/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Tom Stellard * Michel Dänzer * Christian König */ #include "gallivm/lp_bld_const.h" #include "gallivm/lp_bld_gather.h" #include "gallivm/lp_bld_intr.h" #include "gallivm/lp_bld_logic.h" #include "gallivm/lp_bld_arit.h" #include "gallivm/lp_bld_bitarit.h" #include "gallivm/lp_bld_flow.h" #include "radeon/r600_cs.h" #include "radeon/radeon_llvm.h" #include "radeon/radeon_elf_util.h" #include "radeon/radeon_llvm_emit.h" #include "util/u_memory.h" #include "util/u_pstipple.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "tgsi/tgsi_dump.h" #include "si_pipe.h" #include "si_shader.h" #include "sid.h" #include static const char *scratch_rsrc_dword0_symbol = "SCRATCH_RSRC_DWORD0"; static const char *scratch_rsrc_dword1_symbol = "SCRATCH_RSRC_DWORD1"; struct si_shader_output_values { LLVMValueRef values[4]; unsigned name; unsigned sid; }; struct si_shader_context { struct radeon_llvm_context radeon_bld; struct si_shader *shader; struct si_screen *screen; unsigned type; /* TGSI_PROCESSOR_* specifies the type of shader. */ int param_streamout_config; int param_streamout_write_index; int param_streamout_offset[4]; int param_vertex_id; int param_rel_auto_id; int param_vs_prim_id; int param_instance_id; int param_tes_u; int param_tes_v; int param_tes_rel_patch_id; int param_tes_patch_id; int param_es2gs_offset; LLVMTargetMachineRef tm; LLVMValueRef const_md; LLVMValueRef const_resource[SI_NUM_CONST_BUFFERS]; LLVMValueRef lds; LLVMValueRef *constants[SI_NUM_CONST_BUFFERS]; LLVMValueRef resources[SI_NUM_SAMPLER_VIEWS]; LLVMValueRef samplers[SI_NUM_SAMPLER_STATES]; LLVMValueRef so_buffers[4]; LLVMValueRef esgs_ring; LLVMValueRef gsvs_ring[4]; LLVMValueRef gs_next_vertex[4]; }; static struct si_shader_context * si_shader_context( struct lp_build_tgsi_context * bld_base) { return (struct si_shader_context *)bld_base; } #define PERSPECTIVE_BASE 0 #define LINEAR_BASE 9 #define SAMPLE_OFFSET 0 #define CENTER_OFFSET 2 #define CENTROID_OFSET 4 #define USE_SGPR_MAX_SUFFIX_LEN 5 #define CONST_ADDR_SPACE 2 #define LOCAL_ADDR_SPACE 3 #define USER_SGPR_ADDR_SPACE 8 #define SENDMSG_GS 2 #define SENDMSG_GS_DONE 3 #define SENDMSG_GS_OP_NOP (0 << 4) #define SENDMSG_GS_OP_CUT (1 << 4) #define SENDMSG_GS_OP_EMIT (2 << 4) #define SENDMSG_GS_OP_EMIT_CUT (3 << 4) /** * Returns a unique index for a semantic name and index. The index must be * less than 64, so that a 64-bit bitmask of used inputs or outputs can be * calculated. */ unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index) { switch (semantic_name) { case TGSI_SEMANTIC_POSITION: return 0; case TGSI_SEMANTIC_PSIZE: return 1; case TGSI_SEMANTIC_CLIPDIST: assert(index <= 1); return 2 + index; case TGSI_SEMANTIC_GENERIC: if (index <= 63-4) return 4 + index; else /* same explanation as in the default statement, * the only user hitting this is st/nine. */ return 0; /* patch indices are completely separate and thus start from 0 */ case TGSI_SEMANTIC_TESSOUTER: return 0; case TGSI_SEMANTIC_TESSINNER: return 1; case TGSI_SEMANTIC_PATCH: return 2 + index; default: /* Don't fail here. The result of this function is only used * for LS, TCS, TES, and GS, where legacy GL semantics can't * occur, but this function is called for all vertex shaders * before it's known whether LS will be compiled or not. */ return 0; } } /** * Given a semantic name and index of a parameter and a mask of used parameters * (inputs or outputs), return the index of the parameter in the list of all * used parameters. * * For example, assume this list of parameters: * POSITION, PSIZE, GENERIC0, GENERIC2 * which has the mask: * 11000000000101 * Then: * querying POSITION returns 0, * querying PSIZE returns 1, * querying GENERIC0 returns 2, * querying GENERIC2 returns 3. * * Which can be used as an offset to a parameter buffer in units of vec4s. */ static int get_param_index(unsigned semantic_name, unsigned index, uint64_t mask) { unsigned unique_index = si_shader_io_get_unique_index(semantic_name, index); int i, param_index = 0; /* If not present... */ if (!((1llu << unique_index) & mask)) return -1; for (i = 0; mask; i++) { uint64_t bit = 1llu << i; if (bit & mask) { if (i == unique_index) return param_index; mask &= ~bit; param_index++; } } assert(!"unreachable"); return -1; } /** * Get the value of a shader input parameter and extract a bitfield. */ static LLVMValueRef unpack_param(struct si_shader_context *si_shader_ctx, unsigned param, unsigned rshift, unsigned bitwidth) { struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm; LLVMValueRef value = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, param); if (rshift) value = LLVMBuildLShr(gallivm->builder, value, lp_build_const_int32(gallivm, rshift), ""); if (rshift + bitwidth < 32) { unsigned mask = (1 << bitwidth) - 1; value = LLVMBuildAnd(gallivm->builder, value, lp_build_const_int32(gallivm, mask), ""); } return value; } static LLVMValueRef get_rel_patch_id(struct si_shader_context *si_shader_ctx) { switch (si_shader_ctx->type) { case TGSI_PROCESSOR_TESS_CTRL: return unpack_param(si_shader_ctx, SI_PARAM_REL_IDS, 0, 8); case TGSI_PROCESSOR_TESS_EVAL: return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_tes_rel_patch_id); default: assert(0); return NULL; } } /* Tessellation shaders pass outputs to the next shader using LDS. * * LS outputs = TCS inputs * TCS outputs = TES inputs * * The LDS layout is: * - TCS inputs for patch 0 * - TCS inputs for patch 1 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2) * - ... * - TCS outputs for patch 0 = get_tcs_out_patch0_offset * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset * - TCS outputs for patch 1 * - Per-patch TCS outputs for patch 1 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2) * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2) * - ... * * All three shaders VS(LS), TCS, TES share the same LDS space. */ static LLVMValueRef get_tcs_in_patch_stride(struct si_shader_context *si_shader_ctx) { if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX) return unpack_param(si_shader_ctx, SI_PARAM_LS_OUT_LAYOUT, 0, 13); else if (si_shader_ctx->type == TGSI_PROCESSOR_TESS_CTRL) return unpack_param(si_shader_ctx, SI_PARAM_TCS_IN_LAYOUT, 0, 13); else { assert(0); return NULL; } } static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *si_shader_ctx) { return unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 0, 13); } static LLVMValueRef get_tcs_out_patch0_offset(struct si_shader_context *si_shader_ctx) { return lp_build_mul_imm(&si_shader_ctx->radeon_bld.soa.bld_base.uint_bld, unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_OFFSETS, 0, 16), 4); } static LLVMValueRef get_tcs_out_patch0_patch_data_offset(struct si_shader_context *si_shader_ctx) { return lp_build_mul_imm(&si_shader_ctx->radeon_bld.soa.bld_base.uint_bld, unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_OFFSETS, 16, 16), 4); } static LLVMValueRef get_tcs_in_current_patch_offset(struct si_shader_context *si_shader_ctx) { struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm; LLVMValueRef patch_stride = get_tcs_in_patch_stride(si_shader_ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(si_shader_ctx); return LLVMBuildMul(gallivm->builder, patch_stride, rel_patch_id, ""); } static LLVMValueRef get_tcs_out_current_patch_offset(struct si_shader_context *si_shader_ctx) { struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm; LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(si_shader_ctx); LLVMValueRef patch_stride = get_tcs_out_patch_stride(si_shader_ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(si_shader_ctx); return LLVMBuildAdd(gallivm->builder, patch0_offset, LLVMBuildMul(gallivm->builder, patch_stride, rel_patch_id, ""), ""); } static LLVMValueRef get_tcs_out_current_patch_data_offset(struct si_shader_context *si_shader_ctx) { struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm; LLVMValueRef patch0_patch_data_offset = get_tcs_out_patch0_patch_data_offset(si_shader_ctx); LLVMValueRef patch_stride = get_tcs_out_patch_stride(si_shader_ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(si_shader_ctx); return LLVMBuildAdd(gallivm->builder, patch0_patch_data_offset, LLVMBuildMul(gallivm->builder, patch_stride, rel_patch_id, ""), ""); } static void build_indexed_store(struct si_shader_context *si_shader_ctx, LLVMValueRef base_ptr, LLVMValueRef index, LLVMValueRef value) { struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef indices[2], pointer; indices[0] = bld_base->uint_bld.zero; indices[1] = index; pointer = LLVMBuildGEP(gallivm->builder, base_ptr, indices, 2, ""); LLVMBuildStore(gallivm->builder, value, pointer); } /** * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad. * It's equivalent to doing a load from &base_ptr[index]. * * \param base_ptr Where the array starts. * \param index The element index into the array. */ static LLVMValueRef build_indexed_load(struct si_shader_context *si_shader_ctx, LLVMValueRef base_ptr, LLVMValueRef index) { struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef indices[2], pointer; indices[0] = bld_base->uint_bld.zero; indices[1] = index; pointer = LLVMBuildGEP(gallivm->builder, base_ptr, indices, 2, ""); return LLVMBuildLoad(gallivm->builder, pointer, ""); } /** * Do a load from &base_ptr[index], but also add a flag that it's loading * a constant. */ static LLVMValueRef build_indexed_load_const( struct si_shader_context * si_shader_ctx, LLVMValueRef base_ptr, LLVMValueRef index) { LLVMValueRef result = build_indexed_load(si_shader_ctx, base_ptr, index); LLVMSetMetadata(result, 1, si_shader_ctx->const_md); return result; } static LLVMValueRef get_instance_index_for_fetch( struct radeon_llvm_context * radeon_bld, unsigned divisor) { struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); struct gallivm_state * gallivm = radeon_bld->soa.bld_base.base.gallivm; LLVMValueRef result = LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_instance_id); /* The division must be done before START_INSTANCE is added. */ if (divisor > 1) result = LLVMBuildUDiv(gallivm->builder, result, lp_build_const_int32(gallivm, divisor), ""); return LLVMBuildAdd(gallivm->builder, result, LLVMGetParam( radeon_bld->main_fn, SI_PARAM_START_INSTANCE), ""); } static void declare_input_vs( struct radeon_llvm_context *radeon_bld, unsigned input_index, const struct tgsi_full_declaration *decl) { struct lp_build_context *base = &radeon_bld->soa.bld_base.base; struct gallivm_state *gallivm = base->gallivm; struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); unsigned divisor = si_shader_ctx->shader->key.vs.instance_divisors[input_index]; unsigned chan; LLVMValueRef t_list_ptr; LLVMValueRef t_offset; LLVMValueRef t_list; LLVMValueRef attribute_offset; LLVMValueRef buffer_index; LLVMValueRef args[3]; LLVMTypeRef vec4_type; LLVMValueRef input; /* Load the T list */ t_list_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_VERTEX_BUFFER); t_offset = lp_build_const_int32(gallivm, input_index); t_list = build_indexed_load_const(si_shader_ctx, t_list_ptr, t_offset); /* Build the attribute offset */ attribute_offset = lp_build_const_int32(gallivm, 0); if (divisor) { /* Build index from instance ID, start instance and divisor */ si_shader_ctx->shader->uses_instanceid = true; buffer_index = get_instance_index_for_fetch(&si_shader_ctx->radeon_bld, divisor); } else { /* Load the buffer index for vertices. */ LLVMValueRef vertex_id = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_vertex_id); LLVMValueRef base_vertex = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BASE_VERTEX); buffer_index = LLVMBuildAdd(gallivm->builder, base_vertex, vertex_id, ""); } vec4_type = LLVMVectorType(base->elem_type, 4); args[0] = t_list; args[1] = attribute_offset; args[2] = buffer_index; input = lp_build_intrinsic(gallivm->builder, "llvm.SI.vs.load.input", vec4_type, args, 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); /* Break up the vec4 into individual components */ for (chan = 0; chan < 4; chan++) { LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); /* XXX: Use a helper function for this. There is one in * tgsi_llvm.c. */ si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, chan)] = LLVMBuildExtractElement(gallivm->builder, input, llvm_chan, ""); } } static LLVMValueRef get_primitive_id(struct lp_build_tgsi_context *bld_base, unsigned swizzle) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); if (swizzle > 0) return bld_base->uint_bld.zero; switch (si_shader_ctx->type) { case TGSI_PROCESSOR_VERTEX: return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_vs_prim_id); case TGSI_PROCESSOR_TESS_CTRL: return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_PATCH_ID); case TGSI_PROCESSOR_TESS_EVAL: return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_tes_patch_id); case TGSI_PROCESSOR_GEOMETRY: return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_PRIMITIVE_ID); default: assert(0); return bld_base->uint_bld.zero; } } /** * Return the value of tgsi_ind_register for indexing. * This is the indirect index with the constant offset added to it. */ static LLVMValueRef get_indirect_index(struct si_shader_context *si_shader_ctx, const struct tgsi_ind_register *ind, int rel_index) { struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm; LLVMValueRef result; result = si_shader_ctx->radeon_bld.soa.addr[ind->Index][ind->Swizzle]; result = LLVMBuildLoad(gallivm->builder, result, ""); result = LLVMBuildAdd(gallivm->builder, result, lp_build_const_int32(gallivm, rel_index), ""); return result; } /** * Calculate a dword address given an input or output register and a stride. */ static LLVMValueRef get_dw_address(struct si_shader_context *si_shader_ctx, const struct tgsi_full_dst_register *dst, const struct tgsi_full_src_register *src, LLVMValueRef vertex_dw_stride, LLVMValueRef base_addr) { struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm; struct tgsi_shader_info *info = &si_shader_ctx->shader->selector->info; ubyte *name, *index, *array_first; int first, param; struct tgsi_full_dst_register reg; /* Set the register description. The address computation is the same * for sources and destinations. */ if (src) { reg.Register.File = src->Register.File; reg.Register.Index = src->Register.Index; reg.Register.Indirect = src->Register.Indirect; reg.Register.Dimension = src->Register.Dimension; reg.Indirect = src->Indirect; reg.Dimension = src->Dimension; reg.DimIndirect = src->DimIndirect; } else reg = *dst; /* If the register is 2-dimensional (e.g. an array of vertices * in a primitive), calculate the base address of the vertex. */ if (reg.Register.Dimension) { LLVMValueRef index; if (reg.Dimension.Indirect) index = get_indirect_index(si_shader_ctx, ®.DimIndirect, reg.Dimension.Index); else index = lp_build_const_int32(gallivm, reg.Dimension.Index); base_addr = LLVMBuildAdd(gallivm->builder, base_addr, LLVMBuildMul(gallivm->builder, index, vertex_dw_stride, ""), ""); } /* Get information about the register. */ if (reg.Register.File == TGSI_FILE_INPUT) { name = info->input_semantic_name; index = info->input_semantic_index; array_first = info->input_array_first; } else if (reg.Register.File == TGSI_FILE_OUTPUT) { name = info->output_semantic_name; index = info->output_semantic_index; array_first = info->output_array_first; } else { assert(0); return NULL; } if (reg.Register.Indirect) { /* Add the relative address of the element. */ LLVMValueRef ind_index; if (reg.Indirect.ArrayID) first = array_first[reg.Indirect.ArrayID]; else first = reg.Register.Index; ind_index = get_indirect_index(si_shader_ctx, ®.Indirect, reg.Register.Index - first); base_addr = LLVMBuildAdd(gallivm->builder, base_addr, LLVMBuildMul(gallivm->builder, ind_index, lp_build_const_int32(gallivm, 4), ""), ""); param = si_shader_io_get_unique_index(name[first], index[first]); } else { param = si_shader_io_get_unique_index(name[reg.Register.Index], index[reg.Register.Index]); } /* Add the base address of the element. */ return LLVMBuildAdd(gallivm->builder, base_addr, lp_build_const_int32(gallivm, param * 4), ""); } /** * Load from LDS. * * \param type output value type * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4 * \param dw_addr address in dwords */ static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base, enum tgsi_opcode_type type, unsigned swizzle, LLVMValueRef dw_addr) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef value; if (swizzle == ~0) { LLVMValueRef values[TGSI_NUM_CHANNELS]; for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) values[chan] = lds_load(bld_base, type, chan, dw_addr); return lp_build_gather_values(bld_base->base.gallivm, values, TGSI_NUM_CHANNELS); } dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr, lp_build_const_int32(gallivm, swizzle)); value = build_indexed_load(si_shader_ctx, si_shader_ctx->lds, dw_addr); return LLVMBuildBitCast(gallivm->builder, value, tgsi2llvmtype(bld_base, type), ""); } /** * Store to LDS. * * \param swizzle offset (typically 0..3) * \param dw_addr address in dwords * \param value value to store */ static void lds_store(struct lp_build_tgsi_context * bld_base, unsigned swizzle, LLVMValueRef dw_addr, LLVMValueRef value) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr, lp_build_const_int32(gallivm, swizzle)); value = LLVMBuildBitCast(gallivm->builder, value, LLVMInt32TypeInContext(gallivm->context), ""); build_indexed_store(si_shader_ctx, si_shader_ctx->lds, dw_addr, value); } static LLVMValueRef fetch_input_tcs( struct lp_build_tgsi_context *bld_base, const struct tgsi_full_src_register *reg, enum tgsi_opcode_type type, unsigned swizzle) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); LLVMValueRef dw_addr, stride; stride = unpack_param(si_shader_ctx, SI_PARAM_TCS_IN_LAYOUT, 13, 8); dw_addr = get_tcs_in_current_patch_offset(si_shader_ctx); dw_addr = get_dw_address(si_shader_ctx, NULL, reg, stride, dw_addr); return lds_load(bld_base, type, swizzle, dw_addr); } static LLVMValueRef fetch_output_tcs( struct lp_build_tgsi_context *bld_base, const struct tgsi_full_src_register *reg, enum tgsi_opcode_type type, unsigned swizzle) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); LLVMValueRef dw_addr, stride; if (reg->Register.Dimension) { stride = unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8); dw_addr = get_tcs_out_current_patch_offset(si_shader_ctx); dw_addr = get_dw_address(si_shader_ctx, NULL, reg, stride, dw_addr); } else { dw_addr = get_tcs_out_current_patch_data_offset(si_shader_ctx); dw_addr = get_dw_address(si_shader_ctx, NULL, reg, NULL, dw_addr); } return lds_load(bld_base, type, swizzle, dw_addr); } static LLVMValueRef fetch_input_tes( struct lp_build_tgsi_context *bld_base, const struct tgsi_full_src_register *reg, enum tgsi_opcode_type type, unsigned swizzle) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); LLVMValueRef dw_addr, stride; if (reg->Register.Dimension) { stride = unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8); dw_addr = get_tcs_out_current_patch_offset(si_shader_ctx); dw_addr = get_dw_address(si_shader_ctx, NULL, reg, stride, dw_addr); } else { dw_addr = get_tcs_out_current_patch_data_offset(si_shader_ctx); dw_addr = get_dw_address(si_shader_ctx, NULL, reg, NULL, dw_addr); } return lds_load(bld_base, type, swizzle, dw_addr); } static void store_output_tcs(struct lp_build_tgsi_context * bld_base, const struct tgsi_full_instruction * inst, const struct tgsi_opcode_info * info, LLVMValueRef dst[4]) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); const struct tgsi_full_dst_register *reg = &inst->Dst[0]; unsigned chan_index; LLVMValueRef dw_addr, stride; /* Only handle per-patch and per-vertex outputs here. * Vectors will be lowered to scalars and this function will be called again. */ if (reg->Register.File != TGSI_FILE_OUTPUT || (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) { radeon_llvm_emit_store(bld_base, inst, info, dst); return; } if (reg->Register.Dimension) { stride = unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8); dw_addr = get_tcs_out_current_patch_offset(si_shader_ctx); dw_addr = get_dw_address(si_shader_ctx, reg, NULL, stride, dw_addr); } else { dw_addr = get_tcs_out_current_patch_data_offset(si_shader_ctx); dw_addr = get_dw_address(si_shader_ctx, reg, NULL, NULL, dw_addr); } TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) { LLVMValueRef value = dst[chan_index]; if (inst->Instruction.Saturate) value = radeon_llvm_saturate(bld_base, value); lds_store(bld_base, chan_index, dw_addr, value); } } static LLVMValueRef fetch_input_gs( struct lp_build_tgsi_context *bld_base, const struct tgsi_full_src_register *reg, enum tgsi_opcode_type type, unsigned swizzle) { struct lp_build_context *base = &bld_base->base; struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct si_shader *shader = si_shader_ctx->shader; struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; struct gallivm_state *gallivm = base->gallivm; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef vtx_offset; LLVMValueRef args[9]; unsigned vtx_offset_param; struct tgsi_shader_info *info = &shader->selector->info; unsigned semantic_name = info->input_semantic_name[reg->Register.Index]; unsigned semantic_index = info->input_semantic_index[reg->Register.Index]; if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID) return get_primitive_id(bld_base, swizzle); if (!reg->Register.Dimension) return NULL; if (swizzle == ~0) { LLVMValueRef values[TGSI_NUM_CHANNELS]; unsigned chan; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { values[chan] = fetch_input_gs(bld_base, reg, type, chan); } return lp_build_gather_values(bld_base->base.gallivm, values, TGSI_NUM_CHANNELS); } /* Get the vertex offset parameter */ vtx_offset_param = reg->Dimension.Index; if (vtx_offset_param < 2) { vtx_offset_param += SI_PARAM_VTX0_OFFSET; } else { assert(vtx_offset_param < 6); vtx_offset_param += SI_PARAM_VTX2_OFFSET - 2; } vtx_offset = lp_build_mul_imm(uint, LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, vtx_offset_param), 4); args[0] = si_shader_ctx->esgs_ring; args[1] = vtx_offset; args[2] = lp_build_const_int32(gallivm, (get_param_index(semantic_name, semantic_index, shader->selector->inputs_read) * 4 + swizzle) * 256); args[3] = uint->zero; args[4] = uint->one; /* OFFEN */ args[5] = uint->zero; /* IDXEN */ args[6] = uint->one; /* GLC */ args[7] = uint->zero; /* SLC */ args[8] = uint->zero; /* TFE */ return LLVMBuildBitCast(gallivm->builder, lp_build_intrinsic(gallivm->builder, "llvm.SI.buffer.load.dword.i32.i32", i32, args, 9, LLVMReadOnlyAttribute | LLVMNoUnwindAttribute), tgsi2llvmtype(bld_base, type), ""); } static int lookup_interp_param_index(unsigned interpolate, unsigned location) { switch (interpolate) { case TGSI_INTERPOLATE_CONSTANT: return 0; case TGSI_INTERPOLATE_LINEAR: if (location == TGSI_INTERPOLATE_LOC_SAMPLE) return SI_PARAM_LINEAR_SAMPLE; else if (location == TGSI_INTERPOLATE_LOC_CENTROID) return SI_PARAM_LINEAR_CENTROID; else return SI_PARAM_LINEAR_CENTER; break; case TGSI_INTERPOLATE_COLOR: case TGSI_INTERPOLATE_PERSPECTIVE: if (location == TGSI_INTERPOLATE_LOC_SAMPLE) return SI_PARAM_PERSP_SAMPLE; else if (location == TGSI_INTERPOLATE_LOC_CENTROID) return SI_PARAM_PERSP_CENTROID; else return SI_PARAM_PERSP_CENTER; break; default: fprintf(stderr, "Warning: Unhandled interpolation mode.\n"); return -1; } } static void declare_input_fs( struct radeon_llvm_context *radeon_bld, unsigned input_index, const struct tgsi_full_declaration *decl) { struct lp_build_context *base = &radeon_bld->soa.bld_base.base; struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); struct si_shader *shader = si_shader_ctx->shader; struct lp_build_context *uint = &radeon_bld->soa.bld_base.uint_bld; struct gallivm_state *gallivm = base->gallivm; LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context); LLVMValueRef main_fn = radeon_bld->main_fn; LLVMValueRef interp_param = NULL; int interp_param_idx; const char * intr_name; /* This value is: * [15:0] NewPrimMask (Bit mask for each quad. It is set it the * quad begins a new primitive. Bit 0 always needs * to be unset) * [32:16] ParamOffset * */ LLVMValueRef params = LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK); LLVMValueRef attr_number; unsigned chan; if (decl->Semantic.Name == TGSI_SEMANTIC_POSITION) { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); radeon_bld->inputs[soa_index] = LLVMGetParam(main_fn, SI_PARAM_POS_X_FLOAT + chan); if (chan == 3) /* RCP for fragcoord.w */ radeon_bld->inputs[soa_index] = LLVMBuildFDiv(gallivm->builder, lp_build_const_float(gallivm, 1.0f), radeon_bld->inputs[soa_index], ""); } return; } if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) { radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 0)] = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 1)] = radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 2)] = lp_build_const_float(gallivm, 0.0f); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 3)] = lp_build_const_float(gallivm, 1.0f); return; } shader->ps_input_param_offset[input_index] = shader->nparam++; attr_number = lp_build_const_int32(gallivm, shader->ps_input_param_offset[input_index]); shader->ps_input_interpolate[input_index] = decl->Interp.Interpolate; interp_param_idx = lookup_interp_param_index(decl->Interp.Interpolate, decl->Interp.Location); if (interp_param_idx == -1) return; else if (interp_param_idx) interp_param = LLVMGetParam(main_fn, interp_param_idx); /* fs.constant returns the param from the middle vertex, so it's not * really useful for flat shading. It's meant to be used for custom * interpolation (but the intrinsic can't fetch from the other two * vertices). * * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state * to do the right thing. The only reason we use fs.constant is that * fs.interp cannot be used on integers, because they can be equal * to NaN. */ intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant"; if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR && si_shader_ctx->shader->key.ps.color_two_side) { LLVMValueRef args[4]; LLVMValueRef face, is_face_positive; LLVMValueRef back_attr_number = lp_build_const_int32(gallivm, shader->ps_input_param_offset[input_index] + 1); face = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE); is_face_positive = LLVMBuildFCmp(gallivm->builder, LLVMRealOGT, face, lp_build_const_float(gallivm, 0.0f), ""); args[2] = params; args[3] = interp_param; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); LLVMValueRef front, back; args[0] = llvm_chan; args[1] = attr_number; front = lp_build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); args[1] = back_attr_number; back = lp_build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); radeon_bld->inputs[soa_index] = LLVMBuildSelect(gallivm->builder, is_face_positive, front, back, ""); } shader->nparam++; } else if (decl->Semantic.Name == TGSI_SEMANTIC_FOG) { LLVMValueRef args[4]; args[0] = uint->zero; args[1] = attr_number; args[2] = params; args[3] = interp_param; radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 0)] = lp_build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 1)] = radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 2)] = lp_build_const_float(gallivm, 0.0f); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 3)] = lp_build_const_float(gallivm, 1.0f); } else { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { LLVMValueRef args[4]; LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); args[0] = llvm_chan; args[1] = attr_number; args[2] = params; args[3] = interp_param; radeon_bld->inputs[soa_index] = lp_build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } } } static LLVMValueRef get_sample_id(struct radeon_llvm_context *radeon_bld) { return unpack_param(si_shader_context(&radeon_bld->soa.bld_base), SI_PARAM_ANCILLARY, 8, 4); } /** * Load a dword from a constant buffer. */ static LLVMValueRef buffer_load_const(LLVMBuilderRef builder, LLVMValueRef resource, LLVMValueRef offset, LLVMTypeRef return_type) { LLVMValueRef args[2] = {resource, offset}; return lp_build_intrinsic(builder, "llvm.SI.load.const", return_type, args, 2, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } static LLVMValueRef load_sample_position(struct radeon_llvm_context *radeon_bld, LLVMValueRef sample_id) { struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); struct lp_build_context *uint_bld = &radeon_bld->soa.bld_base.uint_bld; struct gallivm_state *gallivm = &radeon_bld->gallivm; LLVMBuilderRef builder = gallivm->builder; LLVMValueRef desc = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST); LLVMValueRef buf_index = lp_build_const_int32(gallivm, SI_DRIVER_STATE_CONST_BUF); LLVMValueRef resource = build_indexed_load_const(si_shader_ctx, desc, buf_index); /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */ LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, sample_id, 8); LLVMValueRef offset1 = LLVMBuildAdd(builder, offset0, lp_build_const_int32(gallivm, 4), ""); LLVMValueRef pos[4] = { buffer_load_const(builder, resource, offset0, radeon_bld->soa.bld_base.base.elem_type), buffer_load_const(builder, resource, offset1, radeon_bld->soa.bld_base.base.elem_type), lp_build_const_float(gallivm, 0), lp_build_const_float(gallivm, 0) }; return lp_build_gather_values(gallivm, pos, 4); } static void declare_system_value( struct radeon_llvm_context * radeon_bld, unsigned index, const struct tgsi_full_declaration *decl) { struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); struct lp_build_context *bld = &radeon_bld->soa.bld_base.base; struct lp_build_context *uint_bld = &radeon_bld->soa.bld_base.uint_bld; struct gallivm_state *gallivm = &radeon_bld->gallivm; LLVMValueRef value = 0; switch (decl->Semantic.Name) { case TGSI_SEMANTIC_INSTANCEID: value = LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_instance_id); break; case TGSI_SEMANTIC_VERTEXID: value = LLVMBuildAdd(gallivm->builder, LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_vertex_id), LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BASE_VERTEX), ""); break; case TGSI_SEMANTIC_VERTEXID_NOBASE: value = LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_vertex_id); break; case TGSI_SEMANTIC_BASEVERTEX: value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BASE_VERTEX); break; case TGSI_SEMANTIC_INVOCATIONID: if (si_shader_ctx->type == TGSI_PROCESSOR_TESS_CTRL) value = unpack_param(si_shader_ctx, SI_PARAM_REL_IDS, 8, 5); else if (si_shader_ctx->type == TGSI_PROCESSOR_GEOMETRY) value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_GS_INSTANCE_ID); else assert(!"INVOCATIONID not implemented"); break; case TGSI_SEMANTIC_SAMPLEID: value = get_sample_id(radeon_bld); break; case TGSI_SEMANTIC_SAMPLEPOS: value = load_sample_position(radeon_bld, get_sample_id(radeon_bld)); break; case TGSI_SEMANTIC_SAMPLEMASK: /* Smoothing isn't MSAA in GL, but it's MSAA in hardware. * Therefore, force gl_SampleMaskIn to 1 for GL. */ if (si_shader_ctx->shader->key.ps.poly_line_smoothing) value = uint_bld->one; else value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_SAMPLE_COVERAGE); break; case TGSI_SEMANTIC_TESSCOORD: { LLVMValueRef coord[4] = { LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_tes_u), LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_tes_v), bld->zero, bld->zero }; /* For triangles, the vector should be (u, v, 1-u-v). */ if (si_shader_ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_TRIANGLES) coord[2] = lp_build_sub(bld, bld->one, lp_build_add(bld, coord[0], coord[1])); value = lp_build_gather_values(gallivm, coord, 4); break; } case TGSI_SEMANTIC_VERTICESIN: value = unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 26, 6); break; case TGSI_SEMANTIC_TESSINNER: case TGSI_SEMANTIC_TESSOUTER: { LLVMValueRef dw_addr; int param = si_shader_io_get_unique_index(decl->Semantic.Name, 0); dw_addr = get_tcs_out_current_patch_data_offset(si_shader_ctx); dw_addr = LLVMBuildAdd(gallivm->builder, dw_addr, lp_build_const_int32(gallivm, param * 4), ""); value = lds_load(&radeon_bld->soa.bld_base, TGSI_TYPE_FLOAT, ~0, dw_addr); break; } case TGSI_SEMANTIC_PRIMID: value = get_primitive_id(&radeon_bld->soa.bld_base, 0); break; default: assert(!"unknown system value"); return; } radeon_bld->system_values[index] = value; } static LLVMValueRef fetch_constant( struct lp_build_tgsi_context * bld_base, const struct tgsi_full_src_register *reg, enum tgsi_opcode_type type, unsigned swizzle) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct lp_build_context * base = &bld_base->base; const struct tgsi_ind_register *ireg = ®->Indirect; unsigned buf, idx; LLVMValueRef addr, bufp; LLVMValueRef result; if (swizzle == LP_CHAN_ALL) { unsigned chan; LLVMValueRef values[4]; for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) values[chan] = fetch_constant(bld_base, reg, type, chan); return lp_build_gather_values(bld_base->base.gallivm, values, 4); } buf = reg->Register.Dimension ? reg->Dimension.Index : 0; idx = reg->Register.Index * 4 + swizzle; if (!reg->Register.Indirect && !reg->Dimension.Indirect) { if (type != TGSI_TYPE_DOUBLE) return bitcast(bld_base, type, si_shader_ctx->constants[buf][idx]); else { return radeon_llvm_emit_fetch_double(bld_base, si_shader_ctx->constants[buf][idx], si_shader_ctx->constants[buf][idx + 1]); } } if (reg->Register.Dimension && reg->Dimension.Indirect) { LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST); LLVMValueRef index; index = get_indirect_index(si_shader_ctx, ®->DimIndirect, reg->Dimension.Index); bufp = build_indexed_load_const(si_shader_ctx, ptr, index); } else bufp = si_shader_ctx->const_resource[buf]; addr = si_shader_ctx->radeon_bld.soa.addr[ireg->Index][ireg->Swizzle]; addr = LLVMBuildLoad(base->gallivm->builder, addr, "load addr reg"); addr = lp_build_mul_imm(&bld_base->uint_bld, addr, 16); addr = lp_build_add(&bld_base->uint_bld, addr, lp_build_const_int32(base->gallivm, idx * 4)); result = buffer_load_const(base->gallivm->builder, bufp, addr, bld_base->base.elem_type); if (type != TGSI_TYPE_DOUBLE) result = bitcast(bld_base, type, result); else { LLVMValueRef addr2, result2; addr2 = si_shader_ctx->radeon_bld.soa.addr[ireg->Index][ireg->Swizzle + 1]; addr2 = LLVMBuildLoad(base->gallivm->builder, addr2, "load addr reg2"); addr2 = lp_build_mul_imm(&bld_base->uint_bld, addr2, 16); addr2 = lp_build_add(&bld_base->uint_bld, addr2, lp_build_const_int32(base->gallivm, idx * 4)); result2 = buffer_load_const(base->gallivm->builder, si_shader_ctx->const_resource[buf], addr2, bld_base->base.elem_type); result = radeon_llvm_emit_fetch_double(bld_base, result, result2); } return result; } /* Initialize arguments for the shader export intrinsic */ static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base, LLVMValueRef *values, unsigned target, LLVMValueRef *args) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; struct lp_build_context *base = &bld_base->base; unsigned compressed = 0; unsigned chan; if (si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT) { int cbuf = target - V_008DFC_SQ_EXP_MRT; if (cbuf >= 0 && cbuf < 8) { compressed = (si_shader_ctx->shader->key.ps.export_16bpc >> cbuf) & 0x1; if (compressed) si_shader_ctx->shader->spi_shader_col_format |= V_028714_SPI_SHADER_FP16_ABGR << (4 * cbuf); else si_shader_ctx->shader->spi_shader_col_format |= V_028714_SPI_SHADER_32_ABGR << (4 * cbuf); si_shader_ctx->shader->cb_shader_mask |= 0xf << (4 * cbuf); } } if (compressed) { /* Pixel shader needs to pack output values before export */ for (chan = 0; chan < 2; chan++ ) { args[0] = values[2 * chan]; args[1] = values[2 * chan + 1]; args[chan + 5] = lp_build_intrinsic(base->gallivm->builder, "llvm.SI.packf16", LLVMInt32TypeInContext(base->gallivm->context), args, 2, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); args[chan + 7] = args[chan + 5] = LLVMBuildBitCast(base->gallivm->builder, args[chan + 5], LLVMFloatTypeInContext(base->gallivm->context), ""); } /* Set COMPR flag */ args[4] = uint->one; } else { for (chan = 0; chan < 4; chan++ ) /* +5 because the first output value will be * the 6th argument to the intrinsic. */ args[chan + 5] = values[chan]; /* Clear COMPR flag */ args[4] = uint->zero; } /* XXX: This controls which components of the output * registers actually get exported. (e.g bit 0 means export * X component, bit 1 means export Y component, etc.) I'm * hard coding this to 0xf for now. In the future, we might * want to do something else. */ args[0] = lp_build_const_int32(base->gallivm, 0xf); /* Specify whether the EXEC mask represents the valid mask */ args[1] = uint->zero; /* Specify whether this is the last export */ args[2] = uint->zero; /* Specify the target we are exporting */ args[3] = lp_build_const_int32(base->gallivm, target); /* XXX: We probably need to keep track of the output * values, so we know what we are passing to the next * stage. */ } /* Load from output pointers and initialize arguments for the shader export intrinsic */ static void si_llvm_init_export_args_load(struct lp_build_tgsi_context *bld_base, LLVMValueRef *out_ptr, unsigned target, LLVMValueRef *args) { struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef values[4]; int i; for (i = 0; i < 4; i++) values[i] = LLVMBuildLoad(gallivm->builder, out_ptr[i], ""); si_llvm_init_export_args(bld_base, values, target, args); } static void si_alpha_test(struct lp_build_tgsi_context *bld_base, LLVMValueRef alpha_ptr) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; if (si_shader_ctx->shader->key.ps.alpha_func != PIPE_FUNC_NEVER) { LLVMValueRef alpha_ref = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_ALPHA_REF); LLVMValueRef alpha_pass = lp_build_cmp(&bld_base->base, si_shader_ctx->shader->key.ps.alpha_func, LLVMBuildLoad(gallivm->builder, alpha_ptr, ""), alpha_ref); LLVMValueRef arg = lp_build_select(&bld_base->base, alpha_pass, lp_build_const_float(gallivm, 1.0f), lp_build_const_float(gallivm, -1.0f)); lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill", LLVMVoidTypeInContext(gallivm->context), &arg, 1, 0); } else { lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kilp", LLVMVoidTypeInContext(gallivm->context), NULL, 0, 0); } si_shader_ctx->shader->db_shader_control |= S_02880C_KILL_ENABLE(1); } static void si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base, LLVMValueRef alpha_ptr) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef coverage, alpha; /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */ coverage = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLE_COVERAGE); coverage = bitcast(bld_base, TGSI_TYPE_SIGNED, coverage); coverage = lp_build_intrinsic(gallivm->builder, "llvm.ctpop.i32", bld_base->int_bld.elem_type, &coverage, 1, LLVMReadNoneAttribute); coverage = LLVMBuildUIToFP(gallivm->builder, coverage, bld_base->base.elem_type, ""); coverage = LLVMBuildFMul(gallivm->builder, coverage, lp_build_const_float(gallivm, 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), ""); alpha = LLVMBuildLoad(gallivm->builder, alpha_ptr, ""); alpha = LLVMBuildFMul(gallivm->builder, alpha, coverage, ""); LLVMBuildStore(gallivm->builder, alpha, alpha_ptr); } static void si_llvm_emit_clipvertex(struct lp_build_tgsi_context * bld_base, LLVMValueRef (*pos)[9], LLVMValueRef *out_elts) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct lp_build_context *base = &bld_base->base; struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; unsigned reg_index; unsigned chan; unsigned const_chan; LLVMValueRef base_elt; LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST); LLVMValueRef constbuf_index = lp_build_const_int32(base->gallivm, SI_DRIVER_STATE_CONST_BUF); LLVMValueRef const_resource = build_indexed_load_const(si_shader_ctx, ptr, constbuf_index); for (reg_index = 0; reg_index < 2; reg_index ++) { LLVMValueRef *args = pos[2 + reg_index]; args[5] = args[6] = args[7] = args[8] = lp_build_const_float(base->gallivm, 0.0f); /* Compute dot products of position and user clip plane vectors */ for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) { args[1] = lp_build_const_int32(base->gallivm, ((reg_index * 4 + chan) * 4 + const_chan) * 4); base_elt = buffer_load_const(base->gallivm->builder, const_resource, args[1], base->elem_type); args[5 + chan] = lp_build_add(base, args[5 + chan], lp_build_mul(base, base_elt, out_elts[const_chan])); } } args[0] = lp_build_const_int32(base->gallivm, 0xf); args[1] = uint->zero; args[2] = uint->zero; args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 2 + reg_index); args[4] = uint->zero; } } static void si_dump_streamout(struct pipe_stream_output_info *so) { unsigned i; if (so->num_outputs) fprintf(stderr, "STREAMOUT\n"); for (i = 0; i < so->num_outputs; i++) { unsigned mask = ((1 << so->output[i].num_components) - 1) << so->output[i].start_component; fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n", i, so->output[i].output_buffer, so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1, so->output[i].register_index, mask & 1 ? "x" : "", mask & 2 ? "y" : "", mask & 4 ? "z" : "", mask & 8 ? "w" : ""); } } /* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4. * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2), * or v4i32 (num_channels=3,4). */ static void build_tbuffer_store(struct si_shader_context *shader, LLVMValueRef rsrc, LLVMValueRef vdata, unsigned num_channels, LLVMValueRef vaddr, LLVMValueRef soffset, unsigned inst_offset, unsigned dfmt, unsigned nfmt, unsigned offen, unsigned idxen, unsigned glc, unsigned slc, unsigned tfe) { struct gallivm_state *gallivm = &shader->radeon_bld.gallivm; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef args[] = { rsrc, vdata, LLVMConstInt(i32, num_channels, 0), vaddr, soffset, LLVMConstInt(i32, inst_offset, 0), LLVMConstInt(i32, dfmt, 0), LLVMConstInt(i32, nfmt, 0), LLVMConstInt(i32, offen, 0), LLVMConstInt(i32, idxen, 0), LLVMConstInt(i32, glc, 0), LLVMConstInt(i32, slc, 0), LLVMConstInt(i32, tfe, 0) }; /* The instruction offset field has 12 bits */ assert(offen || inst_offset < (1 << 12)); /* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */ unsigned func = CLAMP(num_channels, 1, 3) - 1; const char *types[] = {"i32", "v2i32", "v4i32"}; char name[256]; snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]); lp_build_intrinsic(gallivm->builder, name, LLVMVoidTypeInContext(gallivm->context), args, Elements(args), 0); } static void build_tbuffer_store_dwords(struct si_shader_context *shader, LLVMValueRef rsrc, LLVMValueRef vdata, unsigned num_channels, LLVMValueRef vaddr, LLVMValueRef soffset, unsigned inst_offset) { static unsigned dfmt[] = { V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32 }; assert(num_channels >= 1 && num_channels <= 4); build_tbuffer_store(shader, rsrc, vdata, num_channels, vaddr, soffset, inst_offset, dfmt[num_channels-1], V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0); } /* On SI, the vertex shader is responsible for writing streamout data * to buffers. */ static void si_llvm_emit_streamout(struct si_shader_context *shader, struct si_shader_output_values *outputs, unsigned noutput) { struct pipe_stream_output_info *so = &shader->shader->selector->so; struct gallivm_state *gallivm = &shader->radeon_bld.gallivm; LLVMBuilderRef builder = gallivm->builder; int i, j; struct lp_build_if_state if_ctx; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); /* Get bits [22:16], i.e. (so_param >> 16) & 127; */ LLVMValueRef so_vtx_count = unpack_param(shader, shader->param_streamout_config, 16, 7); LLVMValueRef tid = lp_build_intrinsic(builder, "llvm.SI.tid", i32, NULL, 0, LLVMReadNoneAttribute); /* can_emit = tid < so_vtx_count; */ LLVMValueRef can_emit = LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, ""); LLVMValueRef stream_id = unpack_param(shader, shader->param_streamout_config, 24, 2); /* Emit the streamout code conditionally. This actually avoids * out-of-bounds buffer access. The hw tells us via the SGPR * (so_vtx_count) which threads are allowed to emit streamout data. */ lp_build_if(&if_ctx, gallivm, can_emit); { /* The buffer offset is computed as follows: * ByteOffset = streamout_offset[buffer_id]*4 + * (streamout_write_index + thread_id)*stride[buffer_id] + * attrib_offset */ LLVMValueRef so_write_index = LLVMGetParam(shader->radeon_bld.main_fn, shader->param_streamout_write_index); /* Compute (streamout_write_index + thread_id). */ so_write_index = LLVMBuildAdd(builder, so_write_index, tid, ""); /* Compute the write offset for each enabled buffer. */ LLVMValueRef so_write_offset[4] = {}; for (i = 0; i < 4; i++) { if (!so->stride[i]) continue; LLVMValueRef so_offset = LLVMGetParam(shader->radeon_bld.main_fn, shader->param_streamout_offset[i]); so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(i32, 4, 0), ""); so_write_offset[i] = LLVMBuildMul(builder, so_write_index, LLVMConstInt(i32, so->stride[i]*4, 0), ""); so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, ""); } /* Write streamout data. */ for (i = 0; i < so->num_outputs; i++) { unsigned buf_idx = so->output[i].output_buffer; unsigned reg = so->output[i].register_index; unsigned start = so->output[i].start_component; unsigned num_comps = so->output[i].num_components; unsigned stream = so->output[i].stream; LLVMValueRef out[4]; struct lp_build_if_state if_ctx_stream; assert(num_comps && num_comps <= 4); if (!num_comps || num_comps > 4) continue; if (reg >= noutput) continue; /* Load the output as int. */ for (j = 0; j < num_comps; j++) { out[j] = LLVMBuildBitCast(builder, outputs[reg].values[start+j], i32, ""); } /* Pack the output. */ LLVMValueRef vdata = NULL; switch (num_comps) { case 1: /* as i32 */ vdata = out[0]; break; case 2: /* as v2i32 */ case 3: /* as v4i32 (aligned to 4) */ case 4: /* as v4i32 */ vdata = LLVMGetUndef(LLVMVectorType(i32, util_next_power_of_two(num_comps))); for (j = 0; j < num_comps; j++) { vdata = LLVMBuildInsertElement(builder, vdata, out[j], LLVMConstInt(i32, j, 0), ""); } break; } LLVMValueRef can_emit_stream = LLVMBuildICmp(builder, LLVMIntEQ, stream_id, lp_build_const_int32(gallivm, stream), ""); lp_build_if(&if_ctx_stream, gallivm, can_emit_stream); build_tbuffer_store_dwords(shader, shader->so_buffers[buf_idx], vdata, num_comps, so_write_offset[buf_idx], LLVMConstInt(i32, 0, 0), so->output[i].dst_offset*4); lp_build_endif(&if_ctx_stream); } } lp_build_endif(&if_ctx); } /* Generate export instructions for hardware VS shader stage */ static void si_llvm_export_vs(struct lp_build_tgsi_context *bld_base, struct si_shader_output_values *outputs, unsigned noutput) { struct si_shader_context * si_shader_ctx = si_shader_context(bld_base); struct si_shader * shader = si_shader_ctx->shader; struct lp_build_context * base = &bld_base->base; struct lp_build_context * uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; LLVMValueRef args[9]; LLVMValueRef pos_args[4][9] = { { 0 } }; LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL; unsigned semantic_name, semantic_index; unsigned target; unsigned param_count = 0; unsigned pos_idx; int i; if (outputs && si_shader_ctx->shader->selector->so.num_outputs) { si_llvm_emit_streamout(si_shader_ctx, outputs, noutput); } for (i = 0; i < noutput; i++) { semantic_name = outputs[i].name; semantic_index = outputs[i].sid; handle_semantic: /* Select the correct target */ switch(semantic_name) { case TGSI_SEMANTIC_PSIZE: psize_value = outputs[i].values[0]; continue; case TGSI_SEMANTIC_EDGEFLAG: edgeflag_value = outputs[i].values[0]; continue; case TGSI_SEMANTIC_LAYER: layer_value = outputs[i].values[0]; semantic_name = TGSI_SEMANTIC_GENERIC; goto handle_semantic; case TGSI_SEMANTIC_VIEWPORT_INDEX: viewport_index_value = outputs[i].values[0]; semantic_name = TGSI_SEMANTIC_GENERIC; goto handle_semantic; case TGSI_SEMANTIC_POSITION: target = V_008DFC_SQ_EXP_POS; break; case TGSI_SEMANTIC_COLOR: case TGSI_SEMANTIC_BCOLOR: target = V_008DFC_SQ_EXP_PARAM + param_count; shader->vs_output_param_offset[i] = param_count; param_count++; break; case TGSI_SEMANTIC_CLIPDIST: target = V_008DFC_SQ_EXP_POS + 2 + semantic_index; break; case TGSI_SEMANTIC_CLIPVERTEX: si_llvm_emit_clipvertex(bld_base, pos_args, outputs[i].values); continue; case TGSI_SEMANTIC_PRIMID: case TGSI_SEMANTIC_FOG: case TGSI_SEMANTIC_TEXCOORD: case TGSI_SEMANTIC_GENERIC: target = V_008DFC_SQ_EXP_PARAM + param_count; shader->vs_output_param_offset[i] = param_count; param_count++; break; default: target = 0; fprintf(stderr, "Warning: SI unhandled vs output type:%d\n", semantic_name); } si_llvm_init_export_args(bld_base, outputs[i].values, target, args); if (target >= V_008DFC_SQ_EXP_POS && target <= (V_008DFC_SQ_EXP_POS + 3)) { memcpy(pos_args[target - V_008DFC_SQ_EXP_POS], args, sizeof(args)); } else { lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9, 0); } if (semantic_name == TGSI_SEMANTIC_CLIPDIST) { semantic_name = TGSI_SEMANTIC_GENERIC; goto handle_semantic; } } shader->nr_param_exports = param_count; /* We need to add the position output manually if it's missing. */ if (!pos_args[0][0]) { pos_args[0][0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */ pos_args[0][1] = uint->zero; /* EXEC mask */ pos_args[0][2] = uint->zero; /* last export? */ pos_args[0][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS); pos_args[0][4] = uint->zero; /* COMPR flag */ pos_args[0][5] = base->zero; /* X */ pos_args[0][6] = base->zero; /* Y */ pos_args[0][7] = base->zero; /* Z */ pos_args[0][8] = base->one; /* W */ } /* Write the misc vector (point size, edgeflag, layer, viewport). */ if (shader->selector->info.writes_psize || shader->selector->info.writes_edgeflag || shader->selector->info.writes_viewport_index || shader->selector->info.writes_layer) { pos_args[1][0] = lp_build_const_int32(base->gallivm, /* writemask */ shader->selector->info.writes_psize | (shader->selector->info.writes_edgeflag << 1) | (shader->selector->info.writes_layer << 2) | (shader->selector->info.writes_viewport_index << 3)); pos_args[1][1] = uint->zero; /* EXEC mask */ pos_args[1][2] = uint->zero; /* last export? */ pos_args[1][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 1); pos_args[1][4] = uint->zero; /* COMPR flag */ pos_args[1][5] = base->zero; /* X */ pos_args[1][6] = base->zero; /* Y */ pos_args[1][7] = base->zero; /* Z */ pos_args[1][8] = base->zero; /* W */ if (shader->selector->info.writes_psize) pos_args[1][5] = psize_value; if (shader->selector->info.writes_edgeflag) { /* The output is a float, but the hw expects an integer * with the first bit containing the edge flag. */ edgeflag_value = LLVMBuildFPToUI(base->gallivm->builder, edgeflag_value, bld_base->uint_bld.elem_type, ""); edgeflag_value = lp_build_min(&bld_base->int_bld, edgeflag_value, bld_base->int_bld.one); /* The LLVM intrinsic expects a float. */ pos_args[1][6] = LLVMBuildBitCast(base->gallivm->builder, edgeflag_value, base->elem_type, ""); } if (shader->selector->info.writes_layer) pos_args[1][7] = layer_value; if (shader->selector->info.writes_viewport_index) pos_args[1][8] = viewport_index_value; } for (i = 0; i < 4; i++) if (pos_args[i][0]) shader->nr_pos_exports++; pos_idx = 0; for (i = 0; i < 4; i++) { if (!pos_args[i][0]) continue; /* Specify the target we are exporting */ pos_args[i][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + pos_idx++); if (pos_idx == shader->nr_pos_exports) /* Specify that this is the last export */ pos_args[i][2] = uint->one; lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), pos_args[i], 9, 0); } } /* This only writes the tessellation factor levels. */ static void si_llvm_emit_tcs_epilogue(struct lp_build_tgsi_context *bld_base) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; struct si_shader *shader = si_shader_ctx->shader; unsigned tess_inner_index, tess_outer_index; LLVMValueRef lds_base, lds_inner, lds_outer; LLVMValueRef tf_base, rel_patch_id, byteoffset, buffer, rw_buffers; LLVMValueRef out[6], vec0, vec1, invocation_id; unsigned stride, outer_comps, inner_comps, i; struct lp_build_if_state if_ctx; invocation_id = unpack_param(si_shader_ctx, SI_PARAM_REL_IDS, 8, 5); /* Do this only for invocation 0, because the tess levels are per-patch, * not per-vertex. * * This can't jump, because invocation 0 executes this. It should * at least mask out the loads and stores for other invocations. */ lp_build_if(&if_ctx, gallivm, LLVMBuildICmp(gallivm->builder, LLVMIntEQ, invocation_id, bld_base->uint_bld.zero, "")); /* Determine the layout of one tess factor element in the buffer. */ switch (shader->key.tcs.prim_mode) { case PIPE_PRIM_LINES: stride = 2; /* 2 dwords, 1 vec2 store */ outer_comps = 2; inner_comps = 0; break; case PIPE_PRIM_TRIANGLES: stride = 4; /* 4 dwords, 1 vec4 store */ outer_comps = 3; inner_comps = 1; break; case PIPE_PRIM_QUADS: stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */ outer_comps = 4; inner_comps = 2; break; default: assert(0); return; } /* Load tess_inner and tess_outer from LDS. * Any invocation can write them, so we can't get them from a temporary. */ tess_inner_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0); tess_outer_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0); lds_base = get_tcs_out_current_patch_data_offset(si_shader_ctx); lds_inner = LLVMBuildAdd(gallivm->builder, lds_base, lp_build_const_int32(gallivm, tess_inner_index * 4), ""); lds_outer = LLVMBuildAdd(gallivm->builder, lds_base, lp_build_const_int32(gallivm, tess_outer_index * 4), ""); for (i = 0; i < outer_comps; i++) out[i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_outer); for (i = 0; i < inner_comps; i++) out[outer_comps+i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_inner); /* Convert the outputs to vectors for stores. */ vec0 = lp_build_gather_values(gallivm, out, MIN2(stride, 4)); vec1 = NULL; if (stride > 4) vec1 = lp_build_gather_values(gallivm, out+4, stride - 4); /* Get the buffer. */ rw_buffers = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RW_BUFFERS); buffer = build_indexed_load_const(si_shader_ctx, rw_buffers, lp_build_const_int32(gallivm, SI_RING_TESS_FACTOR)); /* Get the offset. */ tf_base = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_TESS_FACTOR_OFFSET); rel_patch_id = get_rel_patch_id(si_shader_ctx); byteoffset = LLVMBuildMul(gallivm->builder, rel_patch_id, lp_build_const_int32(gallivm, 4 * stride), ""); /* Store the outputs. */ build_tbuffer_store_dwords(si_shader_ctx, buffer, vec0, MIN2(stride, 4), byteoffset, tf_base, 0); if (vec1) build_tbuffer_store_dwords(si_shader_ctx, buffer, vec1, stride - 4, byteoffset, tf_base, 16); lp_build_endif(&if_ctx); } static void si_llvm_emit_ls_epilogue(struct lp_build_tgsi_context * bld_base) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct si_shader *shader = si_shader_ctx->shader; struct tgsi_shader_info *info = &shader->selector->info; struct gallivm_state *gallivm = bld_base->base.gallivm; unsigned i, chan; LLVMValueRef vertex_id = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_rel_auto_id); LLVMValueRef vertex_dw_stride = unpack_param(si_shader_ctx, SI_PARAM_LS_OUT_LAYOUT, 13, 8); LLVMValueRef base_dw_addr = LLVMBuildMul(gallivm->builder, vertex_id, vertex_dw_stride, ""); /* Write outputs to LDS. The next shader (TCS aka HS) will read * its inputs from it. */ for (i = 0; i < info->num_outputs; i++) { LLVMValueRef *out_ptr = si_shader_ctx->radeon_bld.soa.outputs[i]; unsigned name = info->output_semantic_name[i]; unsigned index = info->output_semantic_index[i]; int param = si_shader_io_get_unique_index(name, index); LLVMValueRef dw_addr = LLVMBuildAdd(gallivm->builder, base_dw_addr, lp_build_const_int32(gallivm, param * 4), ""); for (chan = 0; chan < 4; chan++) { lds_store(bld_base, chan, dw_addr, LLVMBuildLoad(gallivm->builder, out_ptr[chan], "")); } } } static void si_llvm_emit_es_epilogue(struct lp_build_tgsi_context * bld_base) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; struct si_shader *es = si_shader_ctx->shader; struct tgsi_shader_info *info = &es->selector->info; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef soffset = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_es2gs_offset); uint64_t enabled_outputs = si_shader_ctx->type == TGSI_PROCESSOR_TESS_EVAL ? es->key.tes.es_enabled_outputs : es->key.vs.es_enabled_outputs; unsigned chan; int i; for (i = 0; i < info->num_outputs; i++) { LLVMValueRef *out_ptr = si_shader_ctx->radeon_bld.soa.outputs[i]; int param_index; if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX || info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER) continue; param_index = get_param_index(info->output_semantic_name[i], info->output_semantic_index[i], enabled_outputs); if (param_index < 0) continue; for (chan = 0; chan < 4; chan++) { LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""); out_val = LLVMBuildBitCast(gallivm->builder, out_val, i32, ""); build_tbuffer_store(si_shader_ctx, si_shader_ctx->esgs_ring, out_val, 1, LLVMGetUndef(i32), soffset, (4 * param_index + chan) * 4, V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_NUM_FORMAT_UINT, 0, 0, 1, 1, 0); } } } static void si_llvm_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef args[2]; args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_NOP | SENDMSG_GS_DONE); args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID); lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg", LLVMVoidTypeInContext(gallivm->context), args, 2, LLVMNoUnwindAttribute); } static void si_llvm_emit_vs_epilogue(struct lp_build_tgsi_context * bld_base) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; struct tgsi_shader_info *info = &si_shader_ctx->shader->selector->info; struct si_shader_output_values *outputs = NULL; int i,j; outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0])); for (i = 0; i < info->num_outputs; i++) { outputs[i].name = info->output_semantic_name[i]; outputs[i].sid = info->output_semantic_index[i]; for (j = 0; j < 4; j++) outputs[i].values[j] = LLVMBuildLoad(gallivm->builder, si_shader_ctx->radeon_bld.soa.outputs[i][j], ""); } /* Export PrimitiveID when PS needs it. */ if (si_vs_exports_prim_id(si_shader_ctx->shader)) { outputs[i].name = TGSI_SEMANTIC_PRIMID; outputs[i].sid = 0; outputs[i].values[0] = bitcast(bld_base, TGSI_TYPE_FLOAT, get_primitive_id(bld_base, 0)); outputs[i].values[1] = bld_base->base.undef; outputs[i].values[2] = bld_base->base.undef; outputs[i].values[3] = bld_base->base.undef; i++; } si_llvm_export_vs(bld_base, outputs, i); FREE(outputs); } static void si_llvm_emit_fs_epilogue(struct lp_build_tgsi_context * bld_base) { struct si_shader_context * si_shader_ctx = si_shader_context(bld_base); struct si_shader * shader = si_shader_ctx->shader; struct lp_build_context * base = &bld_base->base; struct lp_build_context * uint = &bld_base->uint_bld; struct tgsi_shader_info *info = &shader->selector->info; LLVMValueRef args[9]; LLVMValueRef last_args[9] = { 0 }; int depth_index = -1, stencil_index = -1, samplemask_index = -1; int i; for (i = 0; i < info->num_outputs; i++) { unsigned semantic_name = info->output_semantic_name[i]; unsigned semantic_index = info->output_semantic_index[i]; unsigned target; LLVMValueRef alpha_ptr; /* Select the correct target */ switch (semantic_name) { case TGSI_SEMANTIC_POSITION: depth_index = i; continue; case TGSI_SEMANTIC_STENCIL: stencil_index = i; continue; case TGSI_SEMANTIC_SAMPLEMASK: samplemask_index = i; continue; case TGSI_SEMANTIC_COLOR: target = V_008DFC_SQ_EXP_MRT + semantic_index; alpha_ptr = si_shader_ctx->radeon_bld.soa.outputs[i][3]; if (si_shader_ctx->shader->key.ps.alpha_to_one) LLVMBuildStore(base->gallivm->builder, base->one, alpha_ptr); if (semantic_index == 0 && si_shader_ctx->shader->key.ps.alpha_func != PIPE_FUNC_ALWAYS) si_alpha_test(bld_base, alpha_ptr); if (si_shader_ctx->shader->key.ps.poly_line_smoothing) si_scale_alpha_by_sample_mask(bld_base, alpha_ptr); break; default: target = 0; fprintf(stderr, "Warning: SI unhandled fs output type:%d\n", semantic_name); } si_llvm_init_export_args_load(bld_base, si_shader_ctx->radeon_bld.soa.outputs[i], target, args); if (semantic_name == TGSI_SEMANTIC_COLOR) { /* If there is an export instruction waiting to be emitted, do so now. */ if (last_args[0]) { lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), last_args, 9, 0); } /* This instruction will be emitted at the end of the shader. */ memcpy(last_args, args, sizeof(args)); /* Handle FS_COLOR0_WRITES_ALL_CBUFS. */ if (shader->selector->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] && semantic_index == 0 && si_shader_ctx->shader->key.ps.last_cbuf > 0) { for (int c = 1; c <= si_shader_ctx->shader->key.ps.last_cbuf; c++) { si_llvm_init_export_args_load(bld_base, si_shader_ctx->radeon_bld.soa.outputs[i], V_008DFC_SQ_EXP_MRT + c, args); lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9, 0); } } } else { lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9, 0); } } if (depth_index >= 0 || stencil_index >= 0 || samplemask_index >= 0) { LLVMValueRef out_ptr; unsigned mask = 0; /* Specify the target we are exporting */ args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRTZ); args[5] = base->zero; /* R, depth */ args[6] = base->zero; /* G, stencil test value[0:7], stencil op value[8:15] */ args[7] = base->zero; /* B, sample mask */ args[8] = base->zero; /* A, alpha to mask */ if (depth_index >= 0) { out_ptr = si_shader_ctx->radeon_bld.soa.outputs[depth_index][2]; args[5] = LLVMBuildLoad(base->gallivm->builder, out_ptr, ""); mask |= 0x1; si_shader_ctx->shader->db_shader_control |= S_02880C_Z_EXPORT_ENABLE(1); } if (stencil_index >= 0) { out_ptr = si_shader_ctx->radeon_bld.soa.outputs[stencil_index][1]; args[6] = LLVMBuildLoad(base->gallivm->builder, out_ptr, ""); mask |= 0x2; si_shader_ctx->shader->db_shader_control |= S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(1); } if (samplemask_index >= 0) { out_ptr = si_shader_ctx->radeon_bld.soa.outputs[samplemask_index][0]; args[7] = LLVMBuildLoad(base->gallivm->builder, out_ptr, ""); mask |= 0x4; si_shader_ctx->shader->db_shader_control |= S_02880C_MASK_EXPORT_ENABLE(1); } /* SI (except OLAND) has a bug that it only looks * at the X writemask component. */ if (si_shader_ctx->screen->b.chip_class == SI && si_shader_ctx->screen->b.family != CHIP_OLAND) mask |= 0x1; if (samplemask_index >= 0) si_shader_ctx->shader->spi_shader_z_format = V_028710_SPI_SHADER_32_ABGR; else if (stencil_index >= 0) si_shader_ctx->shader->spi_shader_z_format = V_028710_SPI_SHADER_32_GR; else si_shader_ctx->shader->spi_shader_z_format = V_028710_SPI_SHADER_32_R; /* Specify which components to enable */ args[0] = lp_build_const_int32(base->gallivm, mask); args[1] = args[2] = args[4] = uint->zero; if (last_args[0]) lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9, 0); else memcpy(last_args, args, sizeof(args)); } if (!last_args[0]) { /* Specify which components to enable */ last_args[0] = lp_build_const_int32(base->gallivm, 0x0); /* Specify the target we are exporting */ last_args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRT); /* Set COMPR flag to zero to export data as 32-bit */ last_args[4] = uint->zero; /* dummy bits */ last_args[5]= uint->zero; last_args[6]= uint->zero; last_args[7]= uint->zero; last_args[8]= uint->zero; } /* Specify whether the EXEC mask represents the valid mask */ last_args[1] = uint->one; /* Specify that this is the last export */ last_args[2] = lp_build_const_int32(base->gallivm, 1); lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), last_args, 9, 0); } static void build_tex_intrinsic(const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data); static bool tgsi_is_shadow_sampler(unsigned target) { return target == TGSI_TEXTURE_SHADOW1D || target == TGSI_TEXTURE_SHADOW1D_ARRAY || target == TGSI_TEXTURE_SHADOW2D || target == TGSI_TEXTURE_SHADOW2D_ARRAY || target == TGSI_TEXTURE_SHADOWCUBE || target == TGSI_TEXTURE_SHADOWCUBE_ARRAY || target == TGSI_TEXTURE_SHADOWRECT; } static const struct lp_build_tgsi_action tex_action; static void tex_fetch_args( struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; const struct tgsi_full_instruction * inst = emit_data->inst; unsigned opcode = inst->Instruction.Opcode; unsigned target = inst->Texture.Texture; LLVMValueRef coords[5], derivs[6]; LLVMValueRef address[16]; int ref_pos; unsigned num_coords = tgsi_util_get_texture_coord_dim(target, &ref_pos); unsigned count = 0; unsigned chan; unsigned sampler_src; unsigned sampler_index; unsigned num_deriv_channels = 0; bool has_offset = HAVE_LLVM >= 0x0305 ? inst->Texture.NumOffsets > 0 : false; LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL; sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1; sampler_index = emit_data->inst->Src[sampler_src].Register.Index; if (emit_data->inst->Src[sampler_src].Register.Indirect) { const struct tgsi_full_src_register *reg = &emit_data->inst->Src[sampler_src]; LLVMValueRef ind_index; ind_index = get_indirect_index(si_shader_ctx, ®->Indirect, reg->Register.Index); res_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RESOURCE); res_ptr = build_indexed_load_const(si_shader_ctx, res_ptr, ind_index); samp_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER); samp_ptr = build_indexed_load_const(si_shader_ctx, samp_ptr, ind_index); if (target == TGSI_TEXTURE_2D_MSAA || target == TGSI_TEXTURE_2D_ARRAY_MSAA) { ind_index = LLVMBuildAdd(gallivm->builder, ind_index, lp_build_const_int32(gallivm, SI_FMASK_TEX_OFFSET), ""); fmask_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RESOURCE); fmask_ptr = build_indexed_load_const(si_shader_ctx, res_ptr, ind_index); } } else { res_ptr = si_shader_ctx->resources[sampler_index]; samp_ptr = si_shader_ctx->samplers[sampler_index]; fmask_ptr = si_shader_ctx->resources[SI_FMASK_TEX_OFFSET + sampler_index]; } if (target == TGSI_TEXTURE_BUFFER) { LLVMTypeRef i128 = LLVMIntTypeInContext(gallivm->context, 128); LLVMTypeRef v2i128 = LLVMVectorType(i128, 2); LLVMTypeRef i8 = LLVMInt8TypeInContext(gallivm->context); LLVMTypeRef v16i8 = LLVMVectorType(i8, 16); /* Bitcast and truncate v8i32 to v16i8. */ LLVMValueRef res = res_ptr; res = LLVMBuildBitCast(gallivm->builder, res, v2i128, ""); res = LLVMBuildExtractElement(gallivm->builder, res, bld_base->uint_bld.one, ""); res = LLVMBuildBitCast(gallivm->builder, res, v16i8, ""); emit_data->dst_type = LLVMVectorType(bld_base->base.elem_type, 4); emit_data->args[0] = res; emit_data->args[1] = bld_base->uint_bld.zero; emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0); emit_data->arg_count = 3; return; } /* Fetch and project texture coordinates */ coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W); for (chan = 0; chan < 3; chan++ ) { coords[chan] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, chan); if (opcode == TGSI_OPCODE_TXP) coords[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_DIV, coords[chan], coords[3]); } if (opcode == TGSI_OPCODE_TXP) coords[3] = bld_base->base.one; /* Pack offsets. */ if (has_offset && opcode != TGSI_OPCODE_TXF) { /* The offsets are six-bit signed integers packed like this: * X=[5:0], Y=[13:8], and Z=[21:16]. */ LLVMValueRef offset[3], pack; assert(inst->Texture.NumOffsets == 1); for (chan = 0; chan < 3; chan++) { offset[chan] = lp_build_emit_fetch_texoffset(bld_base, emit_data->inst, 0, chan); offset[chan] = LLVMBuildAnd(gallivm->builder, offset[chan], lp_build_const_int32(gallivm, 0x3f), ""); if (chan) offset[chan] = LLVMBuildShl(gallivm->builder, offset[chan], lp_build_const_int32(gallivm, chan*8), ""); } pack = LLVMBuildOr(gallivm->builder, offset[0], offset[1], ""); pack = LLVMBuildOr(gallivm->builder, pack, offset[2], ""); address[count++] = pack; } /* Pack LOD bias value */ if (opcode == TGSI_OPCODE_TXB) address[count++] = coords[3]; if (opcode == TGSI_OPCODE_TXB2) address[count++] = lp_build_emit_fetch(bld_base, inst, 1, 0); /* Pack depth comparison value */ if (tgsi_is_shadow_sampler(target) && opcode != TGSI_OPCODE_LODQ) { if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) { address[count++] = lp_build_emit_fetch(bld_base, inst, 1, 0); } else { assert(ref_pos >= 0); address[count++] = coords[ref_pos]; } } /* Pack user derivatives */ if (opcode == TGSI_OPCODE_TXD) { int param, num_src_deriv_channels; switch (target) { case TGSI_TEXTURE_3D: num_src_deriv_channels = 3; num_deriv_channels = 3; break; case TGSI_TEXTURE_2D: case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_RECT: case TGSI_TEXTURE_SHADOWRECT: case TGSI_TEXTURE_2D_ARRAY: case TGSI_TEXTURE_SHADOW2D_ARRAY: num_src_deriv_channels = 2; num_deriv_channels = 2; break; case TGSI_TEXTURE_CUBE: case TGSI_TEXTURE_SHADOWCUBE: case TGSI_TEXTURE_CUBE_ARRAY: case TGSI_TEXTURE_SHADOWCUBE_ARRAY: /* Cube derivatives will be converted to 2D. */ num_src_deriv_channels = 3; num_deriv_channels = 2; break; case TGSI_TEXTURE_1D: case TGSI_TEXTURE_SHADOW1D: case TGSI_TEXTURE_1D_ARRAY: case TGSI_TEXTURE_SHADOW1D_ARRAY: num_src_deriv_channels = 1; num_deriv_channels = 1; break; default: unreachable("invalid target"); } for (param = 0; param < 2; param++) for (chan = 0; chan < num_src_deriv_channels; chan++) derivs[param * num_src_deriv_channels + chan] = lp_build_emit_fetch(bld_base, inst, param+1, chan); } if (target == TGSI_TEXTURE_CUBE || target == TGSI_TEXTURE_CUBE_ARRAY || target == TGSI_TEXTURE_SHADOWCUBE || target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) radeon_llvm_emit_prepare_cube_coords(bld_base, emit_data, coords, derivs); if (opcode == TGSI_OPCODE_TXD) for (int i = 0; i < num_deriv_channels * 2; i++) address[count++] = derivs[i]; /* Pack texture coordinates */ address[count++] = coords[0]; if (num_coords > 1) address[count++] = coords[1]; if (num_coords > 2) address[count++] = coords[2]; /* Pack LOD or sample index */ if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF) address[count++] = coords[3]; else if (opcode == TGSI_OPCODE_TXL2) address[count++] = lp_build_emit_fetch(bld_base, inst, 1, 0); if (count > 16) { assert(!"Cannot handle more than 16 texture address parameters"); count = 16; } for (chan = 0; chan < count; chan++ ) { address[chan] = LLVMBuildBitCast(gallivm->builder, address[chan], LLVMInt32TypeInContext(gallivm->context), ""); } /* Adjust the sample index according to FMASK. * * For uncompressed MSAA surfaces, FMASK should return 0x76543210, * which is the identity mapping. Each nibble says which physical sample * should be fetched to get that sample. * * For example, 0x11111100 means there are only 2 samples stored and * the second sample covers 3/4 of the pixel. When reading samples 0 * and 1, return physical sample 0 (determined by the first two 0s * in FMASK), otherwise return physical sample 1. * * The sample index should be adjusted as follows: * sample_index = (fmask >> (sample_index * 4)) & 0xF; */ if (target == TGSI_TEXTURE_2D_MSAA || target == TGSI_TEXTURE_2D_ARRAY_MSAA) { struct lp_build_context *uint_bld = &bld_base->uint_bld; struct lp_build_emit_data txf_emit_data = *emit_data; LLVMValueRef txf_address[4]; unsigned txf_count = count; struct tgsi_full_instruction inst = {}; memcpy(txf_address, address, sizeof(txf_address)); if (target == TGSI_TEXTURE_2D_MSAA) { txf_address[2] = bld_base->uint_bld.zero; } txf_address[3] = bld_base->uint_bld.zero; /* Pad to a power-of-two size. */ while (txf_count < util_next_power_of_two(txf_count)) txf_address[txf_count++] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); /* Read FMASK using TXF. */ inst.Instruction.Opcode = TGSI_OPCODE_TXF; inst.Texture.Texture = target == TGSI_TEXTURE_2D_MSAA ? TGSI_TEXTURE_2D : TGSI_TEXTURE_2D_ARRAY; txf_emit_data.inst = &inst; txf_emit_data.chan = 0; txf_emit_data.dst_type = LLVMVectorType( LLVMInt32TypeInContext(gallivm->context), 4); txf_emit_data.args[0] = lp_build_gather_values(gallivm, txf_address, txf_count); txf_emit_data.args[1] = fmask_ptr; txf_emit_data.args[2] = lp_build_const_int32(gallivm, inst.Texture.Texture); txf_emit_data.arg_count = 3; build_tex_intrinsic(&tex_action, bld_base, &txf_emit_data); /* Initialize some constants. */ LLVMValueRef four = LLVMConstInt(uint_bld->elem_type, 4, 0); LLVMValueRef F = LLVMConstInt(uint_bld->elem_type, 0xF, 0); /* Apply the formula. */ LLVMValueRef fmask = LLVMBuildExtractElement(gallivm->builder, txf_emit_data.output[0], uint_bld->zero, ""); unsigned sample_chan = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3; LLVMValueRef sample_index4 = LLVMBuildMul(gallivm->builder, address[sample_chan], four, ""); LLVMValueRef shifted_fmask = LLVMBuildLShr(gallivm->builder, fmask, sample_index4, ""); LLVMValueRef final_sample = LLVMBuildAnd(gallivm->builder, shifted_fmask, F, ""); /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK * resource descriptor is 0 (invalid), */ LLVMValueRef fmask_desc = LLVMBuildBitCast(gallivm->builder, fmask_ptr, LLVMVectorType(uint_bld->elem_type, 8), ""); LLVMValueRef fmask_word1 = LLVMBuildExtractElement(gallivm->builder, fmask_desc, uint_bld->one, ""); LLVMValueRef word1_is_nonzero = LLVMBuildICmp(gallivm->builder, LLVMIntNE, fmask_word1, uint_bld->zero, ""); /* Replace the MSAA sample index. */ address[sample_chan] = LLVMBuildSelect(gallivm->builder, word1_is_nonzero, final_sample, address[sample_chan], ""); } /* Resource */ emit_data->args[1] = res_ptr; if (opcode == TGSI_OPCODE_TXF) { /* add tex offsets */ if (inst->Texture.NumOffsets) { struct lp_build_context *uint_bld = &bld_base->uint_bld; struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base); const struct tgsi_texture_offset * off = inst->TexOffsets; assert(inst->Texture.NumOffsets == 1); switch (target) { case TGSI_TEXTURE_3D: address[2] = lp_build_add(uint_bld, address[2], bld->immediates[off->Index][off->SwizzleZ]); /* fall through */ case TGSI_TEXTURE_2D: case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_RECT: case TGSI_TEXTURE_SHADOWRECT: case TGSI_TEXTURE_2D_ARRAY: case TGSI_TEXTURE_SHADOW2D_ARRAY: address[1] = lp_build_add(uint_bld, address[1], bld->immediates[off->Index][off->SwizzleY]); /* fall through */ case TGSI_TEXTURE_1D: case TGSI_TEXTURE_SHADOW1D: case TGSI_TEXTURE_1D_ARRAY: case TGSI_TEXTURE_SHADOW1D_ARRAY: address[0] = lp_build_add(uint_bld, address[0], bld->immediates[off->Index][off->SwizzleX]); break; /* texture offsets do not apply to other texture targets */ } } emit_data->args[2] = lp_build_const_int32(gallivm, target); emit_data->arg_count = 3; emit_data->dst_type = LLVMVectorType( LLVMInt32TypeInContext(gallivm->context), 4); } else if (opcode == TGSI_OPCODE_TG4 || opcode == TGSI_OPCODE_LODQ || has_offset) { unsigned is_array = target == TGSI_TEXTURE_1D_ARRAY || target == TGSI_TEXTURE_SHADOW1D_ARRAY || target == TGSI_TEXTURE_2D_ARRAY || target == TGSI_TEXTURE_SHADOW2D_ARRAY || target == TGSI_TEXTURE_CUBE_ARRAY || target == TGSI_TEXTURE_SHADOWCUBE_ARRAY; unsigned is_rect = target == TGSI_TEXTURE_RECT; unsigned dmask = 0xf; if (opcode == TGSI_OPCODE_TG4) { unsigned gather_comp = 0; /* DMASK was repurposed for GATHER4. 4 components are always * returned and DMASK works like a swizzle - it selects * the component to fetch. The only valid DMASK values are * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns * (red,red,red,red) etc.) The ISA document doesn't mention * this. */ /* Get the component index from src1.x for Gather4. */ if (!tgsi_is_shadow_sampler(target)) { LLVMValueRef (*imms)[4] = lp_soa_context(bld_base)->immediates; LLVMValueRef comp_imm; struct tgsi_src_register src1 = inst->Src[1].Register; assert(src1.File == TGSI_FILE_IMMEDIATE); comp_imm = imms[src1.Index][src1.SwizzleX]; gather_comp = LLVMConstIntGetZExtValue(comp_imm); gather_comp = CLAMP(gather_comp, 0, 3); } dmask = 1 << gather_comp; } emit_data->args[2] = samp_ptr; emit_data->args[3] = lp_build_const_int32(gallivm, dmask); emit_data->args[4] = lp_build_const_int32(gallivm, is_rect); /* unorm */ emit_data->args[5] = lp_build_const_int32(gallivm, 0); /* r128 */ emit_data->args[6] = lp_build_const_int32(gallivm, is_array); /* da */ emit_data->args[7] = lp_build_const_int32(gallivm, 0); /* glc */ emit_data->args[8] = lp_build_const_int32(gallivm, 0); /* slc */ emit_data->args[9] = lp_build_const_int32(gallivm, 0); /* tfe */ emit_data->args[10] = lp_build_const_int32(gallivm, 0); /* lwe */ emit_data->arg_count = 11; emit_data->dst_type = LLVMVectorType( LLVMFloatTypeInContext(gallivm->context), 4); } else { emit_data->args[2] = samp_ptr; emit_data->args[3] = lp_build_const_int32(gallivm, target); emit_data->arg_count = 4; emit_data->dst_type = LLVMVectorType( LLVMFloatTypeInContext(gallivm->context), 4); } /* The fetch opcode has been converted to a 2D array fetch. * This simplifies the LLVM backend. */ if (target == TGSI_TEXTURE_CUBE_ARRAY) target = TGSI_TEXTURE_2D_ARRAY; else if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) target = TGSI_TEXTURE_SHADOW2D_ARRAY; /* Pad to power of two vector */ while (count < util_next_power_of_two(count)) address[count++] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); emit_data->args[0] = lp_build_gather_values(gallivm, address, count); } static void build_tex_intrinsic(const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { struct lp_build_context * base = &bld_base->base; unsigned opcode = emit_data->inst->Instruction.Opcode; unsigned target = emit_data->inst->Texture.Texture; char intr_name[127]; bool has_offset = HAVE_LLVM >= 0x0305 ? emit_data->inst->Texture.NumOffsets > 0 : false; if (target == TGSI_TEXTURE_BUFFER) { emit_data->output[emit_data->chan] = lp_build_intrinsic( base->gallivm->builder, "llvm.SI.vs.load.input", emit_data->dst_type, emit_data->args, emit_data->arg_count, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); return; } if (opcode == TGSI_OPCODE_TG4 || opcode == TGSI_OPCODE_LODQ || (opcode != TGSI_OPCODE_TXF && has_offset)) { bool is_shadow = tgsi_is_shadow_sampler(target); const char *name = "llvm.SI.image.sample"; const char *infix = ""; switch (opcode) { case TGSI_OPCODE_TEX: case TGSI_OPCODE_TEX2: case TGSI_OPCODE_TXP: break; case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXB2: infix = ".b"; break; case TGSI_OPCODE_TXL: case TGSI_OPCODE_TXL2: infix = ".l"; break; case TGSI_OPCODE_TXD: infix = ".d"; break; case TGSI_OPCODE_TG4: name = "llvm.SI.gather4"; break; case TGSI_OPCODE_LODQ: name = "llvm.SI.getlod"; is_shadow = false; has_offset = false; break; default: assert(0); return; } /* Add the type and suffixes .c, .o if needed. */ sprintf(intr_name, "%s%s%s%s.v%ui32", name, is_shadow ? ".c" : "", infix, has_offset ? ".o" : "", LLVMGetVectorSize(LLVMTypeOf(emit_data->args[0]))); emit_data->output[emit_data->chan] = lp_build_intrinsic( base->gallivm->builder, intr_name, emit_data->dst_type, emit_data->args, emit_data->arg_count, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } else { LLVMTypeRef i8, v16i8, v32i8; const char *name; switch (opcode) { case TGSI_OPCODE_TEX: case TGSI_OPCODE_TEX2: case TGSI_OPCODE_TXP: name = "llvm.SI.sample"; break; case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXB2: name = "llvm.SI.sampleb"; break; case TGSI_OPCODE_TXD: name = "llvm.SI.sampled"; break; case TGSI_OPCODE_TXF: name = "llvm.SI.imageload"; break; case TGSI_OPCODE_TXL: case TGSI_OPCODE_TXL2: name = "llvm.SI.samplel"; break; default: assert(0); return; } i8 = LLVMInt8TypeInContext(base->gallivm->context); v16i8 = LLVMVectorType(i8, 16); v32i8 = LLVMVectorType(i8, 32); emit_data->args[1] = LLVMBuildBitCast(base->gallivm->builder, emit_data->args[1], v32i8, ""); if (opcode != TGSI_OPCODE_TXF) { emit_data->args[2] = LLVMBuildBitCast(base->gallivm->builder, emit_data->args[2], v16i8, ""); } sprintf(intr_name, "%s.v%ui32", name, LLVMGetVectorSize(LLVMTypeOf(emit_data->args[0]))); emit_data->output[emit_data->chan] = lp_build_intrinsic( base->gallivm->builder, intr_name, emit_data->dst_type, emit_data->args, emit_data->arg_count, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } } static void txq_fetch_args( struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); const struct tgsi_full_instruction *inst = emit_data->inst; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMBuilderRef builder = gallivm->builder; unsigned target = inst->Texture.Texture; LLVMValueRef res_ptr; if (inst->Src[1].Register.Indirect) { const struct tgsi_full_src_register *reg = &inst->Src[1]; LLVMValueRef ind_index; ind_index = get_indirect_index(si_shader_ctx, ®->Indirect, reg->Register.Index); res_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RESOURCE); res_ptr = build_indexed_load_const(si_shader_ctx, res_ptr, ind_index); } else res_ptr = si_shader_ctx->resources[inst->Src[1].Register.Index]; if (target == TGSI_TEXTURE_BUFFER) { LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMTypeRef v8i32 = LLVMVectorType(i32, 8); /* Read the size from the buffer descriptor directly. */ LLVMValueRef res = LLVMBuildBitCast(builder, res_ptr, v8i32, ""); LLVMValueRef size = LLVMBuildExtractElement(builder, res, lp_build_const_int32(gallivm, 6), ""); if (si_shader_ctx->screen->b.chip_class >= VI) { /* On VI, the descriptor contains the size in bytes, * but TXQ must return the size in elements. * The stride is always non-zero for resources using TXQ. */ LLVMValueRef stride = LLVMBuildExtractElement(builder, res, lp_build_const_int32(gallivm, 5), ""); stride = LLVMBuildLShr(builder, stride, lp_build_const_int32(gallivm, 16), ""); stride = LLVMBuildAnd(builder, stride, lp_build_const_int32(gallivm, 0x3FFF), ""); size = LLVMBuildUDiv(builder, size, stride, ""); } emit_data->args[0] = size; return; } /* Mip level */ emit_data->args[0] = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X); /* Resource */ emit_data->args[1] = res_ptr; /* Texture target */ if (target == TGSI_TEXTURE_CUBE_ARRAY || target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) target = TGSI_TEXTURE_2D_ARRAY; emit_data->args[2] = lp_build_const_int32(bld_base->base.gallivm, target); emit_data->arg_count = 3; emit_data->dst_type = LLVMVectorType( LLVMInt32TypeInContext(bld_base->base.gallivm->context), 4); } static void build_txq_intrinsic(const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { unsigned target = emit_data->inst->Texture.Texture; if (target == TGSI_TEXTURE_BUFFER) { /* Just return the buffer size. */ emit_data->output[emit_data->chan] = emit_data->args[0]; return; } build_tgsi_intrinsic_nomem(action, bld_base, emit_data); /* Divide the number of layers by 6 to get the number of cubes. */ if (target == TGSI_TEXTURE_CUBE_ARRAY || target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) { LLVMBuilderRef builder = bld_base->base.gallivm->builder; LLVMValueRef two = lp_build_const_int32(bld_base->base.gallivm, 2); LLVMValueRef six = lp_build_const_int32(bld_base->base.gallivm, 6); LLVMValueRef v4 = emit_data->output[emit_data->chan]; LLVMValueRef z = LLVMBuildExtractElement(builder, v4, two, ""); z = LLVMBuildSDiv(builder, z, six, ""); emit_data->output[emit_data->chan] = LLVMBuildInsertElement(builder, v4, z, two, ""); } } /* * SI implements derivatives using the local data store (LDS) * All writes to the LDS happen in all executing threads at * the same time. TID is the Thread ID for the current * thread and is a value between 0 and 63, representing * the thread's position in the wavefront. * * For the pixel shader threads are grouped into quads of four pixels. * The TIDs of the pixels of a quad are: * * +------+------+ * |4n + 0|4n + 1| * +------+------+ * |4n + 2|4n + 3| * +------+------+ * * So, masking the TID with 0xfffffffc yields the TID of the top left pixel * of the quad, masking with 0xfffffffd yields the TID of the top pixel of * the current pixel's column, and masking with 0xfffffffe yields the TID * of the left pixel of the current pixel's row. * * Adding 1 yields the TID of the pixel to the right of the left pixel, and * adding 2 yields the TID of the pixel below the top pixel. */ /* masks for thread ID. */ #define TID_MASK_TOP_LEFT 0xfffffffc #define TID_MASK_TOP 0xfffffffd #define TID_MASK_LEFT 0xfffffffe static void si_llvm_emit_ddxy( const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; struct lp_build_context * base = &bld_base->base; const struct tgsi_full_instruction *inst = emit_data->inst; unsigned opcode = inst->Instruction.Opcode; LLVMValueRef indices[2]; LLVMValueRef store_ptr, load_ptr0, load_ptr1; LLVMValueRef tl, trbl, result[4]; LLVMTypeRef i32; unsigned swizzle[4]; unsigned c; int idx; unsigned mask; i32 = LLVMInt32TypeInContext(gallivm->context); indices[0] = bld_base->uint_bld.zero; indices[1] = lp_build_intrinsic(gallivm->builder, "llvm.SI.tid", i32, NULL, 0, LLVMReadNoneAttribute); store_ptr = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds, indices, 2, ""); if (opcode == TGSI_OPCODE_DDX_FINE) mask = TID_MASK_LEFT; else if (opcode == TGSI_OPCODE_DDY_FINE) mask = TID_MASK_TOP; else mask = TID_MASK_TOP_LEFT; indices[1] = LLVMBuildAnd(gallivm->builder, indices[1], lp_build_const_int32(gallivm, mask), ""); load_ptr0 = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds, indices, 2, ""); /* for DDX we want to next X pixel, DDY next Y pixel. */ idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2; indices[1] = LLVMBuildAdd(gallivm->builder, indices[1], lp_build_const_int32(gallivm, idx), ""); load_ptr1 = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds, indices, 2, ""); for (c = 0; c < 4; ++c) { unsigned i; swizzle[c] = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], c); for (i = 0; i < c; ++i) { if (swizzle[i] == swizzle[c]) { result[c] = result[i]; break; } } if (i != c) continue; LLVMBuildStore(gallivm->builder, LLVMBuildBitCast(gallivm->builder, lp_build_emit_fetch(bld_base, inst, 0, c), i32, ""), store_ptr); tl = LLVMBuildLoad(gallivm->builder, load_ptr0, ""); tl = LLVMBuildBitCast(gallivm->builder, tl, base->elem_type, ""); trbl = LLVMBuildLoad(gallivm->builder, load_ptr1, ""); trbl = LLVMBuildBitCast(gallivm->builder, trbl, base->elem_type, ""); result[c] = LLVMBuildFSub(gallivm->builder, trbl, tl, ""); } emit_data->output[0] = lp_build_gather_values(gallivm, result, 4); } /* * this takes an I,J coordinate pair, * and works out the X and Y derivatives. * it returns DDX(I), DDX(J), DDY(I), DDY(J). */ static LLVMValueRef si_llvm_emit_ddxy_interp( struct lp_build_tgsi_context *bld_base, LLVMValueRef interp_ij) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; struct lp_build_context *base = &bld_base->base; LLVMValueRef indices[2]; LLVMValueRef store_ptr, load_ptr_x, load_ptr_y, load_ptr_ddx, load_ptr_ddy, temp, temp2; LLVMValueRef tl, tr, bl, result[4]; LLVMTypeRef i32; unsigned c; i32 = LLVMInt32TypeInContext(gallivm->context); indices[0] = bld_base->uint_bld.zero; indices[1] = lp_build_intrinsic(gallivm->builder, "llvm.SI.tid", i32, NULL, 0, LLVMReadNoneAttribute); store_ptr = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds, indices, 2, ""); temp = LLVMBuildAnd(gallivm->builder, indices[1], lp_build_const_int32(gallivm, TID_MASK_LEFT), ""); temp2 = LLVMBuildAnd(gallivm->builder, indices[1], lp_build_const_int32(gallivm, TID_MASK_TOP), ""); indices[1] = temp; load_ptr_x = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds, indices, 2, ""); indices[1] = temp2; load_ptr_y = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds, indices, 2, ""); indices[1] = LLVMBuildAdd(gallivm->builder, temp, lp_build_const_int32(gallivm, 1), ""); load_ptr_ddx = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds, indices, 2, ""); indices[1] = LLVMBuildAdd(gallivm->builder, temp2, lp_build_const_int32(gallivm, 2), ""); load_ptr_ddy = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds, indices, 2, ""); for (c = 0; c < 2; ++c) { LLVMValueRef store_val; LLVMValueRef c_ll = lp_build_const_int32(gallivm, c); store_val = LLVMBuildExtractElement(gallivm->builder, interp_ij, c_ll, ""); LLVMBuildStore(gallivm->builder, store_val, store_ptr); tl = LLVMBuildLoad(gallivm->builder, load_ptr_x, ""); tl = LLVMBuildBitCast(gallivm->builder, tl, base->elem_type, ""); tr = LLVMBuildLoad(gallivm->builder, load_ptr_ddx, ""); tr = LLVMBuildBitCast(gallivm->builder, tr, base->elem_type, ""); result[c] = LLVMBuildFSub(gallivm->builder, tr, tl, ""); tl = LLVMBuildLoad(gallivm->builder, load_ptr_y, ""); tl = LLVMBuildBitCast(gallivm->builder, tl, base->elem_type, ""); bl = LLVMBuildLoad(gallivm->builder, load_ptr_ddy, ""); bl = LLVMBuildBitCast(gallivm->builder, bl, base->elem_type, ""); result[c + 2] = LLVMBuildFSub(gallivm->builder, bl, tl, ""); } return lp_build_gather_values(gallivm, result, 4); } static void interp_fetch_args( struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; const struct tgsi_full_instruction *inst = emit_data->inst; if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) { /* offset is in second src, first two channels */ emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst, 1, 0); emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst, 1, 1); emit_data->arg_count = 2; } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) { LLVMValueRef sample_position; LLVMValueRef sample_id; LLVMValueRef halfval = lp_build_const_float(gallivm, 0.5f); /* fetch sample ID, then fetch its sample position, * and place into first two channels. */ sample_id = lp_build_emit_fetch(bld_base, emit_data->inst, 1, 0); sample_id = LLVMBuildBitCast(gallivm->builder, sample_id, LLVMInt32TypeInContext(gallivm->context), ""); sample_position = load_sample_position(&si_shader_ctx->radeon_bld, sample_id); emit_data->args[0] = LLVMBuildExtractElement(gallivm->builder, sample_position, lp_build_const_int32(gallivm, 0), ""); emit_data->args[0] = LLVMBuildFSub(gallivm->builder, emit_data->args[0], halfval, ""); emit_data->args[1] = LLVMBuildExtractElement(gallivm->builder, sample_position, lp_build_const_int32(gallivm, 1), ""); emit_data->args[1] = LLVMBuildFSub(gallivm->builder, emit_data->args[1], halfval, ""); emit_data->arg_count = 2; } } static void build_interp_intrinsic(const struct lp_build_tgsi_action *action, struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct si_shader *shader = si_shader_ctx->shader; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef interp_param; const struct tgsi_full_instruction *inst = emit_data->inst; const char *intr_name; int input_index; int chan; int i; LLVMValueRef attr_number; LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context); LLVMValueRef params = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_PRIM_MASK); int interp_param_idx; unsigned location; assert(inst->Src[0].Register.File == TGSI_FILE_INPUT); input_index = inst->Src[0].Register.Index; if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET || inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) location = TGSI_INTERPOLATE_LOC_CENTER; else location = TGSI_INTERPOLATE_LOC_CENTROID; interp_param_idx = lookup_interp_param_index(shader->ps_input_interpolate[input_index], location); if (interp_param_idx == -1) return; else if (interp_param_idx) interp_param = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, interp_param_idx); else interp_param = NULL; attr_number = lp_build_const_int32(gallivm, shader->ps_input_param_offset[input_index]); if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET || inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) { LLVMValueRef ij_out[2]; LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param); /* * take the I then J parameters, and the DDX/Y for it, and * calculate the IJ inputs for the interpolator. * temp1 = ddx * offset/sample.x + I; * interp_param.I = ddy * offset/sample.y + temp1; * temp1 = ddx * offset/sample.x + J; * interp_param.J = ddy * offset/sample.y + temp1; */ for (i = 0; i < 2; i++) { LLVMValueRef ix_ll = lp_build_const_int32(gallivm, i); LLVMValueRef iy_ll = lp_build_const_int32(gallivm, i + 2); LLVMValueRef ddx_el = LLVMBuildExtractElement(gallivm->builder, ddxy_out, ix_ll, ""); LLVMValueRef ddy_el = LLVMBuildExtractElement(gallivm->builder, ddxy_out, iy_ll, ""); LLVMValueRef interp_el = LLVMBuildExtractElement(gallivm->builder, interp_param, ix_ll, ""); LLVMValueRef temp1, temp2; interp_el = LLVMBuildBitCast(gallivm->builder, interp_el, LLVMFloatTypeInContext(gallivm->context), ""); temp1 = LLVMBuildFMul(gallivm->builder, ddx_el, emit_data->args[0], ""); temp1 = LLVMBuildFAdd(gallivm->builder, temp1, interp_el, ""); temp2 = LLVMBuildFMul(gallivm->builder, ddy_el, emit_data->args[1], ""); temp2 = LLVMBuildFAdd(gallivm->builder, temp2, temp1, ""); ij_out[i] = LLVMBuildBitCast(gallivm->builder, temp2, LLVMIntTypeInContext(gallivm->context, 32), ""); } interp_param = lp_build_gather_values(bld_base->base.gallivm, ij_out, 2); } intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant"; for (chan = 0; chan < 2; chan++) { LLVMValueRef args[4]; LLVMValueRef llvm_chan; unsigned schan; schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan); llvm_chan = lp_build_const_int32(gallivm, schan); args[0] = llvm_chan; args[1] = attr_number; args[2] = params; args[3] = interp_param; emit_data->output[chan] = lp_build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } } static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { LLVMValueRef (*imms)[4] = lp_soa_context(bld_base)->immediates; struct tgsi_src_register src0 = emit_data->inst->Src[0].Register; unsigned stream; assert(src0.File == TGSI_FILE_IMMEDIATE); stream = LLVMConstIntGetZExtValue(imms[src0.Index][src0.SwizzleX]) & 0x3; return stream; } /* Emit one vertex from the geometry shader */ static void si_llvm_emit_vertex( const struct lp_build_tgsi_action *action, struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct lp_build_context *uint = &bld_base->uint_bld; struct si_shader *shader = si_shader_ctx->shader; struct tgsi_shader_info *info = &shader->selector->info; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef soffset = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS2VS_OFFSET); LLVMValueRef gs_next_vertex; LLVMValueRef can_emit, kill; LLVMValueRef args[2]; unsigned chan; int i; unsigned stream; stream = si_llvm_get_stream(bld_base, emit_data); /* Write vertex attribute values to GSVS ring */ gs_next_vertex = LLVMBuildLoad(gallivm->builder, si_shader_ctx->gs_next_vertex[stream], ""); /* If this thread has already emitted the declared maximum number of * vertices, kill it: excessive vertex emissions are not supposed to * have any effect, and GS threads have no externally observable * effects other than emitting vertices. */ can_emit = LLVMBuildICmp(gallivm->builder, LLVMIntULE, gs_next_vertex, lp_build_const_int32(gallivm, shader->selector->gs_max_out_vertices), ""); kill = lp_build_select(&bld_base->base, can_emit, lp_build_const_float(gallivm, 1.0f), lp_build_const_float(gallivm, -1.0f)); lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill", LLVMVoidTypeInContext(gallivm->context), &kill, 1, 0); for (i = 0; i < info->num_outputs; i++) { LLVMValueRef *out_ptr = si_shader_ctx->radeon_bld.soa.outputs[i]; for (chan = 0; chan < 4; chan++) { LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""); LLVMValueRef voffset = lp_build_const_int32(gallivm, (i * 4 + chan) * shader->selector->gs_max_out_vertices); voffset = lp_build_add(uint, voffset, gs_next_vertex); voffset = lp_build_mul_imm(uint, voffset, 4); out_val = LLVMBuildBitCast(gallivm->builder, out_val, i32, ""); build_tbuffer_store(si_shader_ctx, si_shader_ctx->gsvs_ring[stream], out_val, 1, voffset, soffset, 0, V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0); } } gs_next_vertex = lp_build_add(uint, gs_next_vertex, lp_build_const_int32(gallivm, 1)); LLVMBuildStore(gallivm->builder, gs_next_vertex, si_shader_ctx->gs_next_vertex[stream]); /* Signal vertex emission */ args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_EMIT | SENDMSG_GS | (stream << 8)); args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID); lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg", LLVMVoidTypeInContext(gallivm->context), args, 2, LLVMNoUnwindAttribute); } /* Cut one primitive from the geometry shader */ static void si_llvm_emit_primitive( const struct lp_build_tgsi_action *action, struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef args[2]; unsigned stream; /* Signal primitive cut */ stream = si_llvm_get_stream(bld_base, emit_data); args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_CUT | SENDMSG_GS | (stream << 8)); args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID); lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg", LLVMVoidTypeInContext(gallivm->context), args, 2, LLVMNoUnwindAttribute); } static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action, struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { struct gallivm_state *gallivm = bld_base->base.gallivm; lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.barrier.local", LLVMVoidTypeInContext(gallivm->context), NULL, 0, LLVMNoUnwindAttribute); } static const struct lp_build_tgsi_action tex_action = { .fetch_args = tex_fetch_args, .emit = build_tex_intrinsic, }; static const struct lp_build_tgsi_action txq_action = { .fetch_args = txq_fetch_args, .emit = build_txq_intrinsic, .intr_name = "llvm.SI.resinfo" }; static const struct lp_build_tgsi_action interp_action = { .fetch_args = interp_fetch_args, .emit = build_interp_intrinsic, }; static void create_meta_data(struct si_shader_context *si_shader_ctx) { struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm; LLVMValueRef args[3]; args[0] = LLVMMDStringInContext(gallivm->context, "const", 5); args[1] = 0; args[2] = lp_build_const_int32(gallivm, 1); si_shader_ctx->const_md = LLVMMDNodeInContext(gallivm->context, args, 3); } static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements) { return LLVMPointerType(LLVMArrayType(elem_type, num_elements), CONST_ADDR_SPACE); } static void declare_streamout_params(struct si_shader_context *si_shader_ctx, struct pipe_stream_output_info *so, LLVMTypeRef *params, LLVMTypeRef i32, unsigned *num_params) { int i; /* Streamout SGPRs. */ if (so->num_outputs) { params[si_shader_ctx->param_streamout_config = (*num_params)++] = i32; params[si_shader_ctx->param_streamout_write_index = (*num_params)++] = i32; } /* A streamout buffer offset is loaded if the stride is non-zero. */ for (i = 0; i < 4; i++) { if (!so->stride[i]) continue; params[si_shader_ctx->param_streamout_offset[i] = (*num_params)++] = i32; } } static void create_function(struct si_shader_context *si_shader_ctx) { struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state *gallivm = bld_base->base.gallivm; struct si_shader *shader = si_shader_ctx->shader; LLVMTypeRef params[SI_NUM_PARAMS], f32, i8, i32, v2i32, v3i32, v16i8, v4i32, v8i32; unsigned i, last_array_pointer, last_sgpr, num_params; i8 = LLVMInt8TypeInContext(gallivm->context); i32 = LLVMInt32TypeInContext(gallivm->context); f32 = LLVMFloatTypeInContext(gallivm->context); v2i32 = LLVMVectorType(i32, 2); v3i32 = LLVMVectorType(i32, 3); v4i32 = LLVMVectorType(i32, 4); v8i32 = LLVMVectorType(i32, 8); v16i8 = LLVMVectorType(i8, 16); params[SI_PARAM_RW_BUFFERS] = const_array(v16i8, SI_NUM_RW_BUFFERS); params[SI_PARAM_CONST] = const_array(v16i8, SI_NUM_CONST_BUFFERS); params[SI_PARAM_SAMPLER] = const_array(v4i32, SI_NUM_SAMPLER_STATES); params[SI_PARAM_RESOURCE] = const_array(v8i32, SI_NUM_SAMPLER_VIEWS); last_array_pointer = SI_PARAM_RESOURCE; switch (si_shader_ctx->type) { case TGSI_PROCESSOR_VERTEX: params[SI_PARAM_VERTEX_BUFFER] = const_array(v16i8, SI_NUM_VERTEX_BUFFERS); last_array_pointer = SI_PARAM_VERTEX_BUFFER; params[SI_PARAM_BASE_VERTEX] = i32; params[SI_PARAM_START_INSTANCE] = i32; num_params = SI_PARAM_START_INSTANCE+1; if (shader->key.vs.as_es) { params[si_shader_ctx->param_es2gs_offset = num_params++] = i32; } else if (shader->key.vs.as_ls) { params[SI_PARAM_LS_OUT_LAYOUT] = i32; num_params = SI_PARAM_LS_OUT_LAYOUT+1; } else { if (shader->is_gs_copy_shader) { last_array_pointer = SI_PARAM_CONST; num_params = SI_PARAM_CONST+1; } /* The locations of the other parameters are assigned dynamically. */ declare_streamout_params(si_shader_ctx, &shader->selector->so, params, i32, &num_params); } last_sgpr = num_params-1; /* VGPRs */ params[si_shader_ctx->param_vertex_id = num_params++] = i32; params[si_shader_ctx->param_rel_auto_id = num_params++] = i32; params[si_shader_ctx->param_vs_prim_id = num_params++] = i32; params[si_shader_ctx->param_instance_id = num_params++] = i32; break; case TGSI_PROCESSOR_TESS_CTRL: params[SI_PARAM_TCS_OUT_OFFSETS] = i32; params[SI_PARAM_TCS_OUT_LAYOUT] = i32; params[SI_PARAM_TCS_IN_LAYOUT] = i32; params[SI_PARAM_TESS_FACTOR_OFFSET] = i32; last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET; /* VGPRs */ params[SI_PARAM_PATCH_ID] = i32; params[SI_PARAM_REL_IDS] = i32; num_params = SI_PARAM_REL_IDS+1; break; case TGSI_PROCESSOR_TESS_EVAL: params[SI_PARAM_TCS_OUT_OFFSETS] = i32; params[SI_PARAM_TCS_OUT_LAYOUT] = i32; num_params = SI_PARAM_TCS_OUT_LAYOUT+1; if (shader->key.tes.as_es) { params[si_shader_ctx->param_es2gs_offset = num_params++] = i32; } else { declare_streamout_params(si_shader_ctx, &shader->selector->so, params, i32, &num_params); } last_sgpr = num_params - 1; /* VGPRs */ params[si_shader_ctx->param_tes_u = num_params++] = f32; params[si_shader_ctx->param_tes_v = num_params++] = f32; params[si_shader_ctx->param_tes_rel_patch_id = num_params++] = i32; params[si_shader_ctx->param_tes_patch_id = num_params++] = i32; break; case TGSI_PROCESSOR_GEOMETRY: params[SI_PARAM_GS2VS_OFFSET] = i32; params[SI_PARAM_GS_WAVE_ID] = i32; last_sgpr = SI_PARAM_GS_WAVE_ID; /* VGPRs */ params[SI_PARAM_VTX0_OFFSET] = i32; params[SI_PARAM_VTX1_OFFSET] = i32; params[SI_PARAM_PRIMITIVE_ID] = i32; params[SI_PARAM_VTX2_OFFSET] = i32; params[SI_PARAM_VTX3_OFFSET] = i32; params[SI_PARAM_VTX4_OFFSET] = i32; params[SI_PARAM_VTX5_OFFSET] = i32; params[SI_PARAM_GS_INSTANCE_ID] = i32; num_params = SI_PARAM_GS_INSTANCE_ID+1; break; case TGSI_PROCESSOR_FRAGMENT: params[SI_PARAM_ALPHA_REF] = f32; params[SI_PARAM_PRIM_MASK] = i32; last_sgpr = SI_PARAM_PRIM_MASK; params[SI_PARAM_PERSP_SAMPLE] = v2i32; params[SI_PARAM_PERSP_CENTER] = v2i32; params[SI_PARAM_PERSP_CENTROID] = v2i32; params[SI_PARAM_PERSP_PULL_MODEL] = v3i32; params[SI_PARAM_LINEAR_SAMPLE] = v2i32; params[SI_PARAM_LINEAR_CENTER] = v2i32; params[SI_PARAM_LINEAR_CENTROID] = v2i32; params[SI_PARAM_LINE_STIPPLE_TEX] = f32; params[SI_PARAM_POS_X_FLOAT] = f32; params[SI_PARAM_POS_Y_FLOAT] = f32; params[SI_PARAM_POS_Z_FLOAT] = f32; params[SI_PARAM_POS_W_FLOAT] = f32; params[SI_PARAM_FRONT_FACE] = f32; params[SI_PARAM_ANCILLARY] = i32; params[SI_PARAM_SAMPLE_COVERAGE] = f32; params[SI_PARAM_POS_FIXED_PT] = f32; num_params = SI_PARAM_POS_FIXED_PT+1; break; default: assert(0 && "unimplemented shader"); return; } assert(num_params <= Elements(params)); radeon_llvm_create_func(&si_shader_ctx->radeon_bld, params, num_params); radeon_llvm_shader_type(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->type); if (shader->dx10_clamp_mode) LLVMAddTargetDependentFunctionAttr(si_shader_ctx->radeon_bld.main_fn, "enable-no-nans-fp-math", "true"); for (i = 0; i <= last_sgpr; ++i) { LLVMValueRef P = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, i); /* We tell llvm that array inputs are passed by value to allow Sinking pass * to move load. Inputs are constant so this is fine. */ if (i <= last_array_pointer) LLVMAddAttribute(P, LLVMByValAttribute); else LLVMAddAttribute(P, LLVMInRegAttribute); } if (bld_base->info && (bld_base->info->opcode_count[TGSI_OPCODE_DDX] > 0 || bld_base->info->opcode_count[TGSI_OPCODE_DDY] > 0 || bld_base->info->opcode_count[TGSI_OPCODE_DDX_FINE] > 0 || bld_base->info->opcode_count[TGSI_OPCODE_DDY_FINE] > 0 || bld_base->info->opcode_count[TGSI_OPCODE_INTERP_OFFSET] > 0 || bld_base->info->opcode_count[TGSI_OPCODE_INTERP_SAMPLE] > 0)) si_shader_ctx->lds = LLVMAddGlobalInAddressSpace(gallivm->module, LLVMArrayType(i32, 64), "ddxy_lds", LOCAL_ADDR_SPACE); if ((si_shader_ctx->type == TGSI_PROCESSOR_VERTEX && shader->key.vs.as_ls) || si_shader_ctx->type == TGSI_PROCESSOR_TESS_CTRL || si_shader_ctx->type == TGSI_PROCESSOR_TESS_EVAL) { /* This is the upper bound, maximum is 32 inputs times 32 vertices */ unsigned vertex_data_dw_size = 32*32*4; unsigned patch_data_dw_size = 32*4; /* The formula is: TCS inputs + TCS outputs + TCS patch outputs. */ unsigned patch_dw_size = vertex_data_dw_size*2 + patch_data_dw_size; unsigned lds_dwords = patch_dw_size; /* The actual size is computed outside of the shader to reduce * the number of shader variants. */ si_shader_ctx->lds = LLVMAddGlobalInAddressSpace(gallivm->module, LLVMArrayType(i32, lds_dwords), "tess_lds", LOCAL_ADDR_SPACE); } } static void preload_constants(struct si_shader_context *si_shader_ctx) { struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state * gallivm = bld_base->base.gallivm; const struct tgsi_shader_info * info = bld_base->info; unsigned buf; LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST); for (buf = 0; buf < SI_NUM_CONST_BUFFERS; buf++) { unsigned i, num_const = info->const_file_max[buf] + 1; if (num_const == 0) continue; /* Allocate space for the constant values */ si_shader_ctx->constants[buf] = CALLOC(num_const * 4, sizeof(LLVMValueRef)); /* Load the resource descriptor */ si_shader_ctx->const_resource[buf] = build_indexed_load_const(si_shader_ctx, ptr, lp_build_const_int32(gallivm, buf)); /* Load the constants, we rely on the code sinking to do the rest */ for (i = 0; i < num_const * 4; ++i) { si_shader_ctx->constants[buf][i] = buffer_load_const(gallivm->builder, si_shader_ctx->const_resource[buf], lp_build_const_int32(gallivm, i * 4), bld_base->base.elem_type); } } } static void preload_samplers(struct si_shader_context *si_shader_ctx) { struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state * gallivm = bld_base->base.gallivm; const struct tgsi_shader_info * info = bld_base->info; unsigned i, num_samplers = info->file_max[TGSI_FILE_SAMPLER] + 1; LLVMValueRef res_ptr, samp_ptr; LLVMValueRef offset; if (num_samplers == 0) return; res_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RESOURCE); samp_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER); /* Load the resources and samplers, we rely on the code sinking to do the rest */ for (i = 0; i < num_samplers; ++i) { /* Resource */ offset = lp_build_const_int32(gallivm, i); si_shader_ctx->resources[i] = build_indexed_load_const(si_shader_ctx, res_ptr, offset); /* Sampler */ offset = lp_build_const_int32(gallivm, i); si_shader_ctx->samplers[i] = build_indexed_load_const(si_shader_ctx, samp_ptr, offset); /* FMASK resource */ if (info->is_msaa_sampler[i]) { offset = lp_build_const_int32(gallivm, SI_FMASK_TEX_OFFSET + i); si_shader_ctx->resources[SI_FMASK_TEX_OFFSET + i] = build_indexed_load_const(si_shader_ctx, res_ptr, offset); } } } static void preload_streamout_buffers(struct si_shader_context *si_shader_ctx) { struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state * gallivm = bld_base->base.gallivm; unsigned i; /* Streamout can only be used if the shader is compiled as VS. */ if (!si_shader_ctx->shader->selector->so.num_outputs || (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX && (si_shader_ctx->shader->key.vs.as_es || si_shader_ctx->shader->key.vs.as_ls)) || (si_shader_ctx->type == TGSI_PROCESSOR_TESS_EVAL && si_shader_ctx->shader->key.tes.as_es)) return; LLVMValueRef buf_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RW_BUFFERS); /* Load the resources, we rely on the code sinking to do the rest */ for (i = 0; i < 4; ++i) { if (si_shader_ctx->shader->selector->so.stride[i]) { LLVMValueRef offset = lp_build_const_int32(gallivm, SI_SO_BUF_OFFSET + i); si_shader_ctx->so_buffers[i] = build_indexed_load_const(si_shader_ctx, buf_ptr, offset); } } } /** * Load ESGS and GSVS ring buffer resource descriptors and save the variables * for later use. */ static void preload_ring_buffers(struct si_shader_context *si_shader_ctx) { struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm; LLVMValueRef buf_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RW_BUFFERS); if ((si_shader_ctx->type == TGSI_PROCESSOR_VERTEX && si_shader_ctx->shader->key.vs.as_es) || (si_shader_ctx->type == TGSI_PROCESSOR_TESS_EVAL && si_shader_ctx->shader->key.tes.as_es) || si_shader_ctx->type == TGSI_PROCESSOR_GEOMETRY) { LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_ESGS); si_shader_ctx->esgs_ring = build_indexed_load_const(si_shader_ctx, buf_ptr, offset); } if (si_shader_ctx->shader->is_gs_copy_shader) { LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS); si_shader_ctx->gsvs_ring[0] = build_indexed_load_const(si_shader_ctx, buf_ptr, offset); } if (si_shader_ctx->type == TGSI_PROCESSOR_GEOMETRY) { int i; for (i = 0; i < 4; i++) { LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS + i); si_shader_ctx->gsvs_ring[i] = build_indexed_load_const(si_shader_ctx, buf_ptr, offset); } } } void si_shader_binary_read_config(const struct si_screen *sscreen, struct si_shader *shader, unsigned symbol_offset) { unsigned i; const unsigned char *config = radeon_shader_binary_config_start(&shader->binary, symbol_offset); /* XXX: We may be able to emit some of these values directly rather than * extracting fields to be emitted later. */ for (i = 0; i < shader->binary.config_size_per_symbol; i+= 8) { unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i)); unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4)); switch (reg) { case R_00B028_SPI_SHADER_PGM_RSRC1_PS: case R_00B128_SPI_SHADER_PGM_RSRC1_VS: case R_00B228_SPI_SHADER_PGM_RSRC1_GS: case R_00B848_COMPUTE_PGM_RSRC1: shader->num_sgprs = MAX2(shader->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8); shader->num_vgprs = MAX2(shader->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4); shader->float_mode = G_00B028_FLOAT_MODE(value); break; case R_00B02C_SPI_SHADER_PGM_RSRC2_PS: shader->lds_size = MAX2(shader->lds_size, G_00B02C_EXTRA_LDS_SIZE(value)); break; case R_00B84C_COMPUTE_PGM_RSRC2: shader->lds_size = MAX2(shader->lds_size, G_00B84C_LDS_SIZE(value)); break; case R_0286CC_SPI_PS_INPUT_ENA: shader->spi_ps_input_ena = value; break; case R_0286E8_SPI_TMPRING_SIZE: case R_00B860_COMPUTE_TMPRING_SIZE: /* WAVESIZE is in units of 256 dwords. */ shader->scratch_bytes_per_wave = G_00B860_WAVESIZE(value) * 256 * 4 * 1; break; default: fprintf(stderr, "Warning: Compiler emitted unknown " "config register: 0x%x\n", reg); break; } } } void si_shader_apply_scratch_relocs(struct si_context *sctx, struct si_shader *shader, uint64_t scratch_va) { unsigned i; uint32_t scratch_rsrc_dword0 = scratch_va & 0xffffffff; uint32_t scratch_rsrc_dword1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_STRIDE(shader->scratch_bytes_per_wave / 64); for (i = 0 ; i < shader->binary.reloc_count; i++) { const struct radeon_shader_reloc *reloc = &shader->binary.relocs[i]; if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) { util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset, &scratch_rsrc_dword0, 4); } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) { util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset, &scratch_rsrc_dword1, 4); } } } int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader) { const struct radeon_shader_binary *binary = &shader->binary; unsigned code_size = binary->code_size + binary->rodata_size; unsigned char *ptr; r600_resource_reference(&shader->bo, NULL); shader->bo = si_resource_create_custom(&sscreen->b.b, PIPE_USAGE_IMMUTABLE, code_size); if (!shader->bo) return -ENOMEM; ptr = sscreen->b.ws->buffer_map(shader->bo->cs_buf, NULL, PIPE_TRANSFER_READ_WRITE); util_memcpy_cpu_to_le32(ptr, binary->code, binary->code_size); if (binary->rodata_size > 0) { ptr += binary->code_size; util_memcpy_cpu_to_le32(ptr, binary->rodata, binary->rodata_size); } sscreen->b.ws->buffer_unmap(shader->bo->cs_buf); return 0; } int si_shader_binary_read(struct si_screen *sscreen, struct si_shader *shader) { const struct radeon_shader_binary *binary = &shader->binary; unsigned i; bool dump = r600_can_dump_shader(&sscreen->b, shader->selector ? shader->selector->tokens : NULL); si_shader_binary_read_config(sscreen, shader, 0); si_shader_binary_upload(sscreen, shader); if (dump) { if (!(sscreen->b.debug_flags & DBG_NO_ASM)) { if (binary->disasm_string) { fprintf(stderr, "\nShader Disassembly:\n\n"); fprintf(stderr, "%s\n", binary->disasm_string); } else { fprintf(stderr, "SI CODE:\n"); for (i = 0; i < binary->code_size; i+=4 ) { fprintf(stderr, "@0x%x: %02x%02x%02x%02x\n", i, binary->code[i + 3], binary->code[i + 2], binary->code[i + 1], binary->code[i]); } } } fprintf(stderr, "*** SHADER STATS ***\n" "SGPRS: %d\nVGPRS: %d\nCode Size: %d bytes\nLDS: %d blocks\n" "Scratch: %d bytes per wave\n********************\n", shader->num_sgprs, shader->num_vgprs, binary->code_size, shader->lds_size, shader->scratch_bytes_per_wave); } return 0; } int si_compile_llvm(struct si_screen *sscreen, struct si_shader *shader, LLVMTargetMachineRef tm, LLVMModuleRef mod) { int r = 0; bool dump_asm = r600_can_dump_shader(&sscreen->b, shader->selector ? shader->selector->tokens : NULL); bool dump_ir = dump_asm && !(sscreen->b.debug_flags & DBG_NO_IR); r = radeon_llvm_compile(mod, &shader->binary, r600_get_llvm_processor_name(sscreen->b.family), dump_ir, dump_asm, tm); if (r) return r; r = si_shader_binary_read(sscreen, shader); FREE(shader->binary.config); FREE(shader->binary.rodata); FREE(shader->binary.global_symbol_offsets); if (shader->scratch_bytes_per_wave == 0) { FREE(shader->binary.code); FREE(shader->binary.relocs); memset(&shader->binary, 0, offsetof(struct radeon_shader_binary, disasm_string)); } return r; } /* Generate code for the hardware VS shader stage to go with a geometry shader */ static int si_generate_gs_copy_shader(struct si_screen *sscreen, struct si_shader_context *si_shader_ctx, struct si_shader *gs, bool dump) { struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm; struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct lp_build_context *base = &bld_base->base; struct lp_build_context *uint = &bld_base->uint_bld; struct si_shader *shader = si_shader_ctx->shader; struct si_shader_output_values *outputs; struct tgsi_shader_info *gsinfo = &gs->selector->info; LLVMValueRef args[9]; int i, r; outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0])); si_shader_ctx->type = TGSI_PROCESSOR_VERTEX; shader->is_gs_copy_shader = true; radeon_llvm_context_init(&si_shader_ctx->radeon_bld); create_meta_data(si_shader_ctx); create_function(si_shader_ctx); preload_streamout_buffers(si_shader_ctx); preload_ring_buffers(si_shader_ctx); args[0] = si_shader_ctx->gsvs_ring[0]; args[1] = lp_build_mul_imm(uint, LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_vertex_id), 4); args[3] = uint->zero; args[4] = uint->one; /* OFFEN */ args[5] = uint->zero; /* IDXEN */ args[6] = uint->one; /* GLC */ args[7] = uint->one; /* SLC */ args[8] = uint->zero; /* TFE */ /* Fetch vertex data from GSVS ring */ for (i = 0; i < gsinfo->num_outputs; ++i) { unsigned chan; outputs[i].name = gsinfo->output_semantic_name[i]; outputs[i].sid = gsinfo->output_semantic_index[i]; for (chan = 0; chan < 4; chan++) { args[2] = lp_build_const_int32(gallivm, (i * 4 + chan) * gs->selector->gs_max_out_vertices * 16 * 4); outputs[i].values[chan] = LLVMBuildBitCast(gallivm->builder, lp_build_intrinsic(gallivm->builder, "llvm.SI.buffer.load.dword.i32.i32", LLVMInt32TypeInContext(gallivm->context), args, 9, LLVMReadOnlyAttribute | LLVMNoUnwindAttribute), base->elem_type, ""); } } si_llvm_export_vs(bld_base, outputs, gsinfo->num_outputs); radeon_llvm_finalize_module(&si_shader_ctx->radeon_bld); if (dump) fprintf(stderr, "Copy Vertex Shader for Geometry Shader:\n\n"); r = si_compile_llvm(sscreen, si_shader_ctx->shader, si_shader_ctx->tm, bld_base->base.gallivm->module); radeon_llvm_dispose(&si_shader_ctx->radeon_bld); FREE(outputs); return r; } static void si_dump_key(unsigned shader, union si_shader_key *key) { int i; fprintf(stderr, "SHADER KEY\n"); switch (shader) { case PIPE_SHADER_VERTEX: fprintf(stderr, " instance_divisors = {"); for (i = 0; i < Elements(key->vs.instance_divisors); i++) fprintf(stderr, !i ? "%u" : ", %u", key->vs.instance_divisors[i]); fprintf(stderr, "}\n"); if (key->vs.as_es) fprintf(stderr, " es_enabled_outputs = 0x%"PRIx64"\n", key->vs.es_enabled_outputs); fprintf(stderr, " as_es = %u\n", key->vs.as_es); fprintf(stderr, " as_ls = %u\n", key->vs.as_ls); break; case PIPE_SHADER_TESS_CTRL: fprintf(stderr, " prim_mode = %u\n", key->tcs.prim_mode); break; case PIPE_SHADER_TESS_EVAL: if (key->tes.as_es) fprintf(stderr, " es_enabled_outputs = 0x%"PRIx64"\n", key->tes.es_enabled_outputs); fprintf(stderr, " as_es = %u\n", key->tes.as_es); break; case PIPE_SHADER_GEOMETRY: break; case PIPE_SHADER_FRAGMENT: fprintf(stderr, " export_16bpc = 0x%X\n", key->ps.export_16bpc); fprintf(stderr, " last_cbuf = %u\n", key->ps.last_cbuf); fprintf(stderr, " color_two_side = %u\n", key->ps.color_two_side); fprintf(stderr, " alpha_func = %u\n", key->ps.alpha_func); fprintf(stderr, " alpha_to_one = %u\n", key->ps.alpha_to_one); fprintf(stderr, " poly_stipple = %u\n", key->ps.poly_stipple); break; default: assert(0); } } int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm, struct si_shader *shader) { struct si_shader_selector *sel = shader->selector; struct tgsi_token *tokens = sel->tokens; struct si_shader_context si_shader_ctx; struct lp_build_tgsi_context * bld_base; struct tgsi_shader_info stipple_shader_info; LLVMModuleRef mod; int r = 0; bool poly_stipple = sel->type == PIPE_SHADER_FRAGMENT && shader->key.ps.poly_stipple; bool dump = r600_can_dump_shader(&sscreen->b, sel->tokens); if (poly_stipple) { tokens = util_pstipple_create_fragment_shader(tokens, NULL, SI_POLY_STIPPLE_SAMPLER); tgsi_scan_shader(tokens, &stipple_shader_info); } /* Dump TGSI code before doing TGSI->LLVM conversion in case the * conversion fails. */ if (dump && !(sscreen->b.debug_flags & DBG_NO_TGSI)) { si_dump_key(sel->type, &shader->key); tgsi_dump(tokens, 0); si_dump_streamout(&sel->so); } assert(shader->nparam == 0); memset(&si_shader_ctx, 0, sizeof(si_shader_ctx)); radeon_llvm_context_init(&si_shader_ctx.radeon_bld); bld_base = &si_shader_ctx.radeon_bld.soa.bld_base; if (sel->type != PIPE_SHADER_COMPUTE) shader->dx10_clamp_mode = true; if (sel->info.uses_kill) shader->db_shader_control |= S_02880C_KILL_ENABLE(1); shader->uses_instanceid = sel->info.uses_instanceid; bld_base->info = poly_stipple ? &stipple_shader_info : &sel->info; bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant; bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action; bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action; bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action; bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action; bld_base->op_actions[TGSI_OPCODE_TEX2] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXB] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXB2] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXD] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXF] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXL] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXL2] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXQ] = txq_action; bld_base->op_actions[TGSI_OPCODE_TG4] = tex_action; bld_base->op_actions[TGSI_OPCODE_LODQ] = tex_action; bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy; bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy; bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy; bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy; bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_llvm_emit_vertex; bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_llvm_emit_primitive; bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier; if (HAVE_LLVM >= 0x0306) { bld_base->op_actions[TGSI_OPCODE_MAX].emit = build_tgsi_intrinsic_nomem; bld_base->op_actions[TGSI_OPCODE_MAX].intr_name = "llvm.maxnum.f32"; bld_base->op_actions[TGSI_OPCODE_MIN].emit = build_tgsi_intrinsic_nomem; bld_base->op_actions[TGSI_OPCODE_MIN].intr_name = "llvm.minnum.f32"; } si_shader_ctx.radeon_bld.load_system_value = declare_system_value; si_shader_ctx.shader = shader; si_shader_ctx.type = tgsi_get_processor_type(tokens); si_shader_ctx.screen = sscreen; si_shader_ctx.tm = tm; switch (si_shader_ctx.type) { case TGSI_PROCESSOR_VERTEX: si_shader_ctx.radeon_bld.load_input = declare_input_vs; if (shader->key.vs.as_ls) bld_base->emit_epilogue = si_llvm_emit_ls_epilogue; else if (shader->key.vs.as_es) bld_base->emit_epilogue = si_llvm_emit_es_epilogue; else bld_base->emit_epilogue = si_llvm_emit_vs_epilogue; break; case TGSI_PROCESSOR_TESS_CTRL: bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs; bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs; bld_base->emit_store = store_output_tcs; bld_base->emit_epilogue = si_llvm_emit_tcs_epilogue; break; case TGSI_PROCESSOR_TESS_EVAL: bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes; if (shader->key.tes.as_es) bld_base->emit_epilogue = si_llvm_emit_es_epilogue; else bld_base->emit_epilogue = si_llvm_emit_vs_epilogue; break; case TGSI_PROCESSOR_GEOMETRY: bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs; bld_base->emit_epilogue = si_llvm_emit_gs_epilogue; break; case TGSI_PROCESSOR_FRAGMENT: si_shader_ctx.radeon_bld.load_input = declare_input_fs; bld_base->emit_epilogue = si_llvm_emit_fs_epilogue; switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) { case TGSI_FS_DEPTH_LAYOUT_GREATER: shader->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z); break; case TGSI_FS_DEPTH_LAYOUT_LESS: shader->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z); break; } break; default: assert(!"Unsupported shader type"); return -1; } create_meta_data(&si_shader_ctx); create_function(&si_shader_ctx); preload_constants(&si_shader_ctx); preload_samplers(&si_shader_ctx); preload_streamout_buffers(&si_shader_ctx); preload_ring_buffers(&si_shader_ctx); if (si_shader_ctx.type == TGSI_PROCESSOR_GEOMETRY) { int i; for (i = 0; i < 4; i++) { si_shader_ctx.gs_next_vertex[i] = lp_build_alloca(bld_base->base.gallivm, bld_base->uint_bld.elem_type, ""); } } if (!lp_build_tgsi_llvm(bld_base, tokens)) { fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n"); goto out; } radeon_llvm_finalize_module(&si_shader_ctx.radeon_bld); mod = bld_base->base.gallivm->module; r = si_compile_llvm(sscreen, shader, tm, mod); if (r) { fprintf(stderr, "LLVM failed to compile shader\n"); goto out; } radeon_llvm_dispose(&si_shader_ctx.radeon_bld); if (si_shader_ctx.type == TGSI_PROCESSOR_GEOMETRY) { shader->gs_copy_shader = CALLOC_STRUCT(si_shader); shader->gs_copy_shader->selector = shader->selector; shader->gs_copy_shader->key = shader->key; si_shader_ctx.shader = shader->gs_copy_shader; if ((r = si_generate_gs_copy_shader(sscreen, &si_shader_ctx, shader, dump))) { free(shader->gs_copy_shader); shader->gs_copy_shader = NULL; goto out; } } out: for (int i = 0; i < SI_NUM_CONST_BUFFERS; i++) FREE(si_shader_ctx.constants[i]); if (poly_stipple) tgsi_free_tokens(tokens); return r; } void si_shader_destroy(struct pipe_context *ctx, struct si_shader *shader) { if (shader->gs_copy_shader) si_shader_destroy(ctx, shader->gs_copy_shader); if (shader->scratch_bo) r600_resource_reference(&shader->scratch_bo, NULL); r600_resource_reference(&shader->bo, NULL); FREE(shader->binary.code); FREE(shader->binary.relocs); FREE(shader->binary.disasm_string); }