueRef desc0, desc1; desc0 = ptr; desc1 = LLVMConstInt(ctx->i32, S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0); uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (ctx->screen->info.chip_class >= GFX10) rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); else rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); LLVMValueRef desc_elems[] = { desc0, desc1, LLVMConstInt(ctx->i32, sel->info.constbuf0_num_slots * 16, 0), LLVMConstInt(ctx->i32, rsrc3, false) }; return ac_build_gather_values(&ctx->ac, desc_elems, 4); } static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader_selector *sel = ctx->shader->selector; LLVMValueRef ptr = ac_get_arg(&ctx->ac, ctx->const_and_shader_buffers); if (sel->info.const_buffers_declared == 1 && sel->info.shader_buffers_declared == 0) { return load_const_buffer_desc_fast_path(ctx); } index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers); index = LLVMBuildAdd(ctx->ac.builder, index, LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), ""); return ac_build_load_to_sgpr(&ctx->ac, ptr, index); } static LLVMValueRef load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); LLVMValueRef rsrc_ptr = ac_get_arg(&ctx->ac, ctx->const_and_shader_buffers); index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers); index = LLVMBuildSub(ctx->ac.builder, LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0), index, ""); return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index); } /* Initialize arguments for the shader export intrinsic */ static void si_llvm_init_vs_export_args(struct si_shader_context *ctx, LLVMValueRef *values, unsigned target, struct ac_export_args *args) { args->enabled_channels = 0xf; /* writemask - default is 0xf */ args->valid_mask = 0; /* Specify whether the EXEC mask represents the valid mask */ args->done = 0; /* Specify whether this is the last export */ args->target = target; /* Specify the target we are exporting */ args->compr = false; memcpy(&args->out[0], values, sizeof(values[0]) * 4); } static void si_llvm_emit_clipvertex(struct si_shader_context *ctx, struct ac_export_args *pos, LLVMValueRef *out_elts) { unsigned reg_index; unsigned chan; unsigned const_chan; LLVMValueRef base_elt; LLVMValueRef ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers); LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32, SI_VS_CONST_CLIP_PLANES, 0); LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index); for (reg_index = 0; reg_index < 2; reg_index ++) { struct ac_export_args *args = &pos[2 + reg_index]; args->out[0] = args->out[1] = args->out[2] = args->out[3] = LLVMConstReal(ctx->f32, 0.0f); /* Compute dot products of position and user clip plane vectors */ for (chan = 0; chan < 4; chan++) { for (const_chan = 0; const_chan < 4; const_chan++) { LLVMValueRef addr = LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 + const_chan) * 4, 0); base_elt = si_buffer_load_const(ctx, const_resource, addr); args->out[chan] = ac_build_fmad(&ctx->ac, base_elt, out_elts[const_chan], args->out[chan]); } } args->enabled_channels = 0xf; args->valid_mask = 0; args->done = 0; args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index; args->compr = 0; } } static void si_dump_streamout(struct pipe_stream_output_info *so) { unsigned i; if (so->num_outputs) fprintf(stderr, "STREAMOUT\n"); for (i = 0; i < so->num_outputs; i++) { unsigned mask = ((1 << so->output[i].num_components) - 1) << so->output[i].start_component; fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n", i, so->output[i].output_buffer, so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1, so->output[i].register_index, mask & 1 ? "x" : "", mask & 2 ? "y" : "", mask & 4 ? "z" : "", mask & 8 ? "w" : ""); } } void si_emit_streamout_output(struct si_shader_context *ctx, LLVMValueRef const *so_buffers, LLVMValueRef const *so_write_offsets, struct pipe_stream_output *stream_out, struct si_shader_output_values *shader_out) { unsigned buf_idx = stream_out->output_buffer; unsigned start = stream_out->start_component; unsigned num_comps = stream_out->num_components; LLVMValueRef out[4]; assert(num_comps && num_comps <= 4); if (!num_comps || num_comps > 4) return; /* Load the output as int. */ for (int j = 0; j < num_comps; j++) { assert(stream_out->stream == shader_out->vertex_stream[start + j]); out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]); } /* Pack the output. */ LLVMValueRef vdata = NULL; switch (num_comps) { case 1: /* as i32 */ vdata = out[0]; break; case 2: /* as v2i32 */ case 3: /* as v3i32 */ if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) { vdata = ac_build_gather_values(&ctx->ac, out, num_comps); break; } /* as v4i32 (aligned to 4) */ out[3] = LLVMGetUndef(ctx->i32); /* fall through */ case 4: /* as v4i32 */ vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps)); break; } ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx], vdata, num_comps, so_write_offsets[buf_idx], ctx->i32_0, stream_out->dst_offset * 4, ac_glc | ac_slc); } /** * Write streamout data to buffers for vertex stream @p stream (different * vertex streams can occur for GS copy shaders). */ static void si_llvm_emit_streamout(struct si_shader_context *ctx, struct si_shader_output_values *outputs, unsigned noutput, unsigned stream) { struct si_shader_selector *sel = ctx->shader->selector; struct pipe_stream_output_info *so = &sel->so; LLVMBuilderRef builder = ctx->ac.builder; int i; /* Get bits [22:16], i.e. (so_param >> 16) & 127; */ LLVMValueRef so_vtx_count = si_unpack_param(ctx, ctx->streamout_config, 16, 7); LLVMValueRef tid = ac_get_thread_id(&ctx->ac); /* can_emit = tid < so_vtx_count; */ LLVMValueRef can_emit = LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, ""); /* Emit the streamout code conditionally. This actually avoids * out-of-bounds buffer access. The hw tells us via the SGPR * (so_vtx_count) which threads are allowed to emit streamout data. */ ac_build_ifcc(&ctx->ac, can_emit, 6501); { /* The buffer offset is computed as follows: * ByteOffset = streamout_offset[buffer_id]*4 + * (streamout_write_index + thread_id)*stride[buffer_id] + * attrib_offset */ LLVMValueRef so_write_index = ac_get_arg(&ctx->ac, ctx->streamout_write_index); /* Compute (streamout_write_index + thread_id). */ so_write_index = LLVMBuildAdd(builder, so_write_index, tid, ""); /* Load the descriptor and compute the write offset for each * enabled buffer. */ LLVMValueRef so_write_offset[4] = {}; LLVMValueRef so_buffers[4]; LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers); for (i = 0; i < 4; i++) { if (!so->stride[i]) continue; LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_VS_STREAMOUT_BUF0 + i, 0); so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset); LLVMValueRef so_offset = ac_get_arg(&ctx->ac, ctx->streamout_offset[i]); so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), ""); so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index, LLVMConstInt(ctx->i32, so->stride[i]*4, 0), so_offset); } /* Write streamout data. */ for (i = 0; i < so->num_outputs; i++) { unsigned reg = so->output[i].register_index; if (reg >= noutput) continue; if (stream != so->output[i].stream) continue; si_emit_streamout_output(ctx, so_buffers, so_write_offset, &so->output[i], &outputs[reg]); } } ac_build_endif(&ctx->ac, 6501); } static void si_export_param(struct si_shader_context *ctx, unsigned index, LLVMValueRef *values) { struct ac_export_args args; si_llvm_init_vs_export_args(ctx, values, V_008DFC_SQ_EXP_PARAM + index, &args); ac_build_export(&ctx->ac, &args); } static void si_build_param_exports(struct si_shader_context *ctx, struct si_shader_output_values *outputs, unsigned noutput) { struct si_shader *shader = ctx->shader; unsigned param_count = 0; for (unsigned i = 0; i < noutput; i++) { unsigned semantic_name = outputs[i].semantic_name; unsigned semantic_index = outputs[i].semantic_index; if (outputs[i].vertex_stream[0] != 0 && outputs[i].vertex_stream[1] != 0 && outputs[i].vertex_stream[2] != 0 && outputs[i].vertex_stream[3] != 0) continue; switch (semantic_name) { case TGSI_SEMANTIC_LAYER: case TGSI_SEMANTIC_VIEWPORT_INDEX: case TGSI_SEMANTIC_CLIPDIST: case TGSI_SEMANTIC_COLOR: case TGSI_SEMANTIC_BCOLOR: case TGSI_SEMANTIC_PRIMID: case TGSI_SEMANTIC_FOG: case TGSI_SEMANTIC_TEXCOORD: case TGSI_SEMANTIC_GENERIC: break; default: continue; } if ((semantic_name != TGSI_SEMANTIC_GENERIC || semantic_index < SI_MAX_IO_GENERIC) && shader->key.opt.kill_outputs & (1ull << si_shader_io_get_unique_index(semantic_name, semantic_index, true))) continue; si_export_param(ctx, param_count, outputs[i].values); assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset)); shader->info.vs_output_param_offset[i] = param_count++; } shader->info.nr_param_exports = param_count; } /** * Vertex color clamping. * * This uses a state constant loaded in a user data SGPR and * an IF statement is added that clamps all colors if the constant * is true. */ static void si_vertex_color_clamping(struct si_shader_context *ctx, struct si_shader_output_values *outputs, unsigned noutput) { LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4]; bool has_colors = false; /* Store original colors to alloca variables. */ for (unsigned i = 0; i < noutput; i++) { if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR && outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR) continue; for (unsigned j = 0; j < 4; j++) { addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->f32, ""); LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]); } has_colors = true; } if (!has_colors) return; /* The state is in the first bit of the user SGPR. */ LLVMValueRef cond = ac_get_arg(&ctx->ac, ctx->vs_state_bits); cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->i1, ""); ac_build_ifcc(&ctx->ac, cond, 6502); /* Store clamped colors to alloca variables within the conditional block. */ for (unsigned i = 0; i < noutput; i++) { if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR && outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR) continue; for (unsigned j = 0; j < 4; j++) { LLVMBuildStore(ctx->ac.builder, ac_build_clamp(&ctx->ac, outputs[i].values[j]), addr[i][j]); } } ac_build_endif(&ctx->ac, 6502); /* Load clamped colors */ for (unsigned i = 0; i < noutput; i++) { if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR && outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR) continue; for (unsigned j = 0; j < 4; j++) { outputs[i].values[j] = LLVMBuildLoad(ctx->ac.builder, addr[i][j], ""); } } } /* Generate export instructions for hardware VS shader stage or NGG GS stage * (position and parameter data only). */ void si_llvm_export_vs(struct si_shader_context *ctx, struct si_shader_output_values *outputs, unsigned noutput) { struct si_shader *shader = ctx->shader; struct ac_export_args pos_args[4] = {}; LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL; unsigned pos_idx; int i; si_vertex_color_clamping(ctx, outputs, noutput); /* Build position exports. */ for (i = 0; i < noutput; i++) { switch (outputs[i].semantic_name) { case TGSI_SEMANTIC_POSITION: si_llvm_init_vs_export_args(ctx, outputs[i].values, V_008DFC_SQ_EXP_POS, &pos_args[0]); break; case TGSI_SEMANTIC_PSIZE: psize_value = outputs[i].values[0]; break; case TGSI_SEMANTIC_LAYER: layer_value = outputs[i].values[0]; break; case TGSI_SEMANTIC_VIEWPORT_INDEX: viewport_index_value = outputs[i].values[0]; break; case TGSI_SEMANTIC_EDGEFLAG: edgeflag_value = outputs[i].values[0]; break; case TGSI_SEMANTIC_CLIPDIST: if (!shader->key.opt.clip_disable) { unsigned index = 2 + outputs[i].semantic_index; si_llvm_init_vs_export_args(ctx, outputs[i].values, V_008DFC_SQ_EXP_POS + index, &pos_args[index]); } break; case TGSI_SEMANTIC_CLIPVERTEX: if (!shader->key.opt.clip_disable) { si_llvm_emit_clipvertex(ctx, pos_args, outputs[i].values); } break; } } /* We need to add the position output manually if it's missing. */ if (!pos_args[0].out[0]) { pos_args[0].enabled_channels = 0xf; /* writemask */ pos_args[0].valid_mask = 0; /* EXEC mask */ pos_args[0].done = 0; /* last export? */ pos_args[0].target = V_008DFC_SQ_EXP_POS; pos_args[0].compr = 0; /* COMPR flag */ pos_args[0].out[0] = ctx->ac.f32_0; /* X */ pos_args[0].out[1] = ctx->ac.f32_0; /* Y */ pos_args[0].out[2] = ctx->ac.f32_0; /* Z */ pos_args[0].out[3] = ctx->ac.f32_1; /* W */ } bool pos_writes_edgeflag = shader->selector->info.writes_edgeflag && !shader->key.as_ngg; /* Write the misc vector (point size, edgeflag, layer, viewport). */ if (shader->selector->info.writes_psize || pos_writes_edgeflag || shader->selector->info.writes_viewport_index || shader->selector->info.writes_layer) { pos_args[1].enabled_channels = shader->selector->info.writes_psize | (pos_writes_edgeflag << 1) | (shader->selector->info.writes_layer << 2); pos_args[1].valid_mask = 0; /* EXEC mask */ pos_args[1].done = 0; /* last export? */ pos_args[1].target = V_008DFC_SQ_EXP_POS + 1; pos_args[1].compr = 0; /* COMPR flag */ pos_args[1].out[0] = ctx->ac.f32_0; /* X */ pos_args[1].out[1] = ctx->ac.f32_0; /* Y */ pos_args[1].out[2] = ctx->ac.f32_0; /* Z */ pos_args[1].out[3] = ctx->ac.f32_0; /* W */ if (shader->selector->info.writes_psize) pos_args[1].out[0] = psize_value; if (pos_writes_edgeflag) { /* The output is a float, but the hw expects an integer * with the first bit containing the edge flag. */ edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder, edgeflag_value, ctx->i32, ""); edgeflag_value = ac_build_umin(&ctx->ac, edgeflag_value, ctx->i32_1); /* The LLVM intrinsic expects a float. */ pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value); } if (ctx->screen->info.chip_class >= GFX9) { /* GFX9 has the layer in out.z[10:0] and the viewport * index in out.z[19:16]. */ if (shader->selector->info.writes_layer) pos_args[1].out[2] = layer_value; if (shader->selector->info.writes_viewport_index) { LLVMValueRef v = viewport_index_value; v = ac_to_integer(&ctx->ac, v); v = LLVMBuildShl(ctx->ac.builder, v, LLVMConstInt(ctx->i32, 16, 0), ""); v = LLVMBuildOr(ctx->ac.builder, v, ac_to_integer(&ctx->ac, pos_args[1].out[2]), ""); pos_args[1].out[2] = ac_to_float(&ctx->ac, v); pos_args[1].enabled_channels |= 1 << 2; } } else { if (shader->selector->info.writes_layer) pos_args[1].out[2] = layer_value; if (shader->selector->info.writes_viewport_index) { pos_args[1].out[3] = viewport_index_value; pos_args[1].enabled_channels |= 1 << 3; } } } for (i = 0; i < 4; i++) if (pos_args[i].out[0]) shader->info.nr_pos_exports++; /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang. * Setting valid_mask=1 prevents it and has no other effect. */ if (ctx->screen->info.family == CHIP_NAVI10 || ctx->screen->info.family == CHIP_NAVI12 || ctx->screen->info.family == CHIP_NAVI14) pos_args[0].valid_mask = 1; pos_idx = 0; for (i = 0; i < 4; i++) { if (!pos_args[i].out[0]) continue; /* Specify the target we are exporting */ pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++; if (pos_idx == shader->info.nr_pos_exports) /* Specify that this is the last export */ pos_args[i].done = 1; ac_build_export(&ctx->ac, &pos_args[i]); } /* Build parameter exports. */ si_build_param_exports(ctx, outputs, noutput); } /** * Forward all outputs from the vertex shader to the TES. This is only used * for the fixed function TCS. */ static void si_copy_tcs_inputs(struct si_shader_context *ctx) { LLVMValueRef invocation_id, buffer, buffer_offset; LLVMValueRef lds_vertex_stride, lds_base; uint64_t inputs; invocation_id = si_unpack_param(ctx, ctx->args.tcs_rel_ids, 8, 5); buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS); buffer_offset = ac_get_arg(&ctx->ac, ctx->tcs_offchip_offset); lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx); lds_base = get_tcs_in_current_patch_offset(ctx); lds_base = ac_build_imad(&ctx->ac, invocation_id, lds_vertex_stride, lds_base); inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy; while (inputs) { unsigned i = u_bit_scan64(&inputs); LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base, LLVMConstInt(ctx->i32, 4 * i, 0), ""); LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), invocation_id, LLVMConstInt(ctx->i32, i, 0)); LLVMValueRef value = lshs_lds_load(ctx, ctx->ac.i32, ~0, lds_ptr); ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr, buffer_offset, 0, ac_glc); } } static void si_write_tess_factors(struct si_shader_context *ctx, LLVMValueRef rel_patch_id, LLVMValueRef invocation_id, LLVMValueRef tcs_out_current_patch_data_offset, LLVMValueRef invoc0_tf_outer[4], LLVMValueRef invoc0_tf_inner[2]) { struct si_shader *shader = ctx->shader; unsigned tess_inner_index, tess_outer_index; LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer; LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4]; unsigned stride, outer_comps, inner_comps, i, offset; /* Add a barrier before loading tess factors from LDS. */ if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) si_llvm_emit_barrier(ctx); /* Do this only for invocation 0, because the tess levels are per-patch, * not per-vertex. * * This can't jump, because invocation 0 executes this. It should * at least mask out the loads and stores for other invocations. */ ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, invocation_id, ctx->i32_0, ""), 6503); /* Determine the layout of one tess factor element in the buffer. */ switch (shader->key.part.tcs.epilog.prim_mode) { case PIPE_PRIM_LINES: stride = 2; /* 2 dwords, 1 vec2 store */ outer_comps = 2; inner_comps = 0; break; case PIPE_PRIM_TRIANGLES: stride = 4; /* 4 dwords, 1 vec4 store */ outer_comps = 3; inner_comps = 1; break; case PIPE_PRIM_QUADS: stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */ outer_comps = 4; inner_comps = 2; break; default: assert(0); return; } for (i = 0; i < 4; i++) { inner[i] = LLVMGetUndef(ctx->i32); outer[i] = LLVMGetUndef(ctx->i32); } if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) { /* Tess factors are in VGPRs. */ for (i = 0; i < outer_comps; i++) outer[i] = out[i] = invoc0_tf_outer[i]; for (i = 0; i < inner_comps; i++) inner[i] = out[outer_comps+i] = invoc0_tf_inner[i]; } else { /* Load tess_inner and tess_outer from LDS. * Any invocation can write them, so we can't get them from a temporary. */ tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0); tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0); lds_base = tcs_out_current_patch_data_offset; lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base, LLVMConstInt(ctx->i32, tess_inner_index * 4, 0), ""); lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base, LLVMConstInt(ctx->i32, tess_outer_index * 4, 0), ""); for (i = 0; i < outer_comps; i++) { outer[i] = out[i] = lshs_lds_load(ctx, ctx->ac.i32, i, lds_outer); } for (i = 0; i < inner_comps; i++) { inner[i] = out[outer_comps+i] = lshs_lds_load(ctx, ctx->ac.i32, i, lds_inner); } } if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) { /* For isolines, the hardware expects tess factors in the * reverse order from what NIR specifies. */ LLVMValueRef tmp = out[0]; out[0] = out[1]; out[1] = tmp; } /* Convert the outputs to vectors for stores. */ vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4)); vec1 = NULL; if (stride > 4) vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4); /* Get the buffer. */ buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING); /* Get the offset. */ tf_base = ac_get_arg(&ctx->ac, ctx->tcs_factor_offset); byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id, LLVMConstInt(ctx->i32, 4 * stride, 0), ""); ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, rel_patch_id, ctx->i32_0, ""), 6504); /* Store the dynamic HS control word. */ offset = 0; if (ctx->screen->info.chip_class <= GFX8) { ac_build_buffer_store_dword(&ctx->ac, buffer, LLVMConstInt(ctx->i32, 0x80000000, 0), 1, ctx->i32_0, tf_base, offset, ac_glc); offset += 4; } ac_build_endif(&ctx->ac, 6504); /* Store the tessellation factors. */ ac_build_buffer_store_dword(&ctx->ac, buffer, vec0, MIN2(stride, 4), byteoffset, tf_base, offset, ac_glc); offset += 16; if (vec1) ac_build_buffer_store_dword(&ctx->ac, buffer, vec1, stride - 4, byteoffset, tf_base, offset, ac_glc); /* Store the tess factors into the offchip buffer if TES reads them. */ if (shader->key.part.tcs.epilog.tes_reads_tess_factors) { LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset; LLVMValueRef tf_inner_offset; unsigned param_outer, param_inner; buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS); base = ac_get_arg(&ctx->ac, ctx->tcs_offchip_offset); param_outer = si_shader_io_get_unique_index_patch( TGSI_SEMANTIC_TESSOUTER, 0); tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL, LLVMConstInt(ctx->i32, param_outer, 0)); unsigned outer_vec_size = ac_has_vec3_support(ctx->screen->info.chip_class, false) ? outer_comps : util_next_power_of_two(outer_comps); outer_vec = ac_build_gather_values(&ctx->ac, outer, outer_vec_size); ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec, outer_comps, tf_outer_offset, base, 0, ac_glc); if (inner_comps) { param_inner = si_shader_io_get_unique_index_patch( TGSI_SEMANTIC_TESSINNER, 0); tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL, LLVMConstInt(ctx->i32, param_inner, 0)); inner_vec = inner_comps == 1 ? inner[0] : ac_build_gather_values(&ctx->ac, inner, inner_comps); ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec, inner_comps, tf_inner_offset, base, 0, ac_glc); } } ac_build_endif(&ctx->ac, 6503); } static LLVMValueRef si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret, struct ac_arg param, unsigned return_index) { return LLVMBuildInsertValue(ctx->ac.builder, ret, ac_get_arg(&ctx->ac, param), return_index, ""); } static LLVMValueRef si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret, struct ac_arg param, unsigned return_index) { LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef p = ac_get_arg(&ctx->ac, param); return LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, p), return_index, ""); } static LLVMValueRef si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret, struct ac_arg param, unsigned return_index) { LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef ptr = ac_get_arg(&ctx->ac, param); ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, ""); return LLVMBuildInsertValue(builder, ret, ptr, return_index, ""); } /* This only writes the tessellation factor levels. */ static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset; si_copy_tcs_inputs(ctx); rel_patch_id = get_rel_patch_id(ctx); invocation_id = si_unpack_param(ctx, ctx->args.tcs_rel_ids, 8, 5); tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx); if (ctx->screen->info.chip_class >= GFX9) { LLVMBasicBlockRef blocks[2] = { LLVMGetInsertBlock(builder), ctx->merged_wrap_if_entry_block }; LLVMValueRef values[2]; ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label); values[0] = rel_patch_id; values[1] = LLVMGetUndef(ctx->i32); rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks); values[0] = tf_lds_offset; values[1] = LLVMGetUndef(ctx->i32); tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks); values[0] = invocation_id; values[1] = ctx->i32_1; /* cause the epilog to skip threads */ invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks); } /* Return epilog parameters from this function. */ LLVMValueRef ret = ctx->return_value; unsigned vgpr; if (ctx->screen->info.chip_class >= GFX9) { ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_layout, 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT); ret = si_insert_input_ret(ctx, ret, ctx->tcs_out_lds_layout, 8 + GFX9_SGPR_TCS_OUT_LAYOUT); /* Tess offchip and tess factor offsets are at the beginning. */ ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 2); ret = si_insert_input_ret(ctx, ret, ctx->tcs_factor_offset, 4); vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1; } else { ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_layout, GFX6_SGPR_TCS_OFFCHIP_LAYOUT); ret = si_insert_input_ret(ctx, ret, ctx->tcs_out_lds_layout, GFX6_SGPR_TCS_OUT_LAYOUT); /* Tess offchip and tess factor offsets are after user SGPRs. */ ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, GFX6_TCS_NUM_USER_SGPR); ret = si_insert_input_ret(ctx, ret, ctx->tcs_factor_offset, GFX6_TCS_NUM_USER_SGPR + 1); vgpr = GFX6_TCS_NUM_USER_SGPR + 2; } /* VGPRs */ rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id); invocation_id = ac_to_float(&ctx->ac, invocation_id); tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset); /* Leave a hole corresponding to the two input VGPRs. This ensures that * the invocation_id output does not alias the tcs_rel_ids input, * which saves a V_MOV on gfx9. */ vgpr += 2; ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, ""); ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, ""); if (ctx->shader->selector->info.tessfactors_are_def_in_all_invocs) { vgpr++; /* skip the tess factor LDS offset */ for (unsigned i = 0; i < 6; i++) { LLVMValueRef value = LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], ""); value = ac_to_float(&ctx->ac, value); ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, ""); } } else { ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, ""); } ctx->return_value = ret; } /* Pass TCS inputs from LS to TCS on GFX9. */ static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx) { LLVMValueRef ret = ctx->return_value; ret = si_insert_input_ptr(ctx, ret, ctx->other_const_and_shader_buffers, 0); ret = si_insert_input_ptr(ctx, ret, ctx->other_samplers_and_images, 1); ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 2); ret = si_insert_input_ret(ctx, ret, ctx->merged_wave_info, 3); ret = si_insert_input_ret(ctx, ret, ctx->tcs_factor_offset, 4); ret = si_insert_input_ret(ctx, ret, ctx->merged_scratch_offset, 5); ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers, 8 + SI_SGPR_RW_BUFFERS); ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images, 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES); ret = si_insert_input_ret(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS); ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_layout, 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT); ret = si_insert_input_ret(ctx, ret, ctx->tcs_out_lds_offsets, 8 + GFX9_SGPR_TCS_OUT_OFFSETS); ret = si_insert_input_ret(ctx, ret, ctx->tcs_out_lds_layout, 8 + GFX9_SGPR_TCS_OUT_LAYOUT); unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR; ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_to_float(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.tcs_patch_id)), vgpr++, ""); ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_to_float(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.tcs_rel_ids)), vgpr++, ""); ctx->return_value = ret; } /* Pass GS inputs from ES to GS on GFX9. */ static void si_set_es_return_value_for_gs(struct si_shader_context *ctx) { LLVMValueRef ret = ctx->return_value; ret = si_insert_input_ptr(ctx, ret, ctx->other_const_and_shader_buffers, 0); ret = si_insert_input_ptr(ctx, ret, ctx->other_samplers_and_images, 1); if (ctx->shader->key.as_ngg) ret = si_insert_input_ptr(ctx, ret, ctx->gs_tg_info, 2); else ret = si_insert_input_ret(ctx, ret, ctx->gs2vs_offset, 2); ret = si_insert_input_ret(ctx, ret, ctx->merged_wave_info, 3); ret = si_insert_input_ret(ctx, ret, ctx->merged_scratch_offset, 5); ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers, 8 + SI_SGPR_RW_BUFFERS); ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images, 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES); if (ctx->screen->use_ngg) { ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS); } unsigned vgpr; if (ctx->type == PIPE_SHADER_VERTEX) vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR; else vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR; ret = si_insert_input_ret_float(ctx, ret, ctx->gs_vtx01_offset, vgpr++); ret = si_insert_input_ret_float(ctx, ret, ctx->gs_vtx23_offset, vgpr++); ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++); ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++); ret = si_insert_input_ret_float(ctx, ret, ctx->gs_vtx45_offset, vgpr++); ctx->return_value = ret; } static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader *shader = ctx->shader; struct si_shader_info *info = &shader->selector->info; unsigned i, chan; LLVMValueRef vertex_id = ac_get_arg(&ctx->ac, ctx->rel_auto_id); LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx); LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id, vertex_dw_stride, ""); /* Write outputs to LDS. The next shader (TCS aka HS) will read * its inputs from it. */ for (i = 0; i < info->num_outputs; i++) { unsigned name = info->output_semantic_name[i]; unsigned index = info->output_semantic_index[i]; /* The ARB_shader_viewport_layer_array spec contains the * following issue: * * 2) What happens if gl_ViewportIndex or gl_Layer is * written in the vertex shader and a geometry shader is * present? * * RESOLVED: The value written by the last vertex processing * stage is used. If the last vertex processing stage * (vertex, tessellation evaluation or geometry) does not * statically assign to gl_ViewportIndex or gl_Layer, index * or layer zero is assumed. * * So writes to those outputs in VS-as-LS are simply ignored. */ if (name == TGSI_SEMANTIC_LAYER || name == TGSI_SEMANTIC_VIEWPORT_INDEX) continue; int param = si_shader_io_get_unique_index(name, index, false); LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr, LLVMConstInt(ctx->i32, param * 4, 0), ""); for (chan = 0; chan < 4; chan++) { if (!(info->output_usagemask[i] & (1 << chan))) continue; lshs_lds_store(ctx, chan, dw_addr, LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "")); } } if (ctx->screen->info.chip_class >= GFX9) si_set_ls_return_value_for_tcs(ctx); } static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader *es = ctx->shader; struct si_shader_info *info = &es->selector->info; LLVMValueRef lds_base = NULL; unsigned chan; int i; if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) { unsigned itemsize_dw = es->selector->esgs_itemsize / 4; LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac); LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->merged_wave_info, 24, 4); vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx, LLVMBuildMul(ctx->ac.builder, wave_idx, LLVMConstInt(ctx->i32, ctx->ac.wave_size, false), ""), ""); lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx, LLVMConstInt(ctx->i32, itemsize_dw, 0), ""); } for (i = 0; i < info->num_outputs; i++) { int param; if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX || info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER) continue; param = si_shader_io_get_unique_index(info->output_semantic_name[i], info->output_semantic_index[i], false); for (chan = 0; chan < 4; chan++) { if (!(info->output_usagemask[i] & (1 << chan))) continue; LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""); out_val = ac_to_integer(&ctx->ac, out_val); /* GFX9 has the ESGS ring in LDS. */ if (ctx->screen->info.chip_class >= GFX9) { LLVMValueRef idx = LLVMConstInt(ctx->i32, param * 4 + chan, false); idx = LLVMBuildAdd(ctx->ac.builder, lds_base, idx, ""); ac_build_indexed_store(&ctx->ac, ctx->esgs_ring, idx, out_val); continue; } ac_build_buffer_store_dword(&ctx->ac, ctx->esgs_ring, out_val, 1, NULL, ac_get_arg(&ctx->ac, ctx->es2gs_offset), (4 * param + chan) * 4, ac_glc | ac_slc | ac_swizzled); } } if (ctx->screen->info.chip_class >= GFX9) si_set_es_return_value_for_gs(ctx); } static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx) { if (ctx->screen->info.chip_class >= GFX9) return si_unpack_param(ctx, ctx->merged_wave_info, 16, 8); else return ac_get_arg(&ctx->ac, ctx->gs_wave_id); } static void emit_gs_epilogue(struct si_shader_context *ctx) { if (ctx->shader->key.as_ngg) { gfx10_ngg_gs_emit_epilogue(ctx); return; } if (ctx->screen->info.chip_class >= GFX10) LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, ""); ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, si_get_gs_wave_id(ctx)); if (ctx->screen->info.chip_class >= GFX9) ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label); } static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader_info UNUSED *info = &ctx->shader->selector->info; assert(info->num_outputs <= max_outputs); emit_gs_epilogue(ctx); } static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader_info *info = &ctx->shader->selector->info; struct si_shader_output_values *outputs = NULL; int i,j; assert(!ctx->shader->is_gs_copy_shader); assert(info->num_outputs <= max_outputs); outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0])); for (i = 0; i < info->num_outputs; i++) { outputs[i].semantic_name = info->output_semantic_name[i]; outputs[i].semantic_index = info->output_semantic_index[i]; for (j = 0; j < 4; j++) { outputs[i].values[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], ""); outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3; } } if (!ctx->screen->use_ngg_streamout && ctx->shader->selector->so.num_outputs) si_llvm_emit_streamout(ctx, outputs, i, 0); /* Export PrimitiveID. */ if (ctx->shader->key.mono.u.vs_export_prim_id) { outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID; outputs[i].semantic_index = 0; outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0)); for (j = 1; j < 4; j++) outputs[i].values[j] = LLVMConstReal(ctx->f32, 0); memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream)); i++; } si_llvm_export_vs(ctx, outputs, i); FREE(outputs); } static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); struct si_shader_info *info = &ctx->shader->selector->info; LLVMValueRef pos[4] = {}; assert(info->num_outputs <= max_outputs); for (unsigned i = 0; i < info->num_outputs; i++) { if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION) continue; for (unsigned chan = 0; chan < 4; chan++) pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""); break; } assert(pos[0] != NULL); /* Return the position output. */ LLVMValueRef ret = ctx->return_value; for (unsigned chan = 0; chan < 4; chan++) ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, ""); ctx->return_value = ret; } /* Emit one vertex from the geometry shader */ static void si_llvm_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); if (ctx->shader->key.as_ngg) { gfx10_ngg_gs_emit_vertex(ctx, stream, addrs); return; } struct si_shader_info *info = &ctx->shader->selector->info; struct si_shader *shader = ctx->shader; LLVMValueRef soffset = ac_get_arg(&ctx->ac, ctx->gs2vs_offset); LLVMValueRef gs_next_vertex; LLVMValueRef can_emit; unsigned chan, offset; int i; /* Write vertex attribute values to GSVS ring */ gs_next_vertex = LLVMBuildLoad(ctx->ac.builder, ctx->gs_next_vertex[stream], ""); /* If this thread has already emitted the declared maximum number of * vertices, skip the write: excessive vertex emissions are not * supposed to have any effect. * * If the shader has no writes to memory, kill it instead. This skips * further memory loads and may allow LLVM to skip to the end * altogether. */ can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex, LLVMConstInt(ctx->i32, shader->selector->gs_max_out_vertices, 0), ""); bool use_kill = !info->writes_memory; if (use_kill) { ac_build_kill_if_false(&ctx->ac, can_emit); } else { ac_build_ifcc(&ctx->ac, can_emit, 6505); } offset = 0; for (i = 0; i < info->num_outputs; i++) { for (chan = 0; chan < 4; chan++) { if (!(info->output_usagemask[i] & (1 << chan)) || ((info->output_streams[i] >> (2 * chan)) & 3) != stream) continue; LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""); LLVMValueRef voffset = LLVMConstInt(ctx->i32, offset * shader->selector->gs_max_out_vertices, 0); offset++; voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, ""); voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->i32, 4, 0), ""); out_val = ac_to_integer(&ctx->ac, out_val); ac_build_buffer_store_dword(&ctx->ac, ctx->gsvs_ring[stream], out_val, 1, voffset, soffset, 0, ac_glc | ac_slc | ac_swizzled); } } gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, ""); LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]); /* Signal vertex emission if vertex data was written. */ if (offset) { ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8), si_get_gs_wave_id(ctx)); } if (!use_kill) ac_build_endif(&ctx->ac, 6505); } /* Cut one primitive from the geometry shader */ static void si_llvm_emit_primitive(struct ac_shader_abi *abi, unsigned stream) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); if (ctx->shader->key.as_ngg) { LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]); return; } /* Signal primitive cut */ ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), si_get_gs_wave_id(ctx)); } static void si_llvm_emit_barrier(struct si_shader_context *ctx) { /* GFX6 only (thanks to a hw bug workaround): * The real barrier instruction isn’t needed, because an entire patch * always fits into a single wave. */ if (ctx->screen->info.chip_class == GFX6 && ctx->type == PIPE_SHADER_TESS_CTRL) { ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE); return; } ac_build_s_barrier(&ctx->ac); } static void declare_streamout_params(struct si_shader_context *ctx, struct pipe_stream_output_info *so) { if (ctx->screen->use_ngg_streamout) { if (ctx->type == PIPE_SHADER_TESS_EVAL) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); return; } /* Streamout SGPRs. */ if (so->num_outputs) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_config); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_write_index); } else if (ctx->type == PIPE_SHADER_TESS_EVAL) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); } /* A streamout buffer offset is loaded if the stride is non-zero. */ for (int i = 0; i < 4; i++) { if (!so->stride[i]) continue; ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_offset[i]); } } static unsigned si_get_max_workgroup_size(const struct si_shader *shader) { switch (shader->selector->type) { case PIPE_SHADER_VERTEX: case PIPE_SHADER_TESS_EVAL: return shader->key.as_ngg ? 128 : 0; case PIPE_SHADER_TESS_CTRL: /* Return this so that LLVM doesn't remove s_barrier * instructions on chips where we use s_barrier. */ return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 0; case PIPE_SHADER_GEOMETRY: return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 0; case PIPE_SHADER_COMPUTE: break; /* see below */ default: return 0; } const unsigned *properties = shader->selector->info.properties; unsigned max_work_group_size = properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] * properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] * properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]; if (!max_work_group_size) { /* This is a variable group size compute shader, * compile it for the maximum possible group size. */ max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK; } return max_work_group_size; } static void declare_const_and_shader_buffers(struct si_shader_context *ctx, bool assign_params) { enum ac_arg_type const_shader_buf_type; if (ctx->shader->selector->info.const_buffers_declared == 1 && ctx->shader->selector->info.shader_buffers_declared == 0) const_shader_buf_type = AC_ARG_CONST_FLOAT_PTR; else const_shader_buf_type = AC_ARG_CONST_DESC_PTR; ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, const_shader_buf_type, assign_params ? &ctx->const_and_shader_buffers : &ctx->other_const_and_shader_buffers); } static void declare_samplers_and_images(struct si_shader_context *ctx, bool assign_params) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR, assign_params ? &ctx->samplers_and_images : &ctx->other_samplers_and_images); } static void declare_per_stage_desc_pointers(struct si_shader_context *ctx, bool assign_params) { declare_const_and_shader_buffers(ctx, assign_params); declare_samplers_and_images(ctx, assign_params); } static void declare_global_desc_pointers(struct si_shader_context *ctx) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->rw_buffers); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR, &ctx->bindless_samplers_and_images); } static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); if (!ctx->shader->is_gs_copy_shader) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id); } } static void declare_vb_descriptor_input_sgprs(struct si_shader_context *ctx) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->vertex_buffers); unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs; if (num_vbos_in_user_sgprs) { unsigned user_sgprs = ctx->args.num_sgprs_used; if (si_is_merged_shader(ctx)) user_sgprs -= 8; assert(user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST); /* Declare unused SGPRs to align VB descriptors to 4 SGPRs (hw requirement). */ for (unsigned i = user_sgprs; i < SI_SGPR_VS_VB_DESCRIPTOR_FIRST; i++) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ assert(num_vbos_in_user_sgprs <= ARRAY_SIZE(ctx->vb_descriptors)); for (unsigned i = 0; i < num_vbos_in_user_sgprs; i++) ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->vb_descriptors[i]); } } static void declare_vs_input_vgprs(struct si_shader_context *ctx, unsigned *num_prolog_vgprs) { struct si_shader *shader = ctx->shader; ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vertex_id); if (shader->key.as_ls) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->rel_auto_id); if (ctx->screen->info.chip_class >= GFX10) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); } else { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */ } } else if (ctx->screen->info.chip_class >= GFX10) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vs_prim_id); /* user vgpr or PrimID (legacy) */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); } else { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vs_prim_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */ } if (!shader->is_gs_copy_shader) { /* Vertex load indices. */ if (shader->selector->info.num_inputs) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vertex_index0); for (unsigned i = 1; i < shader->selector->info.num_inputs; i++) ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); } *num_prolog_vgprs += shader->selector->info.num_inputs; } } static void declare_vs_blit_inputs(struct si_shader_context *ctx, unsigned vs_blit_property) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_blit_inputs); /* i16 x1, y1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* i16 x1, y1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* depth */ if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color0 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color2 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color3 */ } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y1 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x2 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y2 */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.z */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.w */ } } static void declare_tes_input_vgprs(struct si_shader_context *ctx) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->tes_u); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->tes_v); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->tes_rel_patch_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_patch_id); } enum { /* Convenient merged shader definitions. */ SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES, SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY, }; void si_add_arg_checked(struct ac_shader_args *args, enum ac_arg_regfile file, unsigned registers, enum ac_arg_type type, struct ac_arg *arg, unsigned idx) { assert(args->arg_count == idx); ac_add_arg(args, file, registers, type, arg); } static void create_function(struct si_shader_context *ctx) { struct si_shader *shader = ctx->shader; LLVMTypeRef returns[AC_MAX_ARGS]; unsigned i, num_return_sgprs; unsigned num_returns = 0; unsigned num_prolog_vgprs = 0; unsigned type = ctx->type; unsigned vs_blit_property = shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]; memset(&ctx->args, 0, sizeof(ctx->args)); /* Set MERGED shaders. */ if (ctx->screen->info.chip_class >= GFX9) { if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL) type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */ else if (shader->key.as_es || shader->key.as_ngg || type == PIPE_SHADER_GEOMETRY) type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY; } switch (type) { case PIPE_SHADER_VERTEX: declare_global_desc_pointers(ctx); if (vs_blit_property) { declare_vs_blit_inputs(ctx, vs_blit_property); /* VGPRs */ declare_vs_input_vgprs(ctx, &num_prolog_vgprs); break; } declare_per_stage_desc_pointers(ctx, true); declare_vs_specific_input_sgprs(ctx); if (!shader->is_gs_copy_shader) declare_vb_descriptor_input_sgprs(ctx); if (shader->key.as_es) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->es2gs_offset); } else if (shader->key.as_ls) { /* no extra parameters */ } else { /* The locations of the other parameters are assigned dynamically. */ declare_streamout_params(ctx, &shader->selector->so); } /* VGPRs */ declare_vs_input_vgprs(ctx, &num_prolog_vgprs); /* Return values */ if (shader->key.opt.vs_as_prim_discard_cs) { for (i = 0; i < 4; i++) returns[num_returns++] = ctx->f32; /* VGPRs */ } break; case PIPE_SHADER_TESS_CTRL: /* GFX6-GFX8 */ declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_factor_offset); /* VGPRs */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids); /* param_tcs_offchip_offset and param_tcs_factor_offset are * placed after the user SGPRs. */ for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++) returns[num_returns++] = ctx->i32; /* SGPRs */ for (i = 0; i < 11; i++) returns[num_returns++] = ctx->f32; /* VGPRs */ break; case SI_SHADER_MERGED_VERTEX_TESSCTRL: /* Merged stages have 8 system SGPRs at the beginning. */ /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */ declare_per_stage_desc_pointers(ctx, ctx->type == PIPE_SHADER_TESS_CTRL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_wave_info); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_factor_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_scratch_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */ declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, ctx->type == PIPE_SHADER_VERTEX); declare_vs_specific_input_sgprs(ctx); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout); declare_vb_descriptor_input_sgprs(ctx); /* VGPRs (first TCS, then VS) */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids); if (ctx->type == PIPE_SHADER_VERTEX) { declare_vs_input_vgprs(ctx, &num_prolog_vgprs); /* LS return values are inputs to the TCS main shader part. */ for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++) returns[num_returns++] = ctx->i32; /* SGPRs */ for (i = 0; i < 2; i++) returns[num_returns++] = ctx->f32; /* VGPRs */ } else { /* TCS return values are inputs to the TCS epilog. * * param_tcs_offchip_offset, param_tcs_factor_offset, * param_tcs_offchip_layout, and param_rw_buffers * should be passed to the epilog. */ for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++) returns[num_returns++] = ctx->i32; /* SGPRs */ for (i = 0; i < 11; i++) returns[num_returns++] = ctx->f32; /* VGPRs */ } break; case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY: /* Merged stages have 8 system SGPRs at the beginning. */ /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */ declare_per_stage_desc_pointers(ctx, ctx->type == PIPE_SHADER_GEOMETRY); if (ctx->shader->key.as_ngg) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs_tg_info); else ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs2vs_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_wave_info); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_scratch_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */ declare_global_desc_pointers(ctx); if (ctx->type != PIPE_SHADER_VERTEX || !vs_blit_property) { declare_per_stage_desc_pointers(ctx, (ctx->type == PIPE_SHADER_VERTEX || ctx->type == PIPE_SHADER_TESS_EVAL)); } if (ctx->type == PIPE_SHADER_VERTEX) { if (vs_blit_property) declare_vs_blit_inputs(ctx, vs_blit_property); else declare_vs_specific_input_sgprs(ctx); } else { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr); /* Declare as many input SGPRs as the VS has. */ } if (ctx->type == PIPE_SHADER_VERTEX) declare_vb_descriptor_input_sgprs(ctx); /* VGPRs (first GS, then VS/TES) */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx01_offset); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx23_offset); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx45_offset); if (ctx->type == PIPE_SHADER_VERTEX) { declare_vs_input_vgprs(ctx, &num_prolog_vgprs); } else if (ctx->type == PIPE_SHADER_TESS_EVAL) { declare_tes_input_vgprs(ctx); } if (ctx->shader->key.as_es && (ctx->type == PIPE_SHADER_VERTEX || ctx->type == PIPE_SHADER_TESS_EVAL)) { unsigned num_user_sgprs; if (ctx->type == PIPE_SHADER_VERTEX) num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR; else num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR; /* ES return values are inputs to GS. */ for (i = 0; i < 8 + num_user_sgprs; i++) returns[num_returns++] = ctx->i32; /* SGPRs */ for (i = 0; i < 5; i++) returns[num_returns++] = ctx->f32; /* VGPRs */ } break; case PIPE_SHADER_TESS_EVAL: declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr); if (shader->key.as_es) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->es2gs_offset); } else { declare_streamout_params(ctx, &shader->selector->so); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset); } /* VGPRs */ declare_tes_input_vgprs(ctx); break; case PIPE_SHADER_GEOMETRY: declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs2vs_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs_wave_id); /* VGPRs */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[0]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[1]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[2]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[3]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[4]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[5]); ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id); break; case PIPE_SHADER_FRAGMENT: declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL, SI_PARAM_ALPHA_REF); si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.prim_mask, SI_PARAM_PRIM_MASK); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_sample, SI_PARAM_PERSP_SAMPLE); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_center, SI_PARAM_PERSP_CENTER); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_centroid, SI_PARAM_PERSP_CENTROID); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, NULL, SI_PARAM_PERSP_PULL_MODEL); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_sample, SI_PARAM_LINEAR_SAMPLE); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_center, SI_PARAM_LINEAR_CENTER); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_centroid, SI_PARAM_LINEAR_CENTROID); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_FLOAT, NULL, SI_PARAM_LINE_STIPPLE_TEX); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[0], SI_PARAM_POS_X_FLOAT); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[1], SI_PARAM_POS_Y_FLOAT); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[2], SI_PARAM_POS_Z_FLOAT); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[3], SI_PARAM_POS_W_FLOAT); shader->info.face_vgpr_index = ctx->args.num_vgprs_used; si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.front_face, SI_PARAM_FRONT_FACE); shader->info.ancillary_vgpr_index = ctx->args.num_vgprs_used; si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.ancillary, SI_PARAM_ANCILLARY); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.sample_coverage, SI_PARAM_SAMPLE_COVERAGE); si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->pos_fixed_pt, SI_PARAM_POS_FIXED_PT); /* Color inputs from the prolog. */ if (shader->selector->info.colors_read) { unsigned num_color_elements = util_bitcount(shader->selector->info.colors_read); for (i = 0; i < num_color_elements; i++) ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL); num_prolog_vgprs += num_color_elements; } /* Outputs for the epilog. */ num_return_sgprs = SI_SGPR_ALPHA_REF + 1; num_returns = num_return_sgprs + util_bitcount(shader->selector->info.colors_written) * 4 + shader->selector->info.writes_z + shader->selector->info.writes_stencil + shader->selector->info.writes_samplemask + 1 /* SampleMaskIn */; num_returns = MAX2(num_returns, num_return_sgprs + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1); for (i = 0; i < num_return_sgprs; i++) returns[i] = ctx->i32; for (; i < num_returns; i++) returns[i] = ctx->f32; break; case PIPE_SHADER_COMPUTE: declare_global_desc_pointers(ctx); declare_per_stage_desc_pointers(ctx, true); if (shader->selector->info.uses_grid_size) ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->args.num_work_groups); if (shader->selector->info.uses_block_size && shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0) ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->block_size); unsigned cs_user_data_dwords = shader->selector->info.properties[TGSI_PROPERTY_CS_USER_DATA_COMPONENTS_AMD]; if (cs_user_data_dwords) { ac_add_arg(&ctx->args, AC_ARG_SGPR, cs_user_data_dwords, AC_ARG_INT, &ctx->cs_user_data); } /* Hardware SGPRs. */ for (i = 0; i < 3; i++) { if (shader->selector->info.uses_block_id[i]) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.workgroup_ids[i]); } } if (shader->selector->info.uses_subgroup_info) ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tg_size); /* Hardware VGPRs. */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, &ctx->args.local_invocation_ids); break; default: assert(0 && "unimplemented shader"); return; } si_llvm_create_func(ctx, "main", returns, num_returns, si_get_max_workgroup_size(shader)); /* Reserve register locations for VGPR inputs the PS prolog may need. */ if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) { ac_llvm_add_target_dep_function_attr(ctx->main_fn, "InitialPSInputAddr", S_0286D0_PERSP_SAMPLE_ENA(1) | S_0286D0_PERSP_CENTER_ENA(1) | S_0286D0_PERSP_CENTROID_ENA(1) | S_0286D0_LINEAR_SAMPLE_ENA(1) | S_0286D0_LINEAR_CENTER_ENA(1) | S_0286D0_LINEAR_CENTROID_ENA(1) | S_0286D0_FRONT_FACE_ENA(1) | S_0286D0_ANCILLARY_ENA(1) | S_0286D0_POS_FIXED_PT_ENA(1)); } shader->info.num_input_sgprs = ctx->args.num_sgprs_used; shader->info.num_input_vgprs = ctx->args.num_vgprs_used; assert(shader->info.num_input_vgprs >= num_prolog_vgprs); shader->info.num_input_vgprs -= num_prolog_vgprs; if (shader->key.as_ls || ctx->type == PIPE_SHADER_TESS_CTRL) { if (USE_LDS_SYMBOLS && LLVM_VERSION_MAJOR >= 9) { /* The LSHS size is not known until draw time, so we append it * at the end of whatever LDS use there may be in the rest of * the shader (currently none, unless LLVM decides to do its * own LDS-based lowering). */ ctx->ac.lds = LLVMAddGlobalInAddressSpace( ctx->ac.module, LLVMArrayType(ctx->i32, 0), "__lds_end", AC_ADDR_SPACE_LDS); LLVMSetAlignment(ctx->ac.lds, 256); } else { ac_declare_lds_as_pointer(&ctx->ac); } } /* Unlike radv, we override these arguments in the prolog, so to the * API shader they appear as normal arguments. */ if (ctx->type == PIPE_SHADER_VERTEX) { ctx->abi.vertex_id = ac_get_arg(&ctx->ac, ctx->args.vertex_id); ctx->abi.instance_id = ac_get_arg(&ctx->ac, ctx->args.instance_id); } else if (ctx->type == PIPE_SHADER_FRAGMENT) { ctx->abi.persp_centroid = ac_get_arg(&ctx->ac, ctx->args.persp_centroid); ctx->abi.linear_centroid = ac_get_arg(&ctx->ac, ctx->args.linear_centroid); } } /* Ensure that the esgs ring is declared. * * We declare it with 64KB alignment as a hint that the * pointer value will always be 0. */ static void declare_esgs_ring(struct si_shader_context *ctx) { if (ctx->esgs_ring) return; assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring")); ctx->esgs_ring = LLVMAddGlobalInAddressSpace( ctx->ac.module, LLVMArrayType(ctx->i32, 0), "esgs_ring", AC_ADDR_SPACE_LDS); LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage); LLVMSetAlignment(ctx->esgs_ring, 64 * 1024); } /** * Load ESGS and GSVS ring buffer resource descriptors and save the variables * for later use. */ static void preload_ring_buffers(struct si_shader_context *ctx) { LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers); if (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY) { if (ctx->screen->info.chip_class <= GFX8) { unsigned ring = ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS : SI_ES_RING_ESGS; LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0); ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset); } else { if (USE_LDS_SYMBOLS && LLVM_VERSION_MAJOR >= 9) { /* Declare the ESGS ring as an explicit LDS symbol. */ declare_esgs_ring(ctx); } else { ac_declare_lds_as_pointer(&ctx->ac); ctx->esgs_ring = ctx->ac.lds; } } } if (ctx->shader->is_gs_copy_shader) { LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0); ctx->gsvs_ring[0] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset); } else if (ctx->type == PIPE_SHADER_GEOMETRY) { const struct si_shader_selector *sel = ctx->shader->selector; LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0); LLVMValueRef base_ring; base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset); /* The conceptual layout of the GSVS ring is * v0c0 .. vLv0 v0c1 .. vLc1 .. * but the real memory layout is swizzled across * threads: * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL * t16v0c0 .. * Override the buffer descriptor accordingly. */ LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2); uint64_t stream_offset = 0; for (unsigned stream = 0; stream < 4; ++stream) { unsigned num_components; unsigned stride; unsigned num_records; LLVMValueRef ring, tmp; num_components = sel->info.num_stream_output_components[stream]; if (!num_components) continue; stride = 4 * num_components * sel->gs_max_out_vertices; /* Limit on the stride field for <= GFX7. */ assert(stride < (1 << 14)); num_records = ctx->ac.wave_size; ring = LLVMBuildBitCast(builder, base_ring, v2i64, ""); tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, ""); tmp = LLVMBuildAdd(builder, tmp, LLVMConstInt(ctx->i64, stream_offset, 0), ""); stream_offset += stride * ctx->ac.wave_size; ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, ""); ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, ""); tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, ""); tmp = LLVMBuildOr(builder, tmp, LLVMConstInt(ctx->i32, S_008F04_STRIDE(stride) | S_008F04_SWIZZLE_ENABLE(1), 0), ""); ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, ""); ring = LLVMBuildInsertElement(builder, ring, LLVMConstInt(ctx->i32, num_records, 0), LLVMConstInt(ctx->i32, 2, 0), ""); uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */ S_008F0C_ADD_TID_ENABLE(1); if (ctx->ac.chip_class >= GFX10) { rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); } else { rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1); /* element_size = 4 (bytes) */ } ring = LLVMBuildInsertElement(builder, ring, LLVMConstInt(ctx->i32, rsrc3, false), LLVMConstInt(ctx->i32, 3, 0), ""); ctx->gsvs_ring[stream] = ring; } } else if (ctx->type == PIPE_SHADER_TESS_EVAL) { ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES); } } /* For the UMR disassembler. */ #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */ #define DEBUGGER_NUM_MARKERS 5 static bool si_shader_binary_open(struct si_screen *screen, struct si_shader *shader, struct ac_rtld_binary *rtld) { const struct si_shader_selector *sel = shader->selector; const char *part_elfs[5]; size_t part_sizes[5]; unsigned num_parts = 0; #define add_part(shader_or_part) \ if (shader_or_part) { \ part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \ part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \ num_parts++; \ } add_part(shader->prolog); add_part(shader->previous_stage); add_part(shader->prolog2); add_part(shader); add_part(shader->epilog); #undef add_part struct ac_rtld_symbol lds_symbols[2]; unsigned num_lds_symbols = 0; if (sel && screen->info.chip_class >= GFX9 && !shader->is_gs_copy_shader && (sel->type == PIPE_SHADER_GEOMETRY || shader->key.as_ngg)) { /* We add this symbol even on LLVM <= 8 to ensure that * shader->config.lds_size is set correctly below. */ struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; sym->name = "esgs_ring"; sym->size = shader->gs_info.esgs_ring_size; sym->align = 64 * 1024; } if (shader->key.as_ngg && sel->type == PIPE_SHADER_GEOMETRY) { struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; sym->name = "ngg_emit"; sym->size = shader->ngg.ngg_emit_size * 4; sym->align = 4; } bool ok = ac_rtld_open(rtld, (struct ac_rtld_open_info){ .info = &screen->info, .options = { .halt_at_entry = screen->options.halt_shaders, }, .shader_type = tgsi_processor_to_shader_stage(sel->type), .wave_size = si_get_shader_wave_size(shader), .num_parts = num_parts, .elf_ptrs = part_elfs, .elf_sizes = part_sizes, .num_shared_lds_symbols = num_lds_symbols, .shared_lds_symbols = lds_symbols }); if (rtld->lds_size > 0) { unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256; shader->config.lds_size = align(rtld->lds_size, alloc_granularity) / alloc_granularity; } return ok; } static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader) { struct ac_rtld_binary rtld; si_shader_binary_open(screen, shader, &rtld); return rtld.exec_size; } static bool si_get_external_symbol(void *data, const char *name, uint64_t *value) { uint64_t *scratch_va = data; if (!strcmp(scratch_rsrc_dword0_symbol, name)) { *value = (uint32_t)*scratch_va; return true; } if (!strcmp(scratch_rsrc_dword1_symbol, name)) { /* Enable scratch coalescing. */ *value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1); return true; } return false; } bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader, uint64_t scratch_va) { struct ac_rtld_binary binary; if (!si_shader_binary_open(sscreen, shader, &binary)) return false; si_resource_reference(&shader->bo, NULL); shader->bo = si_aligned_buffer_create(&sscreen->b, sscreen->info.cpdma_prefetch_writes_memory ? 0 : SI_RESOURCE_FLAG_READ_ONLY, PIPE_USAGE_IMMUTABLE, align(binary.rx_size, SI_CPDMA_ALIGNMENT), 256); if (!shader->bo) return false; /* Upload. */ struct ac_rtld_upload_info u = {}; u.binary = &binary; u.get_external_symbol = si_get_external_symbol; u.cb_data = &scratch_va; u.rx_va = shader->bo->gpu_address; u.rx_ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL, PIPE_TRANSFER_READ_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED | RADEON_TRANSFER_TEMPORARY); if (!u.rx_ptr) return false; bool ok = ac_rtld_upload(&u); sscreen->ws->buffer_unmap(shader->bo->buf); ac_rtld_close(&binary); return ok; } static void si_shader_dump_disassembly(struct si_screen *screen, const struct si_shader_binary *binary, enum pipe_shader_type shader_type, unsigned wave_size, struct pipe_debug_callback *debug, const char *name, FILE *file) { struct ac_rtld_binary rtld_binary; if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){ .info = &screen->info, .shader_type = tgsi_processor_to_shader_stage(shader_type), .wave_size = wave_size, .num_parts = 1, .elf_ptrs = &binary->elf_buffer, .elf_sizes = &binary->elf_size })) return; const char *disasm; size_t nbytes; if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes)) goto out; if (nbytes > INT_MAX) goto out; if (debug && debug->debug_message) { /* Very long debug messages are cut off, so send the * disassembly one line at a time. This causes more * overhead, but on the plus side it simplifies * parsing of resulting logs. */ pipe_debug_message(debug, SHADER_INFO, "Shader Disassembly Begin"); uint64_t line = 0; while (line < nbytes) { int count = nbytes - line; const char *nl = memchr(disasm + line, '\n', nbytes - line); if (nl) count = nl - (disasm + line); if (count) { pipe_debug_message(debug, SHADER_INFO, "%.*s", count, disasm + line); } line += count + 1; } pipe_debug_message(debug, SHADER_INFO, "Shader Disassembly End"); } if (file) { fprintf(file, "Shader %s disassembly:\n", name); fprintf(file, "%*s", (int)nbytes, disasm); } out: ac_rtld_close(&rtld_binary); } static void si_calculate_max_simd_waves(struct si_shader *shader) { struct si_screen *sscreen = shader->selector->screen; struct ac_shader_config *conf = &shader->config; unsigned num_inputs = shader->selector->info.num_inputs; unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256; unsigned lds_per_wave = 0; unsigned max_simd_waves; max_simd_waves = sscreen->info.max_wave64_per_simd; /* Compute LDS usage for PS. */ switch (shader->selector->type) { case PIPE_SHADER_FRAGMENT: /* The minimum usage per wave is (num_inputs * 48). The maximum * usage is (num_inputs * 48 * 16). * We can get anything in between and it varies between waves. * * The 48 bytes per input for a single primitive is equal to * 4 bytes/component * 4 components/input * 3 points. * * Other stages don't know the size at compile time or don't * allocate LDS per wave, but instead they do it per thread group. */ lds_per_wave = conf->lds_size * lds_increment + align(num_inputs * 48, lds_increment); break; case PIPE_SHADER_COMPUTE: if (shader->selector) { unsigned max_workgroup_size = si_get_max_workgroup_size(shader); lds_per_wave = (conf->lds_size * lds_increment) / DIV_ROUND_UP(max_workgroup_size, sscreen->compute_wave_size); } break; default:; } /* Compute the per-SIMD wave counts. */ if (conf->num_sgprs) { max_simd_waves = MIN2(max_simd_waves, sscreen->info.num_physical_sgprs_per_simd / conf->num_sgprs); } if (conf->num_vgprs) { /* Always print wave limits as Wave64, so that we can compare * Wave32 and Wave64 with shader-db fairly. */ unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd; max_simd_waves = MIN2(max_simd_waves, max_vgprs / conf->num_vgprs); } /* LDS is 64KB per CU (4 SIMDs) on GFX6-9, which is 16KB per SIMD (usage above * 16KB makes some SIMDs unoccupied). * * LDS is 128KB in WGP mode and 64KB in CU mode. Assume the WGP mode is used. */ unsigned max_lds_size = sscreen->info.chip_class >= GFX10 ? 128*1024 : 64*1024; unsigned max_lds_per_simd = max_lds_size / 4; if (lds_per_wave) max_simd_waves = MIN2(max_simd_waves, max_lds_per_simd / lds_per_wave); shader->info.max_simd_waves = max_simd_waves; } void si_shader_dump_stats_for_shader_db(struct si_screen *screen, struct si_shader *shader, struct pipe_debug_callback *debug) { const struct ac_shader_config *conf = &shader->config; if (screen->options.debug_disassembly) si_shader_dump_disassembly(screen, &shader->binary, shader->selector->type, si_get_shader_wave_size(shader), debug, "main", NULL); pipe_debug_message(debug, SHADER_INFO, "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d " "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d " "Spilled VGPRs: %d PrivMem VGPRs: %d", conf->num_sgprs, conf->num_vgprs, si_get_shader_binary_size(screen, shader), conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves, conf->spilled_sgprs, conf->spilled_vgprs, shader->info.private_mem_vgprs); } static void si_shader_dump_stats(struct si_screen *sscreen, struct si_shader *shader, FILE *file, bool check_debug_option) { const struct ac_shader_config *conf = &shader->config; if (!check_debug_option || si_can_dump_shader(sscreen, shader->selector->type)) { if (shader->selector->type == PIPE_SHADER_FRAGMENT) { fprintf(file, "*** SHADER CONFIG ***\n" "SPI_PS_INPUT_ADDR = 0x%04x\n" "SPI_PS_INPUT_ENA = 0x%04x\n", conf->spi_ps_input_addr, conf->spi_ps_input_ena); } fprintf(file, "*** SHADER STATS ***\n" "SGPRS: %d\n" "VGPRS: %d\n" "Spilled SGPRs: %d\n" "Spilled VGPRs: %d\n" "Private memory VGPRs: %d\n" "Code Size: %d bytes\n" "LDS: %d blocks\n" "Scratch: %d bytes per wave\n" "Max Waves: %d\n" "********************\n\n\n", conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs, shader->info.private_mem_vgprs, si_get_shader_binary_size(sscreen, shader), conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves); } } const char *si_get_shader_name(const struct si_shader *shader) { switch (shader->selector->type) { case PIPE_SHADER_VERTEX: if (shader->key.as_es) return "Vertex Shader as ES"; else if (shader->key.as_ls) return "Vertex Shader as LS"; else if (shader->key.opt.vs_as_prim_discard_cs) return "Vertex Shader as Primitive Discard CS"; else if (shader->key.as_ngg) return "Vertex Shader as ESGS"; else return "Vertex Shader as VS"; case PIPE_SHADER_TESS_CTRL: return "Tessellation Control Shader"; case PIPE_SHADER_TESS_EVAL: if (shader->key.as_es) return "Tessellation Evaluation Shader as ES"; else if (shader->key.as_ngg) return "Tessellation Evaluation Shader as ESGS"; else return "Tessellation Evaluation Shader as VS"; case PIPE_SHADER_GEOMETRY: if (shader->is_gs_copy_shader) return "GS Copy Shader as VS"; else return "Geometry Shader"; case PIPE_SHADER_FRAGMENT: return "Pixel Shader"; case PIPE_SHADER_COMPUTE: return "Compute Shader"; default: return "Unknown Shader"; } } void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader, struct pipe_debug_callback *debug, FILE *file, bool check_debug_option) { enum pipe_shader_type shader_type = shader->selector->type; if (!check_debug_option || si_can_dump_shader(sscreen, shader_type)) si_dump_shader_key(shader, file); if (!check_debug_option && shader->binary.llvm_ir_string) { if (shader->previous_stage && shader->previous_stage->binary.llvm_ir_string) { fprintf(file, "\n%s - previous stage - LLVM IR:\n\n", si_get_shader_name(shader)); fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string); } fprintf(file, "\n%s - main shader part - LLVM IR:\n\n", si_get_shader_name(shader)); fprintf(file, "%s\n", shader->binary.llvm_ir_string); } if (!check_debug_option || (si_can_dump_shader(sscreen, shader_type) && !(sscreen->debug_flags & DBG(NO_ASM)))) { unsigned wave_size = si_get_shader_wave_size(shader); fprintf(file, "\n%s:\n", si_get_shader_name(shader)); if (shader->prolog) si_shader_dump_disassembly(sscreen, &shader->prolog->binary, shader_type, wave_size, debug, "prolog", file); if (shader->previous_stage) si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary, shader_type, wave_size, debug, "previous stage", file); if (shader->prolog2) si_shader_dump_disassembly(sscreen, &shader->prolog2->binary, shader_type, wave_size, debug, "prolog2", file); si_shader_dump_disassembly(sscreen, &shader->binary, shader_type, wave_size, debug, "main", file); if (shader->epilog) si_shader_dump_disassembly(sscreen, &shader->epilog->binary, shader_type, wave_size, debug, "epilog", file); fprintf(file, "\n"); } si_shader_dump_stats(sscreen, shader, file, check_debug_option); } static int si_compile_llvm(struct si_screen *sscreen, struct si_shader_binary *binary, struct ac_shader_config *conf, struct ac_llvm_compiler *compiler, LLVMModuleRef mod, struct pipe_debug_callback *debug, enum pipe_shader_type shader_type, unsigned wave_size, const char *name, bool less_optimized) { unsigned count = p_atomic_inc_return(&sscreen->num_compilations); if (si_can_dump_shader(sscreen, shader_type)) { fprintf(stderr, "radeonsi: Compiling shader %d\n", count); if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) { fprintf(stderr, "%s LLVM IR:\n\n", name); ac_dump_module(mod); fprintf(stderr, "\n"); } } if (sscreen->record_llvm_ir) { char *ir = LLVMPrintModuleToString(mod); binary->llvm_ir_string = strdup(ir); LLVMDisposeMessage(ir); } if (!si_replace_shader(count, binary)) { unsigned r = si_llvm_compile(mod, binary, compiler, debug, less_optimized, wave_size); if (r) return r; } struct ac_rtld_binary rtld; if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){ .info = &sscreen->info, .shader_type = tgsi_processor_to_shader_stage(shader_type), .wave_size = wave_size, .num_parts = 1, .elf_ptrs = &binary->elf_buffer, .elf_sizes = &binary->elf_size })) return -1; bool ok = ac_rtld_read_config(&rtld, conf); ac_rtld_close(&rtld); if (!ok) return -1; /* Enable 64-bit and 16-bit denormals, because there is no performance * cost. * * If denormals are enabled, all floating-point output modifiers are * ignored. * * Don't enable denormals for 32-bit floats, because: * - Floating-point output modifiers would be ignored by the hw. * - Some opcodes don't support denormals, such as v_mad_f32. We would * have to stop using those. * - GFX6 & GFX7 would be very slow. */ conf->float_mode |= V_00B028_FP_64_DENORMS; return 0; } /* Generate code for the hardware VS shader stage to go with a geometry shader */ struct si_shader * si_generate_gs_copy_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader_selector *gs_selector, struct pipe_debug_callback *debug) { struct si_shader_context ctx; struct si_shader *shader; LLVMBuilderRef builder; struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS]; struct si_shader_info *gsinfo = &gs_selector->info; int i; shader = CALLOC_STRUCT(si_shader); if (!shader) return NULL; /* We can leave the fence as permanently signaled because the GS copy * shader only becomes visible globally after it has been compiled. */ util_queue_fence_init(&shader->ready); shader->selector = gs_selector; shader->is_gs_copy_shader = true; si_llvm_context_init(&ctx, sscreen, compiler, si_get_wave_size(sscreen, PIPE_SHADER_VERTEX, false, false)); ctx.shader = shader; ctx.type = PIPE_SHADER_VERTEX; builder = ctx.ac.builder; create_function(&ctx); preload_ring_buffers(&ctx); LLVMValueRef voffset = LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id, LLVMConstInt(ctx.i32, 4, 0), ""); /* Fetch the vertex stream ID.*/ LLVMValueRef stream_id; if (!sscreen->use_ngg_streamout && gs_selector->so.num_outputs) stream_id = si_unpack_param(&ctx, ctx.streamout_config, 24, 2); else stream_id = ctx.i32_0; /* Fill in output information. */ for (i = 0; i < gsinfo->num_outputs; ++i) { outputs[i].semantic_name = gsinfo->output_semantic_name[i]; outputs[i].semantic_index = gsinfo->output_semantic_index[i]; for (int chan = 0; chan < 4; chan++) { outputs[i].vertex_stream[chan] = (gsinfo->output_streams[i] >> (2 * chan)) & 3; } } LLVMBasicBlockRef end_bb; LLVMValueRef switch_inst; end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end"); switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4); for (int stream = 0; stream < 4; stream++) { LLVMBasicBlockRef bb; unsigned offset; if (!gsinfo->num_stream_output_components[stream]) continue; if (stream > 0 && !gs_selector->so.num_outputs) continue; bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out"); LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb); LLVMPositionBuilderAtEnd(builder, bb); /* Fetch vertex data from GSVS ring */ offset = 0; for (i = 0; i < gsinfo->num_outputs; ++i) { for (unsigned chan = 0; chan < 4; chan++) { if (!(gsinfo->output_usagemask[i] & (1 << chan)) || outputs[i].vertex_stream[chan] != stream) { outputs[i].values[chan] = LLVMGetUndef(ctx.f32); continue; } LLVMValueRef soffset = LLVMConstInt(ctx.i32, offset * gs_selector->gs_max_out_vertices * 16 * 4, 0); offset++; outputs[i].values[chan] = ac_build_buffer_load(&ctx.ac, ctx.gsvs_ring[0], 1, ctx.i32_0, voffset, soffset, 0, ac_glc | ac_slc, true, false); } } /* Streamout and exports. */ if (!sscreen->use_ngg_streamout && gs_selector->so.num_outputs) { si_llvm_emit_streamout(&ctx, outputs, gsinfo->num_outputs, stream); } if (stream == 0) si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs); LLVMBuildBr(builder, end_bb); } LLVMPositionBuilderAtEnd(builder, end_bb); LLVMBuildRetVoid(ctx.ac.builder); ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */ si_llvm_optimize_module(&ctx); bool ok = false; if (si_compile_llvm(sscreen, &ctx.shader->binary, &ctx.shader->config, ctx.compiler, ctx.ac.module, debug, PIPE_SHADER_GEOMETRY, ctx.ac.wave_size, "GS Copy Shader", false) == 0) { if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY)) fprintf(stderr, "GS Copy Shader:\n"); si_shader_dump(sscreen, ctx.shader, debug, stderr, true); if (!ctx.shader->config.scratch_bytes_per_wave) ok = si_shader_binary_upload(sscreen, ctx.shader, 0); else ok = true; } si_llvm_dispose(&ctx); if (!ok) { FREE(shader); shader = NULL; } else { si_fix_resource_usage(sscreen, shader); } return shader; } static void si_dump_shader_key_vs(const struct si_shader_key *key, const struct si_vs_prolog_bits *prolog, const char *prefix, FILE *f) { fprintf(f, " %s.instance_divisor_is_one = %u\n", prefix, prolog->instance_divisor_is_one); fprintf(f, " %s.instance_divisor_is_fetched = %u\n", prefix, prolog->instance_divisor_is_fetched); fprintf(f, " %s.unpack_instance_id_from_vertex_id = %u\n", prefix, prolog->unpack_instance_id_from_vertex_id); fprintf(f, " %s.ls_vgpr_fix = %u\n", prefix, prolog->ls_vgpr_fix); fprintf(f, " mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode); fprintf(f, " mono.vs.fix_fetch = {"); for (int i = 0; i < SI_MAX_ATTRIBS; i++) { union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i]; if (i) fprintf(f, ", "); if (!fix.bits) fprintf(f, "0"); else fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size, fix.u.num_channels_m1, fix.u.format); } fprintf(f, "}\n"); } static void si_dump_shader_key(const struct si_shader *shader, FILE *f) { const struct si_shader_key *key = &shader->key; enum pipe_shader_type shader_type = shader->selector->type; fprintf(f, "SHADER KEY\n"); switch (shader_type) { case PIPE_SHADER_VERTEX: si_dump_shader_key_vs(key, &key->part.vs.prolog, "part.vs.prolog", f); fprintf(f, " as_es = %u\n", key->as_es); fprintf(f, " as_ls = %u\n", key->as_ls); fprintf(f, " as_ngg = %u\n", key->as_ngg); fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->mono.u.vs_export_prim_id); fprintf(f, " opt.vs_as_prim_discard_cs = %u\n", key->opt.vs_as_prim_discard_cs); fprintf(f, " opt.cs_prim_type = %s\n", tgsi_primitive_names[key->opt.cs_prim_type]); fprintf(f, " opt.cs_indexed = %u\n", key->opt.cs_indexed); fprintf(f, " opt.cs_instancing = %u\n", key->opt.cs_instancing); fprintf(f, " opt.cs_primitive_restart = %u\n", key->opt.cs_primitive_restart); fprintf(f, " opt.cs_provoking_vertex_first = %u\n", key->opt.cs_provoking_vertex_first); fprintf(f, " opt.cs_need_correct_orientation = %u\n", key->opt.cs_need_correct_orientation); fprintf(f, " opt.cs_cull_front = %u\n", key->opt.cs_cull_front); fprintf(f, " opt.cs_cull_back = %u\n", key->opt.cs_cull_back); fprintf(f, " opt.cs_cull_z = %u\n", key->opt.cs_cull_z); fprintf(f, " opt.cs_halfz_clip_space = %u\n", key->opt.cs_halfz_clip_space); break; case PIPE_SHADER_TESS_CTRL: if (shader->selector->screen->info.chip_class >= GFX9) { si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog, "part.tcs.ls_prolog", f); } fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode); fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy); break; case PIPE_SHADER_TESS_EVAL: fprintf(f, " as_es = %u\n", key->as_es); fprintf(f, " as_ngg = %u\n", key->as_ngg); fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->mono.u.vs_export_prim_id); break; case PIPE_SHADER_GEOMETRY: if (shader->is_gs_copy_shader) break; if (shader->selector->screen->info.chip_class >= GFX9 && key->part.gs.es->type == PIPE_SHADER_VERTEX) { si_dump_shader_key_vs(key, &key->part.gs.vs_prolog, "part.gs.vs_prolog", f); } fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix); fprintf(f, " part.gs.prolog.gfx9_prev_is_vs = %u\n", key->part.gs.prolog.gfx9_prev_is_vs); fprintf(f, " as_ngg = %u\n", key->as_ngg); break; case PIPE_SHADER_COMPUTE: break; case PIPE_SHADER_FRAGMENT: fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side); fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors); fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple); fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp); fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp); fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp); fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp); fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp); fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear); fprintf(f, " part.ps.prolog.samplemask_log_ps_iter = %u\n", key->part.ps.prolog.samplemask_log_ps_iter); fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format); fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8); fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10); fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf); fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func); fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one); fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing); fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color); fprintf(f, " mono.u.ps.interpolate_at_sample_force_center = %u\n", key->mono.u.ps.interpolate_at_sample_force_center); fprintf(f, " mono.u.ps.fbfetch_msaa = %u\n", key->mono.u.ps.fbfetch_msaa); fprintf(f, " mono.u.ps.fbfetch_is_1D = %u\n", key->mono.u.ps.fbfetch_is_1D); fprintf(f, " mono.u.ps.fbfetch_layered = %u\n", key->mono.u.ps.fbfetch_layered); break; default: assert(0); } if ((shader_type == PIPE_SHADER_GEOMETRY || shader_type == PIPE_SHADER_TESS_EVAL || shader_type == PIPE_SHADER_VERTEX) && !key->as_es && !key->as_ls) { fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs); fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable); } } static void si_optimize_vs_outputs(struct si_shader_context *ctx) { struct si_shader *shader = ctx->shader; struct si_shader_info *info = &shader->selector->info; if ((ctx->type != PIPE_SHADER_VERTEX && ctx->type != PIPE_SHADER_TESS_EVAL) || shader->key.as_ls || shader->key.as_es) return; ac_optimize_vs_outputs(&ctx->ac, ctx->main_fn, shader->info.vs_output_param_offset, info->num_outputs, &shader->info.nr_param_exports); } static void si_init_exec_from_input(struct si_shader_context *ctx, struct ac_arg param, unsigned bitoffset) { LLVMValueRef args[] = { ac_get_arg(&ctx->ac, param), LLVMConstInt(ctx->i32, bitoffset, 0), }; ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.init.exec.from.input", ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT); } static bool si_vs_needs_prolog(const struct si_shader_selector *sel, const struct si_vs_prolog_bits *key) { /* VGPR initialization fixup for Vega10 and Raven is always done in the * VS prolog. */ return sel->vs_needs_prolog || key->ls_vgpr_fix || key->unpack_instance_id_from_vertex_id; } LLVMValueRef si_is_es_thread(struct si_shader_context *ctx) { /* Return true if the current thread should execute an ES thread. */ return LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), si_unpack_param(ctx, ctx->merged_wave_info, 0, 8), ""); } LLVMValueRef si_is_gs_thread(struct si_shader_context *ctx) { /* Return true if the current thread should execute a GS thread. */ return LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), si_unpack_param(ctx, ctx->merged_wave_info, 8, 8), ""); } static bool si_build_main_function(struct si_shader_context *ctx, struct nir_shader *nir, bool free_nir) { struct si_shader *shader = ctx->shader; struct si_shader_selector *sel = shader->selector; switch (ctx->type) { case PIPE_SHADER_VERTEX: if (shader->key.as_ls) ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue; else if (shader->key.as_es) ctx->abi.emit_outputs = si_llvm_emit_es_epilogue; else if (shader->key.opt.vs_as_prim_discard_cs) ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue; else if (shader->key.as_ngg) ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue; else ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue; ctx->abi.load_base_vertex = get_base_vertex; break; case PIPE_SHADER_TESS_CTRL: ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings; ctx->abi.load_tess_level = si_load_tess_level; ctx->abi.store_tcs_outputs = si_nir_store_output_tcs; ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue; ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in; break; case PIPE_SHADER_TESS_EVAL: ctx->abi.load_tess_varyings = si_nir_load_input_tes; ctx->abi.load_tess_coord = si_load_tess_coord; ctx->abi.load_tess_level = si_load_tess_level; ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in; if (shader->key.as_es) ctx->abi.emit_outputs = si_llvm_emit_es_epilogue; else if (shader->key.as_ngg) ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue; else ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue; break; case PIPE_SHADER_GEOMETRY: ctx->abi.load_inputs = si_nir_load_input_gs; ctx->abi.emit_vertex = si_llvm_emit_vertex; ctx->abi.emit_primitive = si_llvm_emit_primitive; ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue; break; case PIPE_SHADER_FRAGMENT: si_llvm_init_ps_callbacks(ctx); break; case PIPE_SHADER_COMPUTE: ctx->abi.load_local_group_size = get_block_size; break; default: assert(!"Unsupported shader type"); return false; } ctx->abi.load_ubo = load_ubo; ctx->abi.load_ssbo = load_ssbo; create_function(ctx); preload_ring_buffers(ctx); if (ctx->type == PIPE_SHADER_TESS_CTRL && sel->info.tessfactors_are_def_in_all_invocs) { for (unsigned i = 0; i < 6; i++) { ctx->invoc0_tess_factors[i] = ac_build_alloca_undef(&ctx->ac, ctx->i32, ""); } } if (ctx->type == PIPE_SHADER_GEOMETRY) { for (unsigned i = 0; i < 4; i++) { ctx->gs_next_vertex[i] = ac_build_alloca(&ctx->ac, ctx->i32, ""); } if (shader->key.as_ngg) { for (unsigned i = 0; i < 4; ++i) { ctx->gs_curprim_verts[i] = ac_build_alloca(&ctx->ac, ctx->ac.i32, ""); ctx->gs_generated_prims[i] = ac_build_alloca(&ctx->ac, ctx->ac.i32, ""); } unsigned scratch_size = 8; if (sel->so.num_outputs) scratch_size = 44; LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, scratch_size); ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module, ai32, "ngg_scratch", AC_ADDR_SPACE_LDS); LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32)); LLVMSetAlignment(ctx->gs_ngg_scratch, 4); ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS); LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage); LLVMSetAlignment(ctx->gs_ngg_emit, 4); } } if (ctx->type != PIPE_SHADER_GEOMETRY && (shader->key.as_ngg && !shader->key.as_es)) { /* Unconditionally declare scratch space base for streamout and * vertex compaction. Whether space is actually allocated is * determined during linking / PM4 creation. * * Add an extra dword per vertex to ensure an odd stride, which * avoids bank conflicts for SoA accesses. */ if (!gfx10_is_ngg_passthrough(shader)) declare_esgs_ring(ctx); /* This is really only needed when streamout and / or vertex * compaction is enabled. */ if (sel->so.num_outputs && !ctx->gs_ngg_scratch) { LLVMTypeRef asi32 = LLVMArrayType(ctx->i32, 8); ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module, asi32, "ngg_scratch", AC_ADDR_SPACE_LDS); LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32)); LLVMSetAlignment(ctx->gs_ngg_scratch, 4); } } /* For GFX9 merged shaders: * - Set EXEC for the first shader. If the prolog is present, set * EXEC there instead. * - Add a barrier before the second shader. * - In the second shader, reset EXEC to ~0 and wrap the main part in * an if-statement. This is required for correctness in geometry * shaders, to ensure that empty GS waves do not send GS_EMIT and * GS_CUT messages. * * For monolithic merged shaders, the first shader is wrapped in an * if-block together with its prolog in si_build_wrapper_function. * * NGG vertex and tess eval shaders running as the last * vertex/geometry stage handle execution explicitly using * if-statements. */ if (ctx->screen->info.chip_class >= GFX9) { if (!shader->is_monolithic && (shader->key.as_es || shader->key.as_ls) && (ctx->type == PIPE_SHADER_TESS_EVAL || (ctx->type == PIPE_SHADER_VERTEX && !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) { si_init_exec_from_input(ctx, ctx->merged_wave_info, 0); } else if (ctx->type == PIPE_SHADER_TESS_CTRL || ctx->type == PIPE_SHADER_GEOMETRY || (shader->key.as_ngg && !shader->key.as_es)) { LLVMValueRef thread_enabled; bool nested_barrier; if (!shader->is_monolithic || (ctx->type == PIPE_SHADER_TESS_EVAL && (shader->key.as_ngg && !shader->key.as_es))) ac_init_exec_full_mask(&ctx->ac); if (ctx->type == PIPE_SHADER_TESS_CTRL || ctx->type == PIPE_SHADER_GEOMETRY) { if (ctx->type == PIPE_SHADER_GEOMETRY && shader->key.as_ngg) { gfx10_ngg_gs_emit_prologue(ctx); nested_barrier = false; } else { nested_barrier = true; } thread_enabled = si_is_gs_thread(ctx); } else { thread_enabled = si_is_es_thread(ctx); nested_barrier = false; } ctx->merged_wrap_if_entry_block = LLVMGetInsertBlock(ctx->ac.builder); ctx->merged_wrap_if_label = 11500; ac_build_ifcc(&ctx->ac, thread_enabled, ctx->merged_wrap_if_label); if (nested_barrier) { /* Execute a barrier before the second shader in * a merged shader. * * Execute the barrier inside the conditional block, * so that empty waves can jump directly to s_endpgm, * which will also signal the barrier. * * This is possible in gfx9, because an empty wave * for the second shader does not participate in * the epilogue. With NGG, empty waves may still * be required to export data (e.g. GS output vertices), * so we cannot let them exit early. * * If the shader is TCS and the TCS epilog is present * and contains a barrier, it will wait there and then * reach s_endpgm. */ si_llvm_emit_barrier(ctx); } } } if (sel->force_correct_derivs_after_kill) { ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, ""); /* true = don't kill. */ LLVMBuildStore(ctx->ac.builder, ctx->i1true, ctx->postponed_kill); } bool success = si_nir_build_llvm(ctx, nir); if (free_nir) ralloc_free(nir); if (!success) { fprintf(stderr, "Failed to translate shader from NIR to LLVM\n"); return false; } si_llvm_build_ret(ctx, ctx->return_value); return true; } /** * Compute the VS prolog key, which contains all the information needed to * build the VS prolog function, and set shader->info bits where needed. * * \param info Shader info of the vertex shader. * \param num_input_sgprs Number of input SGPRs for the vertex shader. * \param prolog_key Key of the VS prolog * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS. * \param key Output shader part key. */ static void si_get_vs_prolog_key(const struct si_shader_info *info, unsigned num_input_sgprs, const struct si_vs_prolog_bits *prolog_key, struct si_shader *shader_out, union si_shader_part_key *key) { memset(key, 0, sizeof(*key)); key->vs_prolog.states = *prolog_key; key->vs_prolog.num_input_sgprs = num_input_sgprs; key->vs_prolog.num_inputs = info->num_inputs; key->vs_prolog.as_ls = shader_out->key.as_ls; key->vs_prolog.as_es = shader_out->key.as_es; key->vs_prolog.as_ngg = shader_out->key.as_ngg; if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) { key->vs_prolog.as_ls = 1; key->vs_prolog.num_merged_next_stage_vgprs = 2; } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) { key->vs_prolog.as_es = 1; key->vs_prolog.num_merged_next_stage_vgprs = 5; } else if (shader_out->key.as_ngg) { key->vs_prolog.num_merged_next_stage_vgprs = 5; } /* Enable loading the InstanceID VGPR. */ uint16_t input_mask = u_bit_consecutive(0, info->num_inputs); if ((key->vs_prolog.states.instance_divisor_is_one | key->vs_prolog.states.instance_divisor_is_fetched) & input_mask) shader_out->info.uses_instanceid = true; } /** * Build the GS prolog function. Rotate the input vertices for triangle strips * with adjacency. */ static void si_build_gs_prolog_function(struct si_shader_context *ctx, union si_shader_part_key *key) { unsigned num_sgprs, num_vgprs; LLVMBuilderRef builder = ctx->ac.builder; LLVMTypeRef returns[AC_MAX_ARGS]; LLVMValueRef func, ret; memset(&ctx->args, 0, sizeof(ctx->args)); if (ctx->screen->info.chip_class >= GFX9) { if (key->gs_prolog.states.gfx9_prev_is_vs) num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR; else num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR; num_vgprs = 5; /* ES inputs are not needed by GS */ } else { num_sgprs = GFX6_GS_NUM_USER_SGPR + 2; num_vgprs = 8; } for (unsigned i = 0; i < num_sgprs; ++i) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); returns[i] = ctx->i32; } for (unsigned i = 0; i < num_vgprs; ++i) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); returns[num_sgprs + i] = ctx->f32; } /* Create the function. */ si_llvm_create_func(ctx, "gs_prolog", returns, num_sgprs + num_vgprs, 0); func = ctx->main_fn; /* Set the full EXEC mask for the prolog, because we are only fiddling * with registers here. The main shader part will set the correct EXEC * mask. */ if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic) ac_init_exec_full_mask(&ctx->ac); /* Copy inputs to outputs. This should be no-op, as the registers match, * but it will prevent the compiler from overwriting them unintentionally. */ ret = ctx->return_value; for (unsigned i = 0; i < num_sgprs; i++) { LLVMValueRef p = LLVMGetParam(func, i); ret = LLVMBuildInsertValue(builder, ret, p, i, ""); } for (unsigned i = 0; i < num_vgprs; i++) { LLVMValueRef p = LLVMGetParam(func, num_sgprs + i); p = ac_to_float(&ctx->ac, p); ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, ""); } if (key->gs_prolog.states.tri_strip_adj_fix) { /* Remap the input vertices for every other primitive. */ const struct ac_arg gfx6_vtx_params[6] = { { .used = true, .arg_index = num_sgprs }, { .used = true, .arg_index = num_sgprs + 1 }, { .used = true, .arg_index = num_sgprs + 3 }, { .used = true, .arg_index = num_sgprs + 4 }, { .used = true, .arg_index = num_sgprs + 5 }, { .used = true, .arg_index = num_sgprs + 6 }, }; const struct ac_arg gfx9_vtx_params[3] = { { .used = true, .arg_index = num_sgprs }, { .used = true, .arg_index = num_sgprs + 1 }, { .used = true, .arg_index = num_sgprs + 4 }, }; LLVMValueRef vtx_in[6], vtx_out[6]; LLVMValueRef prim_id, rotate; if (ctx->screen->info.chip_class >= GFX9) { for (unsigned i = 0; i < 3; i++) { vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16); vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16); } } else { for (unsigned i = 0; i < 6; i++) vtx_in[i] = ac_get_arg(&ctx->ac, gfx6_vtx_params[i]); } prim_id = LLVMGetParam(func, num_sgprs + 2); rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, ""); for (unsigned i = 0; i < 6; ++i) { LLVMValueRef base, rotated; base = vtx_in[i]; rotated = vtx_in[(i + 4) % 6]; vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, ""); } if (ctx->screen->info.chip_class >= GFX9) { for (unsigned i = 0; i < 3; i++) { LLVMValueRef hi, out; hi = LLVMBuildShl(builder, vtx_out[i*2+1], LLVMConstInt(ctx->i32, 16, 0), ""); out = LLVMBuildOr(builder, vtx_out[i*2], hi, ""); out = ac_to_float(&ctx->ac, out); ret = LLVMBuildInsertValue(builder, ret, out, gfx9_vtx_params[i].arg_index, ""); } } else { for (unsigned i = 0; i < 6; i++) { LLVMValueRef out; out = ac_to_float(&ctx->ac, vtx_out[i]); ret = LLVMBuildInsertValue(builder, ret, out, gfx6_vtx_params[i].arg_index, ""); } } } LLVMBuildRet(builder, ret); } /** * Given a list of shader part functions, build a wrapper function that * runs them in sequence to form a monolithic shader. */ void si_build_wrapper_function(struct si_shader_context *ctx, LLVMValueRef *parts, unsigned num_parts, unsigned main_part, unsigned next_shader_first_part) { LLVMBuilderRef builder = ctx->ac.builder; /* PS epilog has one arg per color component; gfx9 merged shader * prologs need to forward 40 SGPRs. */ LLVMValueRef initial[AC_MAX_ARGS], out[AC_MAX_ARGS]; LLVMTypeRef function_type; unsigned num_first_params; unsigned num_out, initial_num_out; ASSERTED unsigned num_out_sgpr; /* used in debug checks */ ASSERTED unsigned initial_num_out_sgpr; /* used in debug checks */ unsigned num_sgprs, num_vgprs; unsigned gprs; memset(&ctx->args, 0, sizeof(ctx->args)); for (unsigned i = 0; i < num_parts; ++i) { ac_add_function_attr(ctx->ac.context, parts[i], -1, AC_FUNC_ATTR_ALWAYSINLINE); LLVMSetLinkage(parts[i], LLVMPrivateLinkage); } /* The parameters of the wrapper function correspond to those of the * first part in terms of SGPRs and VGPRs, but we use the types of the * main part to get the right types. This is relevant for the * dereferenceable attribute on descriptor table pointers. */ num_sgprs = 0; num_vgprs = 0; function_type = LLVMGetElementType(LLVMTypeOf(parts[0])); num_first_params = LLVMCountParamTypes(function_type); for (unsigned i = 0; i < num_first_params; ++i) { LLVMValueRef param = LLVMGetParam(parts[0], i); if (ac_is_sgpr_param(param)) { assert(num_vgprs == 0); num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4; } else { num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4; } } gprs = 0; while (gprs < num_sgprs + num_vgprs) { LLVMValueRef param = LLVMGetParam(parts[main_part], ctx->args.arg_count); LLVMTypeRef type = LLVMTypeOf(param); unsigned size = ac_get_type_size(type) / 4; /* This is going to get casted anyways, so we don't have to * have the exact same type. But we do have to preserve the * pointer-ness so that LLVM knows about it. */ enum ac_arg_type arg_type = AC_ARG_INT; if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) { arg_type = AC_ARG_CONST_PTR; } ac_add_arg(&ctx->args, gprs < num_sgprs ? AC_ARG_SGPR : AC_ARG_VGPR, size, arg_type, NULL); assert(ac_is_sgpr_param(param) == (gprs < num_sgprs)); assert(gprs + size <= num_sgprs + num_vgprs && (gprs >= num_sgprs || gprs + size <= num_sgprs)); gprs += size; } /* Prepare the return type. */ unsigned num_returns = 0; LLVMTypeRef returns[AC_MAX_ARGS], last_func_type, return_type; last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1])); return_type = LLVMGetReturnType(last_func_type); switch (LLVMGetTypeKind(return_type)) { case LLVMStructTypeKind: num_returns = LLVMCountStructElementTypes(return_type); assert(num_returns <= ARRAY_SIZE(returns)); LLVMGetStructElementTypes(return_type, returns); break; case LLVMVoidTypeKind: break; default: unreachable("unexpected type"); } si_llvm_create_func(ctx, "wrapper", returns, num_returns, si_get_max_workgroup_size(ctx->shader)); if (si_is_merged_shader(ctx)) ac_init_exec_full_mask(&ctx->ac); /* Record the arguments of the function as if they were an output of * a previous part. */ num_out = 0; num_out_sgpr = 0; for (unsigned i = 0; i < ctx->args.arg_count; ++i) { LLVMValueRef param = LLVMGetParam(ctx->main_fn, i); LLVMTypeRef param_type = LLVMTypeOf(param); LLVMTypeRef out_type = ctx->args.args[i].file == AC_ARG_SGPR ? ctx->i32 : ctx->f32; unsigned size = ac_get_type_size(param_type) / 4; if (size == 1) { if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) { param = LLVMBuildPtrToInt(builder, param, ctx->i32, ""); param_type = ctx->i32; } if (param_type != out_type) param = LLVMBuildBitCast(builder, param, out_type, ""); out[num_out++] = param; } else { LLVMTypeRef vector_type = LLVMVectorType(out_type, size); if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) { param = LLVMBuildPtrToInt(builder, param, ctx->i64, ""); param_type = ctx->i64; } if (param_type != vector_type) param = LLVMBuildBitCast(builder, param, vector_type, ""); for (unsigned j = 0; j < size; ++j) out[num_out++] = LLVMBuildExtractElement( builder, param, LLVMConstInt(ctx->i32, j, 0), ""); } if (ctx->args.args[i].file == AC_ARG_SGPR) num_out_sgpr = num_out; } memcpy(initial, out, sizeof(out)); initial_num_out = num_out; initial_num_out_sgpr = num_out_sgpr; /* Now chain the parts. */ LLVMValueRef ret = NULL; for (unsigned part = 0; part < num_parts; ++part) { LLVMValueRef in[AC_MAX_ARGS]; LLVMTypeRef ret_type; unsigned out_idx = 0; unsigned num_params = LLVMCountParams(parts[part]); /* Merged shaders are executed conditionally depending * on the number of enabled threads passed in the input SGPRs. */ if (is_multi_part_shader(ctx) && part == 0) { LLVMValueRef ena, count = initial[3]; count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->i32, 0x7f, 0), ""); ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, ""); ac_build_ifcc(&ctx->ac, ena, 6506); } /* Derive arguments for the next part from outputs of the * previous one. */ for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) { LLVMValueRef param; LLVMTypeRef param_type; bool is_sgpr; unsigned param_size; LLVMValueRef arg = NULL; param = LLVMGetParam(parts[part], param_idx); param_type = LLVMTypeOf(param); param_size = ac_get_type_size(param_type) / 4; is_sgpr = ac_is_sgpr_param(param); if (is_sgpr) { ac_add_function_attr(ctx->ac.context, parts[part], param_idx + 1, AC_FUNC_ATTR_INREG); } else if (out_idx < num_out_sgpr) { /* Skip returned SGPRs the current part doesn't * declare on the input. */ out_idx = num_out_sgpr; } assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out)); if (param_size == 1) arg = out[out_idx]; else arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size); if (LLVMTypeOf(arg) != param_type) { if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) { if (LLVMGetPointerAddressSpace(param_type) == AC_ADDR_SPACE_CONST_32BIT) { arg = LLVMBuildBitCast(builder, arg, ctx->i32, ""); arg = LLVMBuildIntToPtr(builder, arg, param_type, ""); } else { arg = LLVMBuildBitCast(builder, arg, ctx->i64, ""); arg = LLVMBuildIntToPtr(builder, arg, param_type, ""); } } else { arg = LLVMBuildBitCast(builder, arg, param_type, ""); } } in[param_idx] = arg; out_idx += param_size; } ret = ac_build_call(&ctx->ac, parts[part], in, num_params); if (is_multi_part_shader(ctx) && part + 1 == next_shader_first_part) { ac_build_endif(&ctx->ac, 6506); /* The second half of the merged shader should use * the inputs from the toplevel (wrapper) function, * not the return value from the last call. * * That's because the last call was executed condi- * tionally, so we can't consume it in the main * block. */ memcpy(out, initial, sizeof(initial)); num_out = initial_num_out; num_out_sgpr = initial_num_out_sgpr; continue; } /* Extract the returned GPRs. */ ret_type = LLVMTypeOf(ret); num_out = 0; num_out_sgpr = 0; if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) { assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind); unsigned ret_size = LLVMCountStructElementTypes(ret_type); for (unsigned i = 0; i < ret_size; ++i) { LLVMValueRef val = LLVMBuildExtractValue(builder, ret, i, ""); assert(num_out < ARRAY_SIZE(out)); out[num_out++] = val; if (LLVMTypeOf(val) == ctx->i32) { assert(num_out_sgpr + 1 == num_out); num_out_sgpr = num_out; } } } } /* Return the value from the last part. */ if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind) LLVMBuildRetVoid(builder); else LLVMBuildRet(builder, ret); } static bool si_should_optimize_less(struct ac_llvm_compiler *compiler, struct si_shader_selector *sel) { if (!compiler->low_opt_passes) return false; /* Assume a slow CPU. */ assert(!sel->screen->info.has_dedicated_vram && sel->screen->info.chip_class <= GFX8); /* For a crazy dEQP test containing 2597 memory opcodes, mostly * buffer stores. */ return sel->type == PIPE_SHADER_COMPUTE && sel->info.num_memory_instructions > 1000; } static struct nir_shader *get_nir_shader(struct si_shader_selector *sel, bool *free_nir) { *free_nir = false; if (sel->nir) { return sel->nir; } else if (sel->nir_binary) { struct pipe_screen *screen = &sel->screen->b; const void *options = screen->get_compiler_options(screen, PIPE_SHADER_IR_NIR, sel->type); struct blob_reader blob_reader; blob_reader_init(&blob_reader, sel->nir_binary, sel->nir_size); *free_nir = true; return nir_deserialize(NULL, options, &blob_reader); } return NULL; } int si_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct pipe_debug_callback *debug) { struct si_shader_selector *sel = shader->selector; struct si_shader_context ctx; bool free_nir; struct nir_shader *nir = get_nir_shader(sel, &free_nir); int r = -1; /* Dump NIR before doing NIR->LLVM conversion in case the * conversion fails. */ if (si_can_dump_shader(sscreen, sel->type) && !(sscreen->debug_flags & DBG(NO_NIR))) { nir_print_shader(nir, stderr); si_dump_streamout(&sel->so); } si_llvm_context_init(&ctx, sscreen, compiler, si_get_shader_wave_size(shader)); si_llvm_context_set_ir(&ctx, shader); memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED, sizeof(shader->info.vs_output_param_offset)); shader->info.uses_instanceid = sel->info.uses_instanceid; if (!si_build_main_function(&ctx, nir, free_nir)) { si_llvm_dispose(&ctx); return -1; } if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) { LLVMValueRef parts[2]; bool need_prolog = si_vs_needs_prolog(sel, &shader->key.part.vs.prolog); parts[1] = ctx.main_fn; if (need_prolog) { union si_shader_part_key prolog_key; si_get_vs_prolog_key(&sel->info, shader->info.num_input_sgprs, &shader->key.part.vs.prolog, shader, &prolog_key); prolog_key.vs_prolog.is_monolithic = true; si_build_vs_prolog_function(&ctx, &prolog_key); parts[0] = ctx.main_fn; } si_build_wrapper_function(&ctx, parts + !need_prolog, 1 + need_prolog, need_prolog, 0); if (ctx.shader->key.opt.vs_as_prim_discard_cs) si_build_prim_discard_compute_shader(&ctx); } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) { if (sscreen->info.chip_class >= GFX9) { struct si_shader_selector *ls = shader->key.part.tcs.ls; LLVMValueRef parts[4]; bool vs_needs_prolog = si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog); /* TCS main part */ parts[2] = ctx.main_fn; /* TCS epilog */ union si_shader_part_key tcs_epilog_key; memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key)); tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog; si_build_tcs_epilog_function(&ctx, &tcs_epilog_key); parts[3] = ctx.main_fn; /* VS as LS main part */ nir = get_nir_shader(ls, &free_nir); struct si_shader shader_ls = {}; shader_ls.selector = ls; shader_ls.key.as_ls = 1; shader_ls.key.mono = shader->key.mono; shader_ls.key.opt = shader->key.opt; shader_ls.is_monolithic = true; si_llvm_context_set_ir(&ctx, &shader_ls); if (!si_build_main_function(&ctx, nir, free_nir)) { si_llvm_dispose(&ctx); return -1; } shader->info.uses_instanceid |= ls->info.uses_instanceid; parts[1] = ctx.main_fn; /* LS prolog */ if (vs_needs_prolog) { union si_shader_part_key vs_prolog_key; si_get_vs_prolog_key(&ls->info, shader_ls.info.num_input_sgprs, &shader->key.part.tcs.ls_prolog, shader, &vs_prolog_key); vs_prolog_key.vs_prolog.is_monolithic = true; si_build_vs_prolog_function(&ctx, &vs_prolog_key); parts[0] = ctx.main_fn; } /* Reset the shader context. */ ctx.shader = shader; ctx.type = PIPE_SHADER_TESS_CTRL; si_build_wrapper_function(&ctx, parts + !vs_needs_prolog, 4 - !vs_needs_prolog, vs_needs_prolog, vs_needs_prolog ? 2 : 1); } else { LLVMValueRef parts[2]; union si_shader_part_key epilog_key; parts[0] = ctx.main_fn; memset(&epilog_key, 0, sizeof(epilog_key)); epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog; si_build_tcs_epilog_function(&ctx, &epilog_key); parts[1] = ctx.main_fn; si_build_wrapper_function(&ctx, parts, 2, 0, 0); } } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) { if (ctx.screen->info.chip_class >= GFX9) { struct si_shader_selector *es = shader->key.part.gs.es; LLVMValueRef es_prolog = NULL; LLVMValueRef es_main = NULL; LLVMValueRef gs_prolog = NULL; LLVMValueRef gs_main = ctx.main_fn; /* GS prolog */ union si_shader_part_key gs_prolog_key; memset(&gs_prolog_key, 0, sizeof(gs_prolog_key)); gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog; gs_prolog_key.gs_prolog.is_monolithic = true; gs_prolog_key.gs_prolog.as_ngg = shader->key.as_ngg; si_build_gs_prolog_function(&ctx, &gs_prolog_key); gs_prolog = ctx.main_fn; /* ES main part */ nir = get_nir_shader(es, &free_nir); struct si_shader shader_es = {}; shader_es.selector = es; shader_es.key.as_es = 1; shader_es.key.as_ngg = shader->key.as_ngg; shader_es.key.mono = shader->key.mono; shader_es.key.opt = shader->key.opt; shader_es.is_monolithic = true; si_llvm_context_set_ir(&ctx, &shader_es); if (!si_build_main_function(&ctx, nir, free_nir)) { si_llvm_dispose(&ctx); return -1; } shader->info.uses_instanceid |= es->info.uses_instanceid; es_main = ctx.main_fn; /* ES prolog */ if (es->type == PIPE_SHADER_VERTEX && si_vs_needs_prolog(es, &shader->key.part.gs.vs_prolog)) { union si_shader_part_key vs_prolog_key; si_get_vs_prolog_key(&es->info, shader_es.info.num_input_sgprs, &shader->key.part.gs.vs_prolog, shader, &vs_prolog_key); vs_prolog_key.vs_prolog.is_monolithic = true; si_build_vs_prolog_function(&ctx, &vs_prolog_key); es_prolog = ctx.main_fn; } /* Reset the shader context. */ ctx.shader = shader; ctx.type = PIPE_SHADER_GEOMETRY; /* Prepare the array of shader parts. */ LLVMValueRef parts[4]; unsigned num_parts = 0, main_part, next_first_part; if (es_prolog) parts[num_parts++] = es_prolog; parts[main_part = num_parts++] = es_main; parts[next_first_part = num_parts++] = gs_prolog; parts[num_parts++] = gs_main; si_build_wrapper_function(&ctx, parts, num_parts, main_part, next_first_part); } else { LLVMValueRef parts[2]; union si_shader_part_key prolog_key; parts[1] = ctx.main_fn; memset(&prolog_key, 0, sizeof(prolog_key)); prolog_key.gs_prolog.states = shader->key.part.gs.prolog; si_build_gs_prolog_function(&ctx, &prolog_key); parts[0] = ctx.main_fn; si_build_wrapper_function(&ctx, parts, 2, 1, 0); } } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) { si_llvm_build_monolithic_ps(&ctx, shader); } si_llvm_optimize_module(&ctx); /* Post-optimization transformations and analysis. */ si_optimize_vs_outputs(&ctx); if ((debug && debug->debug_message) || si_can_dump_shader(sscreen, ctx.type)) { ctx.shader->info.private_mem_vgprs = ac_count_scratch_private_memory(ctx.main_fn); } /* Make sure the input is a pointer and not integer followed by inttoptr. */ assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) == LLVMPointerTypeKind); /* Compile to bytecode. */ r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler, ctx.ac.module, debug, ctx.type, ctx.ac.wave_size, si_get_shader_name(shader), si_should_optimize_less(compiler, shader->selector)); si_llvm_dispose(&ctx); if (r) { fprintf(stderr, "LLVM failed to compile shader\n"); return r; } /* Validate SGPR and VGPR usage for compute to detect compiler bugs. * LLVM 3.9svn has this bug. */ if (sel->type == PIPE_SHADER_COMPUTE) { unsigned wave_size = sscreen->compute_wave_size; unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd * (wave_size == 32 ? 2 : 1); unsigned max_sgprs = sscreen->info.num_physical_sgprs_per_simd; unsigned max_sgprs_per_wave = 128; unsigned simds_per_tg = 4; /* assuming WGP mode on gfx10 */ unsigned threads_per_tg = si_get_max_workgroup_size(shader); unsigned waves_per_tg = DIV_ROUND_UP(threads_per_tg, wave_size); unsigned waves_per_simd = DIV_ROUND_UP(waves_per_tg, simds_per_tg); max_vgprs = max_vgprs / waves_per_simd; max_sgprs = MIN2(max_sgprs / waves_per_simd, max_sgprs_per_wave); if (shader->config.num_sgprs > max_sgprs || shader->config.num_vgprs > max_vgprs) { fprintf(stderr, "LLVM failed to compile a shader correctly: " "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n", shader->config.num_sgprs, shader->config.num_vgprs, max_sgprs, max_vgprs); /* Just terminate the process, because dependent * shaders can hang due to bad input data, but use * the env var to allow shader-db to work. */ if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false)) abort(); } } /* Add the scratch offset to input SGPRs. */ if (shader->config.scratch_bytes_per_wave && !si_is_merged_shader(&ctx)) shader->info.num_input_sgprs += 1; /* scratch byte offset */ /* Calculate the number of fragment input VGPRs. */ if (ctx.type == PIPE_SHADER_FRAGMENT) { shader->info.num_input_vgprs = ac_get_fs_input_vgpr_cnt(&shader->config, &shader->info.face_vgpr_index, &shader->info.ancillary_vgpr_index); } si_calculate_max_simd_waves(shader); si_shader_dump_stats_for_shader_db(sscreen, shader, debug); return 0; } /** * Create, compile and return a shader part (prolog or epilog). * * \param sscreen screen * \param list list of shader parts of the same category * \param type shader type * \param key shader part key * \param prolog whether the part being requested is a prolog * \param tm LLVM target machine * \param debug debug callback * \param build the callback responsible for building the main function * \return non-NULL on success */ static struct si_shader_part * si_get_shader_part(struct si_screen *sscreen, struct si_shader_part **list, enum pipe_shader_type type, bool prolog, union si_shader_part_key *key, struct ac_llvm_compiler *compiler, struct pipe_debug_callback *debug, void (*build)(struct si_shader_context *, union si_shader_part_key *), const char *name) { struct si_shader_part *result; simple_mtx_lock(&sscreen->shader_parts_mutex); /* Find existing. */ for (result = *list; result; result = result->next) { if (memcmp(&result->key, key, sizeof(*key)) == 0) { simple_mtx_unlock(&sscreen->shader_parts_mutex); return result; } } /* Compile a new one. */ result = CALLOC_STRUCT(si_shader_part); result->key = *key; struct si_shader shader = {}; switch (type) { case PIPE_SHADER_VERTEX: shader.key.as_ls = key->vs_prolog.as_ls; shader.key.as_es = key->vs_prolog.as_es; shader.key.as_ngg = key->vs_prolog.as_ngg; break; case PIPE_SHADER_TESS_CTRL: assert(!prolog); shader.key.part.tcs.epilog = key->tcs_epilog.states; break; case PIPE_SHADER_GEOMETRY: assert(prolog); shader.key.as_ngg = key->gs_prolog.as_ngg; break; case PIPE_SHADER_FRAGMENT: if (prolog) shader.key.part.ps.prolog = key->ps_prolog.states; else shader.key.part.ps.epilog = key->ps_epilog.states; break; default: unreachable("bad shader part"); } struct si_shader_context ctx; si_llvm_context_init(&ctx, sscreen, compiler, si_get_wave_size(sscreen, type, shader.key.as_ngg, shader.key.as_es)); ctx.shader = &shader; ctx.type = type; build(&ctx, key); /* Compile. */ si_llvm_optimize_module(&ctx); if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler, ctx.ac.module, debug, ctx.type, ctx.ac.wave_size, name, false)) { FREE(result); result = NULL; goto out; } result->next = *list; *list = result; out: si_llvm_dispose(&ctx); simple_mtx_unlock(&sscreen->shader_parts_mutex); return result; } /** * Build the vertex shader prolog function. * * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values). * All inputs are returned unmodified. The vertex load indices are * stored after them, which will be used by the API VS for fetching inputs. * * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are: * input_v0, * input_v1, * input_v2, * input_v3, * (VertexID + BaseVertex), * (InstanceID + StartInstance), * (InstanceID / 2 + StartInstance) */ static void si_build_vs_prolog_function(struct si_shader_context *ctx, union si_shader_part_key *key) { LLVMTypeRef *returns; LLVMValueRef ret, func; int num_returns, i; unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs; unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4; struct ac_arg input_sgpr_param[key->vs_prolog.num_input_sgprs]; struct ac_arg input_vgpr_param[9]; LLVMValueRef input_vgprs[9]; unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs + num_input_vgprs; unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0; memset(&ctx->args, 0, sizeof(ctx->args)); /* 4 preloaded VGPRs + vertex load indices as prolog outputs */ returns = alloca((num_all_input_regs + key->vs_prolog.num_inputs) * sizeof(LLVMTypeRef)); num_returns = 0; /* Declare input and output SGPRs. */ for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &input_sgpr_param[i]); returns[num_returns++] = ctx->i32; } struct ac_arg merged_wave_info = input_sgpr_param[3]; /* Preloaded VGPRs (outputs must be floats) */ for (i = 0; i < num_input_vgprs; i++) { ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &input_vgpr_param[i]); returns[num_returns++] = ctx->f32; } /* Vertex load indices. */ for (i = 0; i < key->vs_prolog.num_inputs; i++) returns[num_returns++] = ctx->f32; /* Create the function. */ si_llvm_create_func(ctx, "vs_prolog", returns, num_returns, 0); func = ctx->main_fn; for (i = 0; i < num_input_vgprs; i++) { input_vgprs[i] = ac_get_arg(&ctx->ac, input_vgpr_param[i]); } if (key->vs_prolog.num_merged_next_stage_vgprs) { if (!key->vs_prolog.is_monolithic) si_init_exec_from_input(ctx, merged_wave_info, 0); if (key->vs_prolog.as_ls && ctx->screen->info.has_ls_vgpr_init_bug) { /* If there are no HS threads, SPI loads the LS VGPRs * starting at VGPR 0. Shift them back to where they * belong. */ LLVMValueRef has_hs_threads = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, si_unpack_param(ctx, input_sgpr_param[3], 8, 8), ctx->i32_0, ""); for (i = 4; i > 0; --i) { input_vgprs[i + 1] = LLVMBuildSelect(ctx->ac.builder, has_hs_threads, input_vgprs[i + 1], input_vgprs[i - 1], ""); } } } unsigned vertex_id_vgpr = first_vs_vgpr; unsigned instance_id_vgpr = ctx->screen->info.chip_class >= GFX10 ? first_vs_vgpr + 3 : first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1); ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr]; ctx->abi.instance_id = input_vgprs[instance_id_vgpr]; /* InstanceID = VertexID >> 16; * VertexID = VertexID & 0xffff; */ if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) { ctx->abi.instance_id = LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id, LLVMConstInt(ctx->i32, 16, 0), ""); ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id, LLVMConstInt(ctx->i32, 0xffff, 0), ""); } /* Copy inputs to outputs. This should be no-op, as the registers match, * but it will prevent the compiler from overwriting them unintentionally. */ ret = ctx->return_value; for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) { LLVMValueRef p = LLVMGetParam(func, i); ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, ""); } for (i = 0; i < num_input_vgprs; i++) { LLVMValueRef p = input_vgprs[i]; if (i == vertex_id_vgpr) p = ctx->abi.vertex_id; else if (i == instance_id_vgpr) p = ctx->abi.instance_id; p = ac_to_float(&ctx->ac, p); ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, key->vs_prolog.num_input_sgprs + i, ""); } /* Compute vertex load indices from instance divisors. */ LLVMValueRef instance_divisor_constbuf = NULL; if (key->vs_prolog.states.instance_divisor_is_fetched) { LLVMValueRef list = si_prolog_get_rw_buffers(ctx); LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0); instance_divisor_constbuf = ac_build_load_to_sgpr(&ctx->ac, list, buf_index); } for (i = 0; i < key->vs_prolog.num_inputs; i++) { bool divisor_is_one = key->vs_prolog.states.instance_divisor_is_one & (1u << i); bool divisor_is_fetched = key->vs_prolog.states.instance_divisor_is_fetched & (1u << i); LLVMValueRef index = NULL; if (divisor_is_one) { index = ctx->abi.instance_id; } else if (divisor_is_fetched) { LLVMValueRef udiv_factors[4]; for (unsigned j = 0; j < 4; j++) { udiv_factors[j] = si_buffer_load_const(ctx, instance_divisor_constbuf, LLVMConstInt(ctx->i32, i*16 + j*4, 0)); udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]); } /* The faster NUW version doesn't work when InstanceID == UINT_MAX. * Such InstanceID might not be achievable in a reasonable time though. */ index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id, udiv_factors[0], udiv_factors[1], udiv_factors[2], udiv_factors[3]); } if (divisor_is_one || divisor_is_fetched) { /* Add StartInstance. */ index = LLVMBuildAdd(ctx->ac.builder, index, LLVMGetParam(ctx->main_fn, user_sgpr_base + SI_SGPR_START_INSTANCE), ""); } else { /* VertexID + BaseVertex */ index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id, LLVMGetParam(func, user_sgpr_base + SI_SGPR_BASE_VERTEX), ""); } index = ac_to_float(&ctx->ac, index); ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index, ctx->args.arg_count + i, ""); } si_llvm_build_ret(ctx, ret); } static bool si_get_vs_prolog(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct pipe_debug_callback *debug, struct si_shader *main_part, const struct si_vs_prolog_bits *key) { struct si_shader_selector *vs = main_part->selector; if (!si_vs_needs_prolog(vs, key)) return true; /* Get the prolog. */ union si_shader_part_key prolog_key; si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs, key, shader, &prolog_key); shader->prolog = si_get_shader_part(sscreen, &sscreen->vs_prologs, PIPE_SHADER_VERTEX, true, &prolog_key, compiler, debug, si_build_vs_prolog_function, "Vertex Shader Prolog"); return shader->prolog != NULL; } /** * Select and compile (or reuse) vertex shader parts (prolog & epilog). */ static bool si_shader_select_vs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct pipe_debug_callback *debug) { return si_get_vs_prolog(sscreen, compiler, shader, debug, shader, &shader->key.part.vs.prolog); } /** * Compile the TCS epilog function. This writes tesselation factors to memory * based on the output primitive type of the tesselator (determined by TES). */ static void si_build_tcs_epilog_function(struct si_shader_context *ctx, union si_shader_part_key *key) { memset(&ctx->args, 0, sizeof(ctx->args)); if (ctx->screen->info.chip_class >= GFX9) { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* wave info */ ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_factor_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout); } else { ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset); ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_factor_offset); } ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* VGPR gap */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* VGPR gap */ struct ac_arg rel_patch_id; /* patch index within the wave (REL_PATCH_ID) */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &rel_patch_id); struct ac_arg invocation_id; /* invocation ID within the patch */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &invocation_id); struct ac_arg tcs_out_current_patch_data_offset; /* LDS offset where tess factors should be loaded from */ ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &tcs_out_current_patch_data_offset); struct ac_arg tess_factors[6]; for (unsigned i = 0; i < 6; i++) ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &tess_factors[i]); /* Create the function. */ si_llvm_create_func(ctx, "tcs_epilog", NULL, 0, ctx->screen->info.chip_class >= GFX7 ? 128 : 0); ac_declare_lds_as_pointer(&ctx->ac); LLVMValueRef invoc0_tess_factors[6]; for (unsigned i = 0; i < 6; i++) invoc0_tess_factors[i] = ac_get_arg(&ctx->ac, tess_factors[i]); si_write_tess_factors(ctx, ac_get_arg(&ctx->ac, rel_patch_id), ac_get_arg(&ctx->ac, invocation_id), ac_get_arg(&ctx->ac, tcs_out_current_patch_data_offset), invoc0_tess_factors, invoc0_tess_factors + 4); LLVMBuildRetVoid(ctx->ac.builder); } /** * Select and compile (or reuse) TCS parts (epilog). */ static bool si_shader_select_tcs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct pipe_debug_callback *debug) { if (sscreen->info.chip_class >= GFX9) { struct si_shader *ls_main_part = shader->key.part.tcs.ls->main_shader_part_ls; if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part, &shader->key.part.tcs.ls_prolog)) return false; shader->previous_stage = ls_main_part; } /* Get the epilog. */ union si_shader_part_key epilog_key; memset(&epilog_key, 0, sizeof(epilog_key)); epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog; shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs, PIPE_SHADER_TESS_CTRL, false, &epilog_key, compiler, debug, si_build_tcs_epilog_function, "Tessellation Control Shader Epilog"); return shader->epilog != NULL; } /** * Select and compile (or reuse) GS parts (prolog). */ static bool si_shader_select_gs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct pipe_debug_callback *debug) { if (sscreen->info.chip_class >= GFX9) { struct si_shader *es_main_part; enum pipe_shader_type es_type = shader->key.part.gs.es->type; if (shader->key.as_ngg) es_main_part = shader->key.part.gs.es->main_shader_part_ngg_es; else es_main_part = shader->key.part.gs.es->main_shader_part_es; if (es_type == PIPE_SHADER_VERTEX && !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part, &shader->key.part.gs.vs_prolog)) return false; shader->previous_stage = es_main_part; } if (!shader->key.part.gs.prolog.tri_strip_adj_fix) return true; union si_shader_part_key prolog_key; memset(&prolog_key, 0, sizeof(prolog_key)); prolog_key.gs_prolog.states = shader->key.part.gs.prolog; prolog_key.gs_prolog.as_ngg = shader->key.as_ngg; shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs, PIPE_SHADER_GEOMETRY, true, &prolog_key, compiler, debug, si_build_gs_prolog_function, "Geometry Shader Prolog"); return shader->prolog2 != NULL; } /** * Compute the PS prolog key, which contains all the information needed to * build the PS prolog function, and set related bits in shader->config. */ void si_get_ps_prolog_key(struct si_shader *shader, union si_shader_part_key *key, bool separate_prolog) { struct si_shader_info *info = &shader->selector->info; memset(key, 0, sizeof(*key)); key->ps_prolog.states = shader->key.part.ps.prolog; key->ps_prolog.colors_read = info->colors_read; key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs; key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs; key->ps_prolog.wqm = info->uses_derivatives && (key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp || key->ps_prolog.states.force_linear_sample_interp || key->ps_prolog.states.force_persp_center_interp || key->ps_prolog.states.force_linear_center_interp || key->ps_prolog.states.bc_optimize_for_persp || key->ps_prolog.states.bc_optimize_for_linear); key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index; if (info->colors_read) { unsigned *color = shader->selector->color_attr_index; if (shader->key.part.ps.prolog.color_two_side) { /* BCOLORs are stored after the last input. */ key->ps_prolog.num_interp_inputs = info->num_inputs; key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index; if (separate_prolog) shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1); } for (unsigned i = 0; i < 2; i++) { unsigned interp = info->input_interpolate[color[i]]; unsigned location = info->input_interpolate_loc[color[i]]; if (!(info->colors_read & (0xf << i*4))) continue; key->ps_prolog.color_attr_index[i] = color[i]; if (shader->key.part.ps.prolog.flatshade_colors && interp == TGSI_INTERPOLATE_COLOR) interp = TGSI_INTERPOLATE_CONSTANT; switch (interp) { case TGSI_INTERPOLATE_CONSTANT: key->ps_prolog.color_interp_vgpr_index[i] = -1; break; case TGSI_INTERPOLATE_PERSPECTIVE: case TGSI_INTERPOLATE_COLOR: /* Force the interpolation location for colors here. */ if (shader->key.part.ps.prolog.force_persp_sample_interp) location = TGSI_INTERPOLATE_LOC_SAMPLE; if (shader->key.part.ps.prolog.force_persp_center_interp) location = TGSI_INTERPOLATE_LOC_CENTER; switch (location) { case TGSI_INTERPOLATE_LOC_SAMPLE: key->ps_prolog.color_interp_vgpr_index[i] = 0; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1); } break; case TGSI_INTERPOLATE_LOC_CENTER: key->ps_prolog.color_interp_vgpr_index[i] = 2; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1); } break; case TGSI_INTERPOLATE_LOC_CENTROID: key->ps_prolog.color_interp_vgpr_index[i] = 4; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTROID_ENA(1); } break; default: assert(0); } break; case TGSI_INTERPOLATE_LINEAR: /* Force the interpolation location for colors here. */ if (shader->key.part.ps.prolog.force_linear_sample_interp) location = TGSI_INTERPOLATE_LOC_SAMPLE; if (shader->key.part.ps.prolog.force_linear_center_interp) location = TGSI_INTERPOLATE_LOC_CENTER; /* The VGPR assignment for non-monolithic shaders * works because InitialPSInputAddr is set on the * main shader and PERSP_PULL_MODEL is never used. */ switch (location) { case TGSI_INTERPOLATE_LOC_SAMPLE: key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 6 : 9; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1); } break; case TGSI_INTERPOLATE_LOC_CENTER: key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 8 : 11; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1); } break; case TGSI_INTERPOLATE_LOC_CENTROID: key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 10 : 13; if (separate_prolog) { shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTROID_ENA(1); } break; default: assert(0); } break; default: assert(0); } } } } /** * Check whether a PS prolog is required based on the key. */ bool si_need_ps_prolog(const union si_shader_part_key *key) { return key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp || key->ps_prolog.states.force_linear_sample_interp || key->ps_prolog.states.force_persp_center_interp || key->ps_prolog.states.force_linear_center_interp || key->ps_prolog.states.bc_optimize_for_persp || key->ps_prolog.states.bc_optimize_for_linear || key->ps_prolog.states.poly_stipple || key->ps_prolog.states.samplemask_log_ps_iter; } /** * Compute the PS epilog key, which contains all the information needed to * build the PS epilog function. */ void si_get_ps_epilog_key(struct si_shader *shader, union si_shader_part_key *key) { struct si_shader_info *info = &shader->selector->info; memset(key, 0, sizeof(*key)); key->ps_epilog.colors_written = info->colors_written; key->ps_epilog.writes_z = info->writes_z; key->ps_epilog.writes_stencil = info->writes_stencil; key->ps_epilog.writes_samplemask = info->writes_samplemask; key->ps_epilog.states = shader->key.part.ps.epilog; } /** * Select and compile (or reuse) pixel shader parts (prolog & epilog). */ static bool si_shader_select_ps_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct pipe_debug_callback *debug) { union si_shader_part_key prolog_key; union si_shader_part_key epilog_key; /* Get the prolog. */ si_get_ps_prolog_key(shader, &prolog_key, true); /* The prolog is a no-op if these aren't set. */ if (si_need_ps_prolog(&prolog_key)) { shader->prolog = si_get_shader_part(sscreen, &sscreen->ps_prologs, PIPE_SHADER_FRAGMENT, true, &prolog_key, compiler, debug, si_llvm_build_ps_prolog, "Fragment Shader Prolog"); if (!shader->prolog) return false; } /* Get the epilog. */ si_get_ps_epilog_key(shader, &epilog_key); shader->epilog = si_get_shader_part(sscreen, &sscreen->ps_epilogs, PIPE_SHADER_FRAGMENT, false, &epilog_key, compiler, debug, si_llvm_build_ps_epilog, "Fragment Shader Epilog"); if (!shader->epilog) return false; /* Enable POS_FIXED_PT if polygon stippling is enabled. */ if (shader->key.part.ps.prolog.poly_stipple) { shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1); assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr)); } /* Set up the enable bits for per-sample shading if needed. */ if (shader->key.part.ps.prolog.force_persp_sample_interp && (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) || G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) { shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA; shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA; shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1); } if (shader->key.part.ps.prolog.force_linear_sample_interp && (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) { shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA; shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA; shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1); } if (shader->key.part.ps.prolog.force_persp_center_interp && (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) || G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) { shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA; shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA; shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1); } if (shader->key.part.ps.prolog.force_linear_center_interp && (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) { shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA; shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA; shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1); } /* POW_W_FLOAT requires that one of the perspective weights is enabled. */ if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) && !(shader->config.spi_ps_input_ena & 0xf)) { shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1); assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr)); } /* At least one pair of interpolation weights must be enabled. */ if (!(shader->config.spi_ps_input_ena & 0x7f)) { shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1); assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr)); } /* Samplemask fixup requires the sample ID. */ if (shader->key.part.ps.prolog.samplemask_log_ps_iter) { shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1); assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)); } /* The sample mask input is always enabled, because the API shader always * passes it through to the epilog. Disable it here if it's unused. */ if (!shader->key.part.ps.epilog.poly_line_smoothing && !shader->selector->info.reads_samplemask) shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA; return true; } void si_multiwave_lds_size_workaround(struct si_screen *sscreen, unsigned *lds_size) { /* If tessellation is all offchip and on-chip GS isn't used, this * workaround is not needed. */ return; /* SPI barrier management bug: * Make sure we have at least 4k of LDS in use to avoid the bug. * It applies to workgroup sizes of more than one wavefront. */ if (sscreen->info.family == CHIP_BONAIRE || sscreen->info.family == CHIP_KABINI) *lds_size = MAX2(*lds_size, 8); } static void si_fix_resource_usage(struct si_screen *sscreen, struct si_shader *shader) { unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */ shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs); if (shader->selector->type == PIPE_SHADER_COMPUTE && si_get_max_workgroup_size(shader) > sscreen->compute_wave_size) { si_multiwave_lds_size_workaround(sscreen, &shader->config.lds_size); } } bool si_create_shader_variant(struct si_screen *sscreen, struct ac_llvm_compiler *compiler, struct si_shader *shader, struct pipe_debug_callback *debug) { struct si_shader_selector *sel = shader->selector; struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key); int r; /* LS, ES, VS are compiled on demand if the main part hasn't been * compiled for that stage. * * GS are compiled on demand if the main part hasn't been compiled * for the chosen NGG-ness. * * Vertex shaders are compiled on demand when a vertex fetch * workaround must be applied. */ if (shader->is_monolithic) { /* Monolithic shader (compiled as a whole, has many variants, * may take a long time to compile). */ r = si_compile_shader(sscreen, compiler, shader, debug); if (r) return false; } else { /* The shader consists of several parts: * * - the middle part is the user shader, it has 1 variant only * and it was compiled during the creation of the shader * selector * - the prolog part is inserted at the beginning * - the epilog part is inserted at the end * * The prolog and epilog have many (but simple) variants. * * Starting with gfx9, geometry and tessellation control * shaders also contain the prolog and user shader parts of * the previous shader stage. */ if (!mainp) return false; /* Copy the compiled shader data over. */ shader->is_binary_shared = true; shader->binary = mainp->binary; shader->config = mainp->config; shader->info.num_input_sgprs = mainp->info.num_input_sgprs; shader->info.num_input_vgprs = mainp->info.num_input_vgprs; shader->info.face_vgpr_index = mainp->info.face_vgpr_index; shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index; memcpy(shader->info.vs_output_param_offset, mainp->info.vs_output_param_offset, sizeof(mainp->info.vs_output_param_offset)); shader->info.uses_instanceid = mainp->info.uses_instanceid; shader->info.nr_pos_exports = mainp->info.nr_pos_exports; shader->info.nr_param_exports = mainp->info.nr_param_exports; /* Select prologs and/or epilogs. */ switch (sel->type) { case PIPE_SHADER_VERTEX: if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug)) return false; break; case PIPE_SHADER_TESS_CTRL: if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug)) return false; break; case PIPE_SHADER_TESS_EVAL: break; case PIPE_SHADER_GEOMETRY: if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug)) return false; break; case PIPE_SHADER_FRAGMENT: if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug)) return false; /* Make sure we have at least as many VGPRs as there * are allocated inputs. */ shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->info.num_input_vgprs); break; default:; } /* Update SGPR and VGPR counts. */ if (shader->prolog) { shader->config.num_sgprs = MAX2(shader->config.num_sgprs, shader->prolog->config.num_sgprs); shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->prolog->config.num_vgprs); } if (shader->previous_stage) { shader->config.num_sgprs = MAX2(shader->config.num_sgprs, shader->previous_stage->config.num_sgprs); shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->previous_stage->config.num_vgprs); shader->config.spilled_sgprs = MAX2(shader->config.spilled_sgprs, shader->previous_stage->config.spilled_sgprs); shader->config.spilled_vgprs = MAX2(shader->config.spilled_vgprs, shader->previous_stage->config.spilled_vgprs); shader->info.private_mem_vgprs = MAX2(shader->info.private_mem_vgprs, shader->previous_stage->info.private_mem_vgprs); shader->config.scratch_bytes_per_wave = MAX2(shader->config.scratch_bytes_per_wave, shader->previous_stage->config.scratch_bytes_per_wave); shader->info.uses_instanceid |= shader->previous_stage->info.uses_instanceid; } if (shader->prolog2) { shader->config.num_sgprs = MAX2(shader->config.num_sgprs, shader->prolog2->config.num_sgprs); shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->prolog2->config.num_vgprs); } if (shader->epilog) { shader->config.num_sgprs = MAX2(shader->config.num_sgprs, shader->epilog->config.num_sgprs); shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->epilog->config.num_vgprs); } si_calculate_max_simd_waves(shader); } if (shader->key.as_ngg) { assert(!shader->key.as_es && !shader->key.as_ls); gfx10_ngg_calculate_subgroup_info(shader); } else if (sscreen->info.chip_class >= GFX9 && sel->type == PIPE_SHADER_GEOMETRY) { gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info); } si_fix_resource_usage(sscreen, shader); si_shader_dump(sscreen, shader, debug, stderr, true); /* Upload. */ if (!si_shader_binary_upload(sscreen, shader, 0)) { fprintf(stderr, "LLVM failed to upload shader\n"); return false; } return true; } void si_shader_destroy(struct si_shader *shader) { if (shader->scratch_bo) si_resource_reference(&shader->scratch_bo, NULL); si_resource_reference(&shader->bo, NULL); if (!shader->is_binary_shared) si_shader_binary_clean(&shader->binary); free(shader->shader_log); }