/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Tom Stellard * Michel Dänzer * Christian König */ #include "gallivm/lp_bld_const.h" #include "gallivm/lp_bld_gather.h" #include "gallivm/lp_bld_intr.h" #include "gallivm/lp_bld_logic.h" #include "gallivm/lp_bld_arit.h" #include "gallivm/lp_bld_flow.h" #include "radeon_llvm.h" #include "radeon_llvm_emit.h" #include "util/u_memory.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "tgsi/tgsi_dump.h" #include "si_pipe.h" #include "si_shader.h" #include "sid.h" #include struct si_shader_output_values { LLVMValueRef values[4]; unsigned name; unsigned index; unsigned sid; unsigned usage; }; struct si_shader_context { struct radeon_llvm_context radeon_bld; struct tgsi_parse_context parse; struct tgsi_token * tokens; struct si_pipe_shader *shader; struct si_shader *gs_for_vs; unsigned type; /* TGSI_PROCESSOR_* specifies the type of shader. */ int param_streamout_config; int param_streamout_write_index; int param_streamout_offset[4]; int param_vertex_id; int param_instance_id; LLVMValueRef const_md; LLVMValueRef const_resource[NUM_CONST_BUFFERS]; #if HAVE_LLVM >= 0x0304 LLVMValueRef ddxy_lds; #endif LLVMValueRef *constants[NUM_CONST_BUFFERS]; LLVMValueRef *resources; LLVMValueRef *samplers; LLVMValueRef so_buffers[4]; LLVMValueRef gs_next_vertex; }; static struct si_shader_context * si_shader_context( struct lp_build_tgsi_context * bld_base) { return (struct si_shader_context *)bld_base; } #define PERSPECTIVE_BASE 0 #define LINEAR_BASE 9 #define SAMPLE_OFFSET 0 #define CENTER_OFFSET 2 #define CENTROID_OFSET 4 #define USE_SGPR_MAX_SUFFIX_LEN 5 #define CONST_ADDR_SPACE 2 #define LOCAL_ADDR_SPACE 3 #define USER_SGPR_ADDR_SPACE 8 #define SENDMSG_GS 2 #define SENDMSG_GS_DONE 3 #define SENDMSG_GS_OP_NOP (0 << 4) #define SENDMSG_GS_OP_CUT (1 << 4) #define SENDMSG_GS_OP_EMIT (2 << 4) #define SENDMSG_GS_OP_EMIT_CUT (3 << 4) /** * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad * * @param offset The offset parameter specifies the number of * elements to offset, not the number of bytes or dwords. An element is the * the type pointed to by the base_ptr parameter (e.g. int is the element of * an int* pointer) * * When LLVM lowers the load instruction, it will convert the element offset * into a dword offset automatically. * */ static LLVMValueRef build_indexed_load( struct si_shader_context * si_shader_ctx, LLVMValueRef base_ptr, LLVMValueRef offset) { struct lp_build_context * base = &si_shader_ctx->radeon_bld.soa.bld_base.base; LLVMValueRef indices[2] = { LLVMConstInt(LLVMInt64TypeInContext(base->gallivm->context), 0, false), offset }; LLVMValueRef computed_ptr = LLVMBuildGEP( base->gallivm->builder, base_ptr, indices, 2, ""); LLVMValueRef result = LLVMBuildLoad(base->gallivm->builder, computed_ptr, ""); LLVMSetMetadata(result, 1, si_shader_ctx->const_md); return result; } static LLVMValueRef get_instance_index_for_fetch( struct radeon_llvm_context * radeon_bld, unsigned divisor) { struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); struct gallivm_state * gallivm = radeon_bld->soa.bld_base.base.gallivm; LLVMValueRef result = LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_instance_id); result = LLVMBuildAdd(gallivm->builder, result, LLVMGetParam( radeon_bld->main_fn, SI_PARAM_START_INSTANCE), ""); if (divisor > 1) result = LLVMBuildUDiv(gallivm->builder, result, lp_build_const_int32(gallivm, divisor), ""); return result; } static int si_store_shader_io_attribs(struct si_shader *shader, const struct tgsi_full_declaration *d) { int i = -1; switch (d->Declaration.File) { case TGSI_FILE_INPUT: i = shader->ninput++; assert(i < Elements(shader->input)); shader->input[i].name = d->Semantic.Name; shader->input[i].sid = d->Semantic.Index; shader->input[i].index = d->Range.First; shader->input[i].interpolate = d->Interp.Interpolate; shader->input[i].centroid = d->Interp.Centroid; return -1; case TGSI_FILE_OUTPUT: i = shader->noutput++; assert(i < Elements(shader->output)); shader->output[i].name = d->Semantic.Name; shader->output[i].sid = d->Semantic.Index; shader->output[i].index = d->Range.First; shader->output[i].usage = d->Declaration.UsageMask; break; } return i; } static void declare_input_vs( struct radeon_llvm_context *radeon_bld, unsigned input_index, const struct tgsi_full_declaration *decl) { struct lp_build_context *base = &radeon_bld->soa.bld_base.base; struct gallivm_state *gallivm = base->gallivm; struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); unsigned divisor = si_shader_ctx->shader->key.vs.instance_divisors[input_index]; unsigned chan; LLVMValueRef t_list_ptr; LLVMValueRef t_offset; LLVMValueRef t_list; LLVMValueRef attribute_offset; LLVMValueRef buffer_index; LLVMValueRef args[3]; LLVMTypeRef vec4_type; LLVMValueRef input; /* Load the T list */ t_list_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_VERTEX_BUFFER); t_offset = lp_build_const_int32(gallivm, input_index); t_list = build_indexed_load(si_shader_ctx, t_list_ptr, t_offset); /* Build the attribute offset */ attribute_offset = lp_build_const_int32(gallivm, 0); if (divisor) { /* Build index from instance ID, start instance and divisor */ si_shader_ctx->shader->shader.uses_instanceid = true; buffer_index = get_instance_index_for_fetch(&si_shader_ctx->radeon_bld, divisor); } else { /* Load the buffer index, which is always stored in VGPR0 * for Vertex Shaders */ buffer_index = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_vertex_id); } vec4_type = LLVMVectorType(base->elem_type, 4); args[0] = t_list; args[1] = attribute_offset; args[2] = buffer_index; input = build_intrinsic(gallivm->builder, "llvm.SI.vs.load.input", vec4_type, args, 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); /* Break up the vec4 into individual components */ for (chan = 0; chan < 4; chan++) { LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); /* XXX: Use a helper function for this. There is one in * tgsi_llvm.c. */ si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, chan)] = LLVMBuildExtractElement(gallivm->builder, input, llvm_chan, ""); } } static void declare_input_gs( struct radeon_llvm_context *radeon_bld, unsigned input_index, const struct tgsi_full_declaration *decl) { struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); struct si_shader *shader = &si_shader_ctx->shader->shader; si_store_shader_io_attribs(shader, decl); if (decl->Semantic.Name != TGSI_SEMANTIC_PRIMID) shader->input[input_index].param_offset = shader->nparam++; } static LLVMValueRef fetch_input_gs( struct lp_build_tgsi_context *bld_base, const struct tgsi_full_src_register *reg, enum tgsi_opcode_type type, unsigned swizzle) { struct lp_build_context *base = &bld_base->base; struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct si_shader *shader = &si_shader_ctx->shader->shader; struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; struct gallivm_state *gallivm = base->gallivm; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef vtx_offset; LLVMValueRef t_list_ptr; LLVMValueRef t_list; LLVMValueRef args[9]; unsigned vtx_offset_param; if (swizzle != ~0 && shader->input[reg->Register.Index].name == TGSI_SEMANTIC_PRIMID) { if (swizzle == 0) return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_PRIMITIVE_ID); else return uint->zero; } if (!reg->Register.Dimension) return NULL; if (swizzle == ~0) { LLVMValueRef values[TGSI_NUM_CHANNELS]; unsigned chan; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { values[chan] = fetch_input_gs(bld_base, reg, type, chan); } return lp_build_gather_values(bld_base->base.gallivm, values, TGSI_NUM_CHANNELS); } /* Get the vertex offset parameter */ vtx_offset_param = reg->Dimension.Index; if (vtx_offset_param < 2) { vtx_offset_param += SI_PARAM_VTX0_OFFSET; } else { assert(vtx_offset_param < 6); vtx_offset_param += SI_PARAM_VTX2_OFFSET - 2; } vtx_offset = lp_build_mul_imm(uint, LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, vtx_offset_param), 4); /* Load the ESGS ring resource descriptor */ t_list_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RW_BUFFERS); t_list = build_indexed_load(si_shader_ctx, t_list_ptr, lp_build_const_int32(gallivm, SI_RING_ESGS)); args[0] = t_list; args[1] = vtx_offset; args[2] = lp_build_const_int32(gallivm, ((shader->input[reg->Register.Index].param_offset * 4) + swizzle) * 256); args[3] = uint->zero; args[4] = uint->one; /* OFFEN */ args[5] = uint->zero; /* IDXEN */ args[6] = uint->one; /* GLC */ args[7] = uint->zero; /* SLC */ args[8] = uint->zero; /* TFE */ return LLVMBuildBitCast(gallivm->builder, build_intrinsic(gallivm->builder, "llvm.SI.buffer.load.dword.i32.i32", i32, args, 9, LLVMReadOnlyAttribute | LLVMNoUnwindAttribute), tgsi2llvmtype(bld_base, type), ""); } static void declare_input_fs( struct radeon_llvm_context *radeon_bld, unsigned input_index, const struct tgsi_full_declaration *decl) { struct lp_build_context *base = &radeon_bld->soa.bld_base.base; struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); struct si_shader *shader = &si_shader_ctx->shader->shader; struct lp_build_context *uint = &radeon_bld->soa.bld_base.uint_bld; struct gallivm_state *gallivm = base->gallivm; LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context); LLVMValueRef main_fn = radeon_bld->main_fn; LLVMValueRef interp_param; const char * intr_name; /* This value is: * [15:0] NewPrimMask (Bit mask for each quad. It is set it the * quad begins a new primitive. Bit 0 always needs * to be unset) * [32:16] ParamOffset * */ LLVMValueRef params = LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK); LLVMValueRef attr_number; unsigned chan; if (decl->Semantic.Name == TGSI_SEMANTIC_POSITION) { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); radeon_bld->inputs[soa_index] = LLVMGetParam(main_fn, SI_PARAM_POS_X_FLOAT + chan); if (chan == 3) /* RCP for fragcoord.w */ radeon_bld->inputs[soa_index] = LLVMBuildFDiv(gallivm->builder, lp_build_const_float(gallivm, 1.0f), radeon_bld->inputs[soa_index], ""); } return; } if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) { LLVMValueRef face, is_face_positive; face = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE); is_face_positive = LLVMBuildFCmp(gallivm->builder, LLVMRealUGT, face, lp_build_const_float(gallivm, 0.0f), ""); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 0)] = LLVMBuildSelect(gallivm->builder, is_face_positive, lp_build_const_float(gallivm, 1.0f), lp_build_const_float(gallivm, 0.0f), ""); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 1)] = radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 2)] = lp_build_const_float(gallivm, 0.0f); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 3)] = lp_build_const_float(gallivm, 1.0f); return; } shader->input[input_index].param_offset = shader->nparam++; attr_number = lp_build_const_int32(gallivm, shader->input[input_index].param_offset); switch (decl->Interp.Interpolate) { case TGSI_INTERPOLATE_COLOR: if (si_shader_ctx->shader->key.ps.flatshade) { interp_param = 0; } else { if (decl->Interp.Centroid) interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTROID); else interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTER); } break; case TGSI_INTERPOLATE_CONSTANT: interp_param = 0; break; case TGSI_INTERPOLATE_LINEAR: if (decl->Interp.Centroid) interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_CENTROID); else interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_CENTER); break; case TGSI_INTERPOLATE_PERSPECTIVE: if (decl->Interp.Centroid) interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTROID); else interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTER); break; default: fprintf(stderr, "Warning: Unhandled interpolation mode.\n"); return; } intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant"; /* XXX: Could there be more than TGSI_NUM_CHANNELS (4) ? */ if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR && si_shader_ctx->shader->key.ps.color_two_side) { LLVMValueRef args[4]; LLVMValueRef face, is_face_positive; LLVMValueRef back_attr_number = lp_build_const_int32(gallivm, shader->input[input_index].param_offset + 1); face = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE); is_face_positive = LLVMBuildFCmp(gallivm->builder, LLVMRealUGT, face, lp_build_const_float(gallivm, 0.0f), ""); args[2] = params; args[3] = interp_param; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); LLVMValueRef front, back; args[0] = llvm_chan; args[1] = attr_number; front = build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); args[1] = back_attr_number; back = build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); radeon_bld->inputs[soa_index] = LLVMBuildSelect(gallivm->builder, is_face_positive, front, back, ""); } shader->nparam++; } else if (decl->Semantic.Name == TGSI_SEMANTIC_FOG) { LLVMValueRef args[4]; args[0] = uint->zero; args[1] = attr_number; args[2] = params; args[3] = interp_param; radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 0)] = build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 1)] = radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 2)] = lp_build_const_float(gallivm, 0.0f); radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 3)] = lp_build_const_float(gallivm, 1.0f); } else { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { LLVMValueRef args[4]; LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); args[0] = llvm_chan; args[1] = attr_number; args[2] = params; args[3] = interp_param; radeon_bld->inputs[soa_index] = build_intrinsic(gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } } } static void declare_system_value( struct radeon_llvm_context * radeon_bld, unsigned index, const struct tgsi_full_declaration *decl) { struct si_shader_context *si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); LLVMValueRef value = 0; switch (decl->Semantic.Name) { case TGSI_SEMANTIC_INSTANCEID: value = LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_instance_id); break; case TGSI_SEMANTIC_VERTEXID: value = LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_vertex_id); break; default: assert(!"unknown system value"); return; } radeon_bld->system_values[index] = value; } static LLVMValueRef fetch_constant( struct lp_build_tgsi_context * bld_base, const struct tgsi_full_src_register *reg, enum tgsi_opcode_type type, unsigned swizzle) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct lp_build_context * base = &bld_base->base; const struct tgsi_ind_register *ireg = ®->Indirect; unsigned buf, idx; LLVMValueRef args[2]; LLVMValueRef addr; LLVMValueRef result; if (swizzle == LP_CHAN_ALL) { unsigned chan; LLVMValueRef values[4]; for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) values[chan] = fetch_constant(bld_base, reg, type, chan); return lp_build_gather_values(bld_base->base.gallivm, values, 4); } buf = reg->Register.Dimension ? reg->Dimension.Index : 0; idx = reg->Register.Index * 4 + swizzle; if (!reg->Register.Indirect) return bitcast(bld_base, type, si_shader_ctx->constants[buf][idx]); args[0] = si_shader_ctx->const_resource[buf]; args[1] = lp_build_const_int32(base->gallivm, idx * 4); addr = si_shader_ctx->radeon_bld.soa.addr[ireg->Index][ireg->Swizzle]; addr = LLVMBuildLoad(base->gallivm->builder, addr, "load addr reg"); addr = lp_build_mul_imm(&bld_base->uint_bld, addr, 16); args[1] = lp_build_add(&bld_base->uint_bld, addr, args[1]); result = build_intrinsic(base->gallivm->builder, "llvm.SI.load.const", base->elem_type, args, 2, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); return bitcast(bld_base, type, result); } /* Initialize arguments for the shader export intrinsic */ static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base, LLVMValueRef *values, unsigned target, LLVMValueRef *args) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; struct lp_build_context *base = &bld_base->base; unsigned compressed = 0; unsigned chan; if (si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT) { int cbuf = target - V_008DFC_SQ_EXP_MRT; if (cbuf >= 0 && cbuf < 8) { compressed = (si_shader_ctx->shader->key.ps.export_16bpc >> cbuf) & 0x1; if (compressed) si_shader_ctx->shader->spi_shader_col_format |= V_028714_SPI_SHADER_FP16_ABGR << (4 * cbuf); else si_shader_ctx->shader->spi_shader_col_format |= V_028714_SPI_SHADER_32_ABGR << (4 * cbuf); si_shader_ctx->shader->cb_shader_mask |= 0xf << (4 * cbuf); } } if (compressed) { /* Pixel shader needs to pack output values before export */ for (chan = 0; chan < 2; chan++ ) { args[0] = values[2 * chan]; args[1] = values[2 * chan + 1]; args[chan + 5] = build_intrinsic(base->gallivm->builder, "llvm.SI.packf16", LLVMInt32TypeInContext(base->gallivm->context), args, 2, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); args[chan + 7] = args[chan + 5] = LLVMBuildBitCast(base->gallivm->builder, args[chan + 5], LLVMFloatTypeInContext(base->gallivm->context), ""); } /* Set COMPR flag */ args[4] = uint->one; } else { for (chan = 0; chan < 4; chan++ ) /* +5 because the first output value will be * the 6th argument to the intrinsic. */ args[chan + 5] = values[chan]; /* Clear COMPR flag */ args[4] = uint->zero; } /* XXX: This controls which components of the output * registers actually get exported. (e.g bit 0 means export * X component, bit 1 means export Y component, etc.) I'm * hard coding this to 0xf for now. In the future, we might * want to do something else. */ args[0] = lp_build_const_int32(base->gallivm, 0xf); /* Specify whether the EXEC mask represents the valid mask */ args[1] = uint->zero; /* Specify whether this is the last export */ args[2] = uint->zero; /* Specify the target we are exporting */ args[3] = lp_build_const_int32(base->gallivm, target); /* XXX: We probably need to keep track of the output * values, so we know what we are passing to the next * stage. */ } /* Load from output pointers and initialize arguments for the shader export intrinsic */ static void si_llvm_init_export_args_load(struct lp_build_tgsi_context *bld_base, LLVMValueRef *out_ptr, unsigned target, LLVMValueRef *args) { struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef values[4]; int i; for (i = 0; i < 4; i++) values[i] = LLVMBuildLoad(gallivm->builder, out_ptr[i], ""); si_llvm_init_export_args(bld_base, values, target, args); } static void si_alpha_test(struct lp_build_tgsi_context *bld_base, LLVMValueRef *out_ptr) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; if (si_shader_ctx->shader->key.ps.alpha_func != PIPE_FUNC_NEVER) { LLVMValueRef alpha_ref = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_ALPHA_REF); LLVMValueRef alpha_pass = lp_build_cmp(&bld_base->base, si_shader_ctx->shader->key.ps.alpha_func, LLVMBuildLoad(gallivm->builder, out_ptr[3], ""), alpha_ref); LLVMValueRef arg = lp_build_select(&bld_base->base, alpha_pass, lp_build_const_float(gallivm, 1.0f), lp_build_const_float(gallivm, -1.0f)); build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill", LLVMVoidTypeInContext(gallivm->context), &arg, 1, 0); } else { build_intrinsic(gallivm->builder, "llvm.AMDGPU.kilp", LLVMVoidTypeInContext(gallivm->context), NULL, 0, 0); } } static void si_llvm_emit_clipvertex(struct lp_build_tgsi_context * bld_base, LLVMValueRef (*pos)[9], LLVMValueRef *out_elts) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct si_pipe_shader *shader = si_shader_ctx->shader; struct lp_build_context *base = &bld_base->base; struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; unsigned reg_index; unsigned chan; unsigned const_chan; LLVMValueRef base_elt; LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST); LLVMValueRef constbuf_index = lp_build_const_int32(base->gallivm, NUM_PIPE_CONST_BUFFERS); LLVMValueRef const_resource = build_indexed_load(si_shader_ctx, ptr, constbuf_index); for (reg_index = 0; reg_index < 2; reg_index ++) { LLVMValueRef *args = pos[2 + reg_index]; if (!(shader->key.vs.ucps_enabled & (1 << reg_index))) continue; shader->shader.clip_dist_write |= 0xf << (4 * reg_index); args[5] = args[6] = args[7] = args[8] = lp_build_const_float(base->gallivm, 0.0f); /* Compute dot products of position and user clip plane vectors */ for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) { args[0] = const_resource; args[1] = lp_build_const_int32(base->gallivm, ((reg_index * 4 + chan) * 4 + const_chan) * 4); base_elt = build_intrinsic(base->gallivm->builder, "llvm.SI.load.const", base->elem_type, args, 2, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); args[5 + chan] = lp_build_add(base, args[5 + chan], lp_build_mul(base, base_elt, out_elts[const_chan])); } } args[0] = lp_build_const_int32(base->gallivm, 0xf); args[1] = uint->zero; args[2] = uint->zero; args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 2 + reg_index); args[4] = uint->zero; } } static void si_dump_streamout(struct pipe_stream_output_info *so) { unsigned i; if (so->num_outputs) fprintf(stderr, "STREAMOUT\n"); for (i = 0; i < so->num_outputs; i++) { unsigned mask = ((1 << so->output[i].num_components) - 1) << so->output[i].start_component; fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n", i, so->output[i].output_buffer, so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1, so->output[i].register_index, mask & 1 ? "x" : "", mask & 2 ? "y" : "", mask & 4 ? "z" : "", mask & 8 ? "w" : ""); } } /* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4. * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2), * or v4i32 (num_channels=3,4). */ static void build_tbuffer_store(struct si_shader_context *shader, LLVMValueRef rsrc, LLVMValueRef vdata, unsigned num_channels, LLVMValueRef vaddr, LLVMValueRef soffset, unsigned inst_offset, unsigned dfmt, unsigned nfmt, unsigned offen, unsigned idxen, unsigned glc, unsigned slc, unsigned tfe) { struct gallivm_state *gallivm = &shader->radeon_bld.gallivm; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef args[] = { rsrc, vdata, LLVMConstInt(i32, num_channels, 0), vaddr, soffset, LLVMConstInt(i32, inst_offset, 0), LLVMConstInt(i32, dfmt, 0), LLVMConstInt(i32, nfmt, 0), LLVMConstInt(i32, offen, 0), LLVMConstInt(i32, idxen, 0), LLVMConstInt(i32, glc, 0), LLVMConstInt(i32, slc, 0), LLVMConstInt(i32, tfe, 0) }; /* The instruction offset field has 12 bits */ assert(offen || inst_offset < (1 << 12)); /* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */ unsigned func = CLAMP(num_channels, 1, 3) - 1; const char *types[] = {"i32", "v2i32", "v4i32"}; char name[256]; snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]); lp_build_intrinsic(gallivm->builder, name, LLVMVoidTypeInContext(gallivm->context), args, Elements(args)); } static void build_streamout_store(struct si_shader_context *shader, LLVMValueRef rsrc, LLVMValueRef vdata, unsigned num_channels, LLVMValueRef vaddr, LLVMValueRef soffset, unsigned inst_offset) { static unsigned dfmt[] = { V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32 }; assert(num_channels >= 1 && num_channels <= 4); build_tbuffer_store(shader, rsrc, vdata, num_channels, vaddr, soffset, inst_offset, dfmt[num_channels-1], V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0); } /* On SI, the vertex shader is responsible for writing streamout data * to buffers. */ static void si_llvm_emit_streamout(struct si_shader_context *shader, struct si_shader_output_values *outputs, unsigned noutput) { struct pipe_stream_output_info *so = &shader->shader->selector->so; struct gallivm_state *gallivm = &shader->radeon_bld.gallivm; LLVMBuilderRef builder = gallivm->builder; int i, j; struct lp_build_if_state if_ctx; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef so_param = LLVMGetParam(shader->radeon_bld.main_fn, shader->param_streamout_config); /* Get bits [22:16], i.e. (so_param >> 16) & 127; */ LLVMValueRef so_vtx_count = LLVMBuildAnd(builder, LLVMBuildLShr(builder, so_param, LLVMConstInt(i32, 16, 0), ""), LLVMConstInt(i32, 127, 0), ""); LLVMValueRef tid = build_intrinsic(builder, "llvm.SI.tid", i32, NULL, 0, LLVMReadNoneAttribute); /* can_emit = tid < so_vtx_count; */ LLVMValueRef can_emit = LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, ""); /* Emit the streamout code conditionally. This actually avoids * out-of-bounds buffer access. The hw tells us via the SGPR * (so_vtx_count) which threads are allowed to emit streamout data. */ lp_build_if(&if_ctx, gallivm, can_emit); { /* The buffer offset is computed as follows: * ByteOffset = streamout_offset[buffer_id]*4 + * (streamout_write_index + thread_id)*stride[buffer_id] + * attrib_offset */ LLVMValueRef so_write_index = LLVMGetParam(shader->radeon_bld.main_fn, shader->param_streamout_write_index); /* Compute (streamout_write_index + thread_id). */ so_write_index = LLVMBuildAdd(builder, so_write_index, tid, ""); /* Compute the write offset for each enabled buffer. */ LLVMValueRef so_write_offset[4] = {}; for (i = 0; i < 4; i++) { if (!so->stride[i]) continue; LLVMValueRef so_offset = LLVMGetParam(shader->radeon_bld.main_fn, shader->param_streamout_offset[i]); so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(i32, 4, 0), ""); so_write_offset[i] = LLVMBuildMul(builder, so_write_index, LLVMConstInt(i32, so->stride[i]*4, 0), ""); so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, ""); } /* Write streamout data. */ for (i = 0; i < so->num_outputs; i++) { unsigned buf_idx = so->output[i].output_buffer; unsigned reg = so->output[i].register_index; unsigned start = so->output[i].start_component; unsigned num_comps = so->output[i].num_components; LLVMValueRef out[4]; assert(num_comps && num_comps <= 4); if (!num_comps || num_comps > 4) continue; /* Load the output as int. */ for (j = 0; j < num_comps; j++) { unsigned outidx = 0; while (outidx < noutput && outputs[outidx].index != reg) outidx++; if (outidx < noutput) out[j] = LLVMBuildBitCast(builder, outputs[outidx].values[start+j], i32, ""); else out[j] = NULL; } if (!out[0]) continue; /* Pack the output. */ LLVMValueRef vdata = NULL; switch (num_comps) { case 1: /* as i32 */ vdata = out[0]; break; case 2: /* as v2i32 */ case 3: /* as v4i32 (aligned to 4) */ case 4: /* as v4i32 */ vdata = LLVMGetUndef(LLVMVectorType(i32, util_next_power_of_two(num_comps))); for (j = 0; j < num_comps; j++) { vdata = LLVMBuildInsertElement(builder, vdata, out[j], LLVMConstInt(i32, j, 0), ""); } break; } build_streamout_store(shader, shader->so_buffers[buf_idx], vdata, num_comps, so_write_offset[buf_idx], LLVMConstInt(i32, 0, 0), so->output[i].dst_offset*4); } } lp_build_endif(&if_ctx); } /* Generate export instructions for hardware VS shader stage */ static void si_llvm_export_vs(struct lp_build_tgsi_context *bld_base, struct si_shader_output_values *outputs, unsigned noutput) { struct si_shader_context * si_shader_ctx = si_shader_context(bld_base); struct si_shader * shader = &si_shader_ctx->shader->shader; struct lp_build_context * base = &bld_base->base; struct lp_build_context * uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; LLVMValueRef args[9]; LLVMValueRef pos_args[4][9] = { { 0 } }; LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL; unsigned semantic_name, semantic_index, semantic_usage; unsigned target; unsigned param_count = 0; unsigned pos_idx; int i; if (outputs && si_shader_ctx->shader->selector->so.num_outputs) { si_llvm_emit_streamout(si_shader_ctx, outputs, noutput); } for (i = 0; i < noutput; i++) { semantic_name = outputs[i].name; semantic_index = outputs[i].sid; semantic_usage = outputs[i].usage; handle_semantic: /* Select the correct target */ switch(semantic_name) { case TGSI_SEMANTIC_PSIZE: shader->vs_out_misc_write = true; shader->vs_out_point_size = true; psize_value = outputs[i].values[0]; continue; case TGSI_SEMANTIC_EDGEFLAG: shader->vs_out_misc_write = true; shader->vs_out_edgeflag = true; edgeflag_value = outputs[i].values[0]; continue; case TGSI_SEMANTIC_LAYER: shader->vs_out_misc_write = true; shader->vs_out_layer = true; layer_value = outputs[i].values[0]; continue; case TGSI_SEMANTIC_POSITION: target = V_008DFC_SQ_EXP_POS; break; case TGSI_SEMANTIC_COLOR: case TGSI_SEMANTIC_BCOLOR: target = V_008DFC_SQ_EXP_PARAM + param_count; shader->output[i].param_offset = param_count; param_count++; break; case TGSI_SEMANTIC_CLIPDIST: if (!(si_shader_ctx->shader->key.vs.ucps_enabled & (1 << semantic_index))) continue; shader->clip_dist_write |= semantic_usage << (semantic_index << 2); target = V_008DFC_SQ_EXP_POS + 2 + semantic_index; break; case TGSI_SEMANTIC_CLIPVERTEX: si_llvm_emit_clipvertex(bld_base, pos_args, outputs[i].values); continue; case TGSI_SEMANTIC_PRIMID: case TGSI_SEMANTIC_FOG: case TGSI_SEMANTIC_GENERIC: target = V_008DFC_SQ_EXP_PARAM + param_count; shader->output[i].param_offset = param_count; param_count++; break; default: target = 0; fprintf(stderr, "Warning: SI unhandled vs output type:%d\n", semantic_name); } si_llvm_init_export_args(bld_base, outputs[i].values, target, args); if (target >= V_008DFC_SQ_EXP_POS && target <= (V_008DFC_SQ_EXP_POS + 3)) { memcpy(pos_args[target - V_008DFC_SQ_EXP_POS], args, sizeof(args)); } else { lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9); } if (semantic_name == TGSI_SEMANTIC_CLIPDIST) { semantic_name = TGSI_SEMANTIC_GENERIC; goto handle_semantic; } } /* We need to add the position output manually if it's missing. */ if (!pos_args[0][0]) { pos_args[0][0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */ pos_args[0][1] = uint->zero; /* EXEC mask */ pos_args[0][2] = uint->zero; /* last export? */ pos_args[0][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS); pos_args[0][4] = uint->zero; /* COMPR flag */ pos_args[0][5] = base->zero; /* X */ pos_args[0][6] = base->zero; /* Y */ pos_args[0][7] = base->zero; /* Z */ pos_args[0][8] = base->one; /* W */ } /* Write the misc vector (point size, edgeflag, layer, viewport). */ if (shader->vs_out_misc_write) { pos_args[1][0] = lp_build_const_int32(base->gallivm, /* writemask */ shader->vs_out_point_size | (shader->vs_out_edgeflag << 1) | (shader->vs_out_layer << 2)); pos_args[1][1] = uint->zero; /* EXEC mask */ pos_args[1][2] = uint->zero; /* last export? */ pos_args[1][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 1); pos_args[1][4] = uint->zero; /* COMPR flag */ pos_args[1][5] = base->zero; /* X */ pos_args[1][6] = base->zero; /* Y */ pos_args[1][7] = base->zero; /* Z */ pos_args[1][8] = base->zero; /* W */ if (shader->vs_out_point_size) pos_args[1][5] = psize_value; if (shader->vs_out_edgeflag) { /* The output is a float, but the hw expects an integer * with the first bit containing the edge flag. */ edgeflag_value = LLVMBuildFPToUI(base->gallivm->builder, edgeflag_value, bld_base->uint_bld.elem_type, ""); edgeflag_value = lp_build_min(&bld_base->int_bld, edgeflag_value, bld_base->int_bld.one); /* The LLVM intrinsic expects a float. */ pos_args[1][6] = LLVMBuildBitCast(base->gallivm->builder, edgeflag_value, base->elem_type, ""); } if (shader->vs_out_layer) pos_args[1][7] = layer_value; } for (i = 0; i < 4; i++) if (pos_args[i][0]) shader->nr_pos_exports++; pos_idx = 0; for (i = 0; i < 4; i++) { if (!pos_args[i][0]) continue; /* Specify the target we are exporting */ pos_args[i][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + pos_idx++); if (pos_idx == shader->nr_pos_exports) /* Specify that this is the last export */ pos_args[i][2] = uint->one; lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), pos_args[i], 9); } } static void si_llvm_emit_es_epilogue(struct lp_build_tgsi_context * bld_base) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; struct si_shader *es = &si_shader_ctx->shader->shader; struct si_shader *gs = si_shader_ctx->gs_for_vs; struct tgsi_parse_context *parse = &si_shader_ctx->parse; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef soffset = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_ES2GS_OFFSET); LLVMValueRef t_list_ptr; LLVMValueRef t_list; unsigned chan; int i; while (!tgsi_parse_end_of_tokens(parse)) { struct tgsi_full_declaration *d = &parse->FullToken.FullDeclaration; tgsi_parse_token(parse); if (parse->FullToken.Token.Type != TGSI_TOKEN_TYPE_DECLARATION) continue; si_store_shader_io_attribs(es, d); } /* Load the ESGS ring resource descriptor */ t_list_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RW_BUFFERS); t_list = build_indexed_load(si_shader_ctx, t_list_ptr, lp_build_const_int32(gallivm, SI_RING_ESGS)); for (i = 0; i < es->noutput; i++) { LLVMValueRef *out_ptr = si_shader_ctx->radeon_bld.soa.outputs[es->output[i].index]; int j; for (j = 0; j < gs->ninput; j++) { if (gs->input[j].name == es->output[i].name && gs->input[j].sid == es->output[i].sid) break; } if (j == gs->ninput) continue; for (chan = 0; chan < 4; chan++) { LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""); out_val = LLVMBuildBitCast(gallivm->builder, out_val, i32, ""); build_tbuffer_store(si_shader_ctx, t_list, out_val, 1, LLVMGetUndef(i32), soffset, (4 * gs->input[j].param_offset + chan) * 4, V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_NUM_FORMAT_UINT, 0, 0, 1, 1, 0); } } } static void si_llvm_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef args[2]; args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_NOP | SENDMSG_GS_DONE); args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID); build_intrinsic(gallivm->builder, "llvm.SI.sendmsg", LLVMVoidTypeInContext(gallivm->context), args, 2, LLVMNoUnwindAttribute); } static void si_llvm_emit_vs_epilogue(struct lp_build_tgsi_context * bld_base) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; struct si_pipe_shader *shader = si_shader_ctx->shader; struct tgsi_parse_context *parse = &si_shader_ctx->parse; struct si_shader_output_values *outputs = NULL; unsigned noutput = 0; int i; while (!tgsi_parse_end_of_tokens(parse)) { struct tgsi_full_declaration *d = &parse->FullToken.FullDeclaration; unsigned index; tgsi_parse_token(parse); if (parse->FullToken.Token.Type != TGSI_TOKEN_TYPE_DECLARATION) continue; i = si_store_shader_io_attribs(&shader->shader, d); if (i < 0) continue; outputs = REALLOC(outputs, noutput * sizeof(outputs[0]), (noutput + 1) * sizeof(outputs[0])); for (index = d->Range.First; index <= d->Range.Last; index++) { outputs[noutput].index = index; outputs[noutput].name = d->Semantic.Name; outputs[noutput].sid = d->Semantic.Index; outputs[noutput].usage = d->Declaration.UsageMask; for (i = 0; i < 4; i++) outputs[noutput].values[i] = LLVMBuildLoad(gallivm->builder, si_shader_ctx->radeon_bld.soa.outputs[index][i], ""); } noutput++; } si_llvm_export_vs(bld_base, outputs, noutput); FREE(outputs); } static void si_llvm_emit_fs_epilogue(struct lp_build_tgsi_context * bld_base) { struct si_shader_context * si_shader_ctx = si_shader_context(bld_base); struct si_shader * shader = &si_shader_ctx->shader->shader; struct lp_build_context * base = &bld_base->base; struct lp_build_context * uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; struct tgsi_parse_context *parse = &si_shader_ctx->parse; LLVMValueRef args[9]; LLVMValueRef last_args[9] = { 0 }; unsigned semantic_name; int depth_index = -1, stencil_index = -1; int i; while (!tgsi_parse_end_of_tokens(parse)) { struct tgsi_full_declaration *d = &parse->FullToken.FullDeclaration; unsigned target; unsigned index; tgsi_parse_token(parse); if (parse->FullToken.Token.Type == TGSI_TOKEN_TYPE_PROPERTY && parse->FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) shader->fs_write_all = TRUE; if (parse->FullToken.Token.Type != TGSI_TOKEN_TYPE_DECLARATION) continue; i = si_store_shader_io_attribs(shader, d); if (i < 0) continue; semantic_name = d->Semantic.Name; for (index = d->Range.First; index <= d->Range.Last; index++) { /* Select the correct target */ switch(semantic_name) { case TGSI_SEMANTIC_POSITION: depth_index = index; continue; case TGSI_SEMANTIC_STENCIL: stencil_index = index; continue; case TGSI_SEMANTIC_COLOR: target = V_008DFC_SQ_EXP_MRT + d->Semantic.Index; if (si_shader_ctx->shader->key.ps.alpha_to_one) LLVMBuildStore(bld_base->base.gallivm->builder, bld_base->base.one, si_shader_ctx->radeon_bld.soa.outputs[index][3]); if (d->Semantic.Index == 0 && si_shader_ctx->shader->key.ps.alpha_func != PIPE_FUNC_ALWAYS) si_alpha_test(bld_base, si_shader_ctx->radeon_bld.soa.outputs[index]); break; default: target = 0; fprintf(stderr, "Warning: SI unhandled fs output type:%d\n", semantic_name); } si_llvm_init_export_args_load(bld_base, si_shader_ctx->radeon_bld.soa.outputs[index], target, args); if (semantic_name == TGSI_SEMANTIC_COLOR) { /* If there is an export instruction waiting to be emitted, do so now. */ if (last_args[0]) { lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), last_args, 9); } /* This instruction will be emitted at the end of the shader. */ memcpy(last_args, args, sizeof(args)); /* Handle FS_COLOR0_WRITES_ALL_CBUFS. */ if (shader->fs_write_all && shader->output[i].sid == 0 && si_shader_ctx->shader->key.ps.nr_cbufs > 1) { for (int c = 1; c < si_shader_ctx->shader->key.ps.nr_cbufs; c++) { si_llvm_init_export_args_load(bld_base, si_shader_ctx->radeon_bld.soa.outputs[index], V_008DFC_SQ_EXP_MRT + c, args); lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9); } } } else { lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9); } } } if (depth_index >= 0 || stencil_index >= 0) { LLVMValueRef out_ptr; unsigned mask = 0; /* Specify the target we are exporting */ args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRTZ); if (depth_index >= 0) { out_ptr = si_shader_ctx->radeon_bld.soa.outputs[depth_index][2]; args[5] = LLVMBuildLoad(base->gallivm->builder, out_ptr, ""); mask |= 0x1; if (stencil_index < 0) { args[6] = args[7] = args[8] = args[5]; } } if (stencil_index >= 0) { out_ptr = si_shader_ctx->radeon_bld.soa.outputs[stencil_index][1]; args[7] = args[8] = args[6] = LLVMBuildLoad(base->gallivm->builder, out_ptr, ""); /* Only setting the stencil component bit (0x2) here * breaks some stencil piglit tests */ mask |= 0x3; if (depth_index < 0) args[5] = args[6]; } /* Specify which components to enable */ args[0] = lp_build_const_int32(base->gallivm, mask); args[1] = args[2] = args[4] = uint->zero; if (last_args[0]) lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9); else memcpy(last_args, args, sizeof(args)); } if (!last_args[0]) { /* Specify which components to enable */ last_args[0] = lp_build_const_int32(base->gallivm, 0x0); /* Specify the target we are exporting */ last_args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRT); /* Set COMPR flag to zero to export data as 32-bit */ last_args[4] = uint->zero; /* dummy bits */ last_args[5]= uint->zero; last_args[6]= uint->zero; last_args[7]= uint->zero; last_args[8]= uint->zero; si_shader_ctx->shader->spi_shader_col_format |= V_028714_SPI_SHADER_32_ABGR; si_shader_ctx->shader->cb_shader_mask |= S_02823C_OUTPUT0_ENABLE(0xf); } /* Specify whether the EXEC mask represents the valid mask */ last_args[1] = uint->one; /* Specify that this is the last export */ last_args[2] = lp_build_const_int32(base->gallivm, 1); lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), last_args, 9); } static const struct lp_build_tgsi_action txf_action; static void build_tex_intrinsic(const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data); static void tex_fetch_args( struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; const struct tgsi_full_instruction * inst = emit_data->inst; unsigned opcode = inst->Instruction.Opcode; unsigned target = inst->Texture.Texture; LLVMValueRef coords[4]; LLVMValueRef address[16]; int ref_pos; unsigned num_coords = tgsi_util_get_texture_coord_dim(target, &ref_pos); unsigned count = 0; unsigned chan; unsigned sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1; unsigned sampler_index = emit_data->inst->Src[sampler_src].Register.Index; if (target == TGSI_TEXTURE_BUFFER) { LLVMTypeRef i128 = LLVMIntTypeInContext(gallivm->context, 128); LLVMTypeRef v2i128 = LLVMVectorType(i128, 2); LLVMTypeRef i8 = LLVMInt8TypeInContext(gallivm->context); LLVMTypeRef v16i8 = LLVMVectorType(i8, 16); /* Truncate v32i8 to v16i8. */ LLVMValueRef res = si_shader_ctx->resources[sampler_index]; res = LLVMBuildBitCast(gallivm->builder, res, v2i128, ""); res = LLVMBuildExtractElement(gallivm->builder, res, bld_base->uint_bld.zero, ""); res = LLVMBuildBitCast(gallivm->builder, res, v16i8, ""); emit_data->dst_type = LLVMVectorType(bld_base->base.elem_type, 4); emit_data->args[0] = res; emit_data->args[1] = bld_base->uint_bld.zero; emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0); emit_data->arg_count = 3; return; } /* Fetch and project texture coordinates */ coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W); for (chan = 0; chan < 3; chan++ ) { coords[chan] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, chan); if (opcode == TGSI_OPCODE_TXP) coords[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_DIV, coords[chan], coords[3]); } if (opcode == TGSI_OPCODE_TXP) coords[3] = bld_base->base.one; /* Pack LOD bias value */ if (opcode == TGSI_OPCODE_TXB) address[count++] = coords[3]; if (target == TGSI_TEXTURE_CUBE || target == TGSI_TEXTURE_SHADOWCUBE) radeon_llvm_emit_prepare_cube_coords(bld_base, emit_data, coords); /* Pack depth comparison value */ switch (target) { case TGSI_TEXTURE_SHADOW1D: case TGSI_TEXTURE_SHADOW1D_ARRAY: case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: case TGSI_TEXTURE_SHADOWCUBE: case TGSI_TEXTURE_SHADOW2D_ARRAY: assert(ref_pos >= 0); address[count++] = coords[ref_pos]; break; case TGSI_TEXTURE_SHADOWCUBE_ARRAY: address[count++] = lp_build_emit_fetch(bld_base, inst, 1, 0); } /* Pack user derivatives */ if (opcode == TGSI_OPCODE_TXD) { for (chan = 0; chan < 2; chan++) { address[count++] = lp_build_emit_fetch(bld_base, inst, 1, chan); if (num_coords > 1) address[count++] = lp_build_emit_fetch(bld_base, inst, 2, chan); } } /* Pack texture coordinates */ address[count++] = coords[0]; if (num_coords > 1) address[count++] = coords[1]; if (num_coords > 2) address[count++] = coords[2]; /* Pack LOD or sample index */ if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF) address[count++] = coords[3]; if (count > 16) { assert(!"Cannot handle more than 16 texture address parameters"); count = 16; } for (chan = 0; chan < count; chan++ ) { address[chan] = LLVMBuildBitCast(gallivm->builder, address[chan], LLVMInt32TypeInContext(gallivm->context), ""); } /* Adjust the sample index according to FMASK. * * For uncompressed MSAA surfaces, FMASK should return 0x76543210, * which is the identity mapping. Each nibble says which physical sample * should be fetched to get that sample. * * For example, 0x11111100 means there are only 2 samples stored and * the second sample covers 3/4 of the pixel. When reading samples 0 * and 1, return physical sample 0 (determined by the first two 0s * in FMASK), otherwise return physical sample 1. * * The sample index should be adjusted as follows: * sample_index = (fmask >> (sample_index * 4)) & 0xF; */ if (target == TGSI_TEXTURE_2D_MSAA || target == TGSI_TEXTURE_2D_ARRAY_MSAA) { struct lp_build_context *uint_bld = &bld_base->uint_bld; struct lp_build_emit_data txf_emit_data = *emit_data; LLVMValueRef txf_address[4]; unsigned txf_count = count; memcpy(txf_address, address, sizeof(txf_address)); if (target == TGSI_TEXTURE_2D_MSAA) { txf_address[2] = bld_base->uint_bld.zero; } txf_address[3] = bld_base->uint_bld.zero; /* Pad to a power-of-two size. */ while (txf_count < util_next_power_of_two(txf_count)) txf_address[txf_count++] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); /* Read FMASK using TXF. */ txf_emit_data.chan = 0; txf_emit_data.dst_type = LLVMVectorType( LLVMInt32TypeInContext(bld_base->base.gallivm->context), 4); txf_emit_data.args[0] = lp_build_gather_values(gallivm, txf_address, txf_count); txf_emit_data.args[1] = si_shader_ctx->resources[FMASK_TEX_OFFSET + sampler_index]; txf_emit_data.args[2] = lp_build_const_int32(bld_base->base.gallivm, target == TGSI_TEXTURE_2D_MSAA ? TGSI_TEXTURE_2D : TGSI_TEXTURE_2D_ARRAY); txf_emit_data.arg_count = 3; build_tex_intrinsic(&txf_action, bld_base, &txf_emit_data); /* Initialize some constants. */ LLVMValueRef four = LLVMConstInt(uint_bld->elem_type, 4, 0); LLVMValueRef F = LLVMConstInt(uint_bld->elem_type, 0xF, 0); /* Apply the formula. */ LLVMValueRef fmask = LLVMBuildExtractElement(gallivm->builder, txf_emit_data.output[0], uint_bld->zero, ""); unsigned sample_chan = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3; LLVMValueRef sample_index4 = LLVMBuildMul(gallivm->builder, address[sample_chan], four, ""); LLVMValueRef shifted_fmask = LLVMBuildLShr(gallivm->builder, fmask, sample_index4, ""); LLVMValueRef final_sample = LLVMBuildAnd(gallivm->builder, shifted_fmask, F, ""); /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK * resource descriptor is 0 (invalid), */ LLVMValueRef fmask_desc = LLVMBuildBitCast(gallivm->builder, si_shader_ctx->resources[FMASK_TEX_OFFSET + sampler_index], LLVMVectorType(uint_bld->elem_type, 8), ""); LLVMValueRef fmask_word1 = LLVMBuildExtractElement(gallivm->builder, fmask_desc, uint_bld->one, ""); LLVMValueRef word1_is_nonzero = LLVMBuildICmp(gallivm->builder, LLVMIntNE, fmask_word1, uint_bld->zero, ""); /* Replace the MSAA sample index. */ address[sample_chan] = LLVMBuildSelect(gallivm->builder, word1_is_nonzero, final_sample, address[sample_chan], ""); } /* Resource */ emit_data->args[1] = si_shader_ctx->resources[sampler_index]; if (opcode == TGSI_OPCODE_TXF) { /* add tex offsets */ if (inst->Texture.NumOffsets) { struct lp_build_context *uint_bld = &bld_base->uint_bld; struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base); const struct tgsi_texture_offset * off = inst->TexOffsets; assert(inst->Texture.NumOffsets == 1); switch (target) { case TGSI_TEXTURE_3D: address[2] = lp_build_add(uint_bld, address[2], bld->immediates[off->Index][off->SwizzleZ]); /* fall through */ case TGSI_TEXTURE_2D: case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_RECT: case TGSI_TEXTURE_SHADOWRECT: case TGSI_TEXTURE_2D_ARRAY: case TGSI_TEXTURE_SHADOW2D_ARRAY: address[1] = lp_build_add(uint_bld, address[1], bld->immediates[off->Index][off->SwizzleY]); /* fall through */ case TGSI_TEXTURE_1D: case TGSI_TEXTURE_SHADOW1D: case TGSI_TEXTURE_1D_ARRAY: case TGSI_TEXTURE_SHADOW1D_ARRAY: address[0] = lp_build_add(uint_bld, address[0], bld->immediates[off->Index][off->SwizzleX]); break; /* texture offsets do not apply to other texture targets */ } } emit_data->dst_type = LLVMVectorType( LLVMInt32TypeInContext(bld_base->base.gallivm->context), 4); emit_data->arg_count = 3; } else { /* Sampler */ emit_data->args[2] = si_shader_ctx->samplers[sampler_index]; emit_data->dst_type = LLVMVectorType( LLVMFloatTypeInContext(bld_base->base.gallivm->context), 4); emit_data->arg_count = 4; } /* Dimensions */ emit_data->args[emit_data->arg_count - 1] = lp_build_const_int32(bld_base->base.gallivm, target); /* Pad to power of two vector */ while (count < util_next_power_of_two(count)) address[count++] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); emit_data->args[0] = lp_build_gather_values(gallivm, address, count); } static void build_tex_intrinsic(const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { struct lp_build_context * base = &bld_base->base; char intr_name[127]; if (emit_data->inst->Texture.Texture == TGSI_TEXTURE_BUFFER) { emit_data->output[emit_data->chan] = build_intrinsic( base->gallivm->builder, "llvm.SI.vs.load.input", emit_data->dst_type, emit_data->args, emit_data->arg_count, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); return; } sprintf(intr_name, "%sv%ui32", action->intr_name, LLVMGetVectorSize(LLVMTypeOf(emit_data->args[0]))); emit_data->output[emit_data->chan] = build_intrinsic( base->gallivm->builder, intr_name, emit_data->dst_type, emit_data->args, emit_data->arg_count, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } static void txq_fetch_args( struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); const struct tgsi_full_instruction *inst = emit_data->inst; struct gallivm_state *gallivm = bld_base->base.gallivm; if (inst->Texture.Texture == TGSI_TEXTURE_BUFFER) { LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMTypeRef v8i32 = LLVMVectorType(i32, 8); /* Read the size from the buffer descriptor directly. */ LLVMValueRef size = si_shader_ctx->resources[inst->Src[1].Register.Index]; size = LLVMBuildBitCast(gallivm->builder, size, v8i32, ""); size = LLVMBuildExtractElement(gallivm->builder, size, lp_build_const_int32(gallivm, 2), ""); emit_data->args[0] = size; return; } /* Mip level */ emit_data->args[0] = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X); /* Resource */ emit_data->args[1] = si_shader_ctx->resources[inst->Src[1].Register.Index]; /* Dimensions */ emit_data->args[2] = lp_build_const_int32(bld_base->base.gallivm, inst->Texture.Texture); emit_data->arg_count = 3; emit_data->dst_type = LLVMVectorType( LLVMInt32TypeInContext(bld_base->base.gallivm->context), 4); } static void build_txq_intrinsic(const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { if (emit_data->inst->Texture.Texture == TGSI_TEXTURE_BUFFER) { /* Just return the buffer size. */ emit_data->output[emit_data->chan] = emit_data->args[0]; return; } build_tgsi_intrinsic_nomem(action, bld_base, emit_data); } #if HAVE_LLVM >= 0x0304 static void si_llvm_emit_ddxy( const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; struct lp_build_context * base = &bld_base->base; const struct tgsi_full_instruction *inst = emit_data->inst; unsigned opcode = inst->Instruction.Opcode; LLVMValueRef indices[2]; LLVMValueRef store_ptr, load_ptr0, load_ptr1; LLVMValueRef tl, trbl, result[4]; LLVMTypeRef i32; unsigned swizzle[4]; unsigned c; i32 = LLVMInt32TypeInContext(gallivm->context); indices[0] = bld_base->uint_bld.zero; indices[1] = build_intrinsic(gallivm->builder, "llvm.SI.tid", i32, NULL, 0, LLVMReadNoneAttribute); store_ptr = LLVMBuildGEP(gallivm->builder, si_shader_ctx->ddxy_lds, indices, 2, ""); indices[1] = LLVMBuildAnd(gallivm->builder, indices[1], lp_build_const_int32(gallivm, 0xfffffffc), ""); load_ptr0 = LLVMBuildGEP(gallivm->builder, si_shader_ctx->ddxy_lds, indices, 2, ""); indices[1] = LLVMBuildAdd(gallivm->builder, indices[1], lp_build_const_int32(gallivm, opcode == TGSI_OPCODE_DDX ? 1 : 2), ""); load_ptr1 = LLVMBuildGEP(gallivm->builder, si_shader_ctx->ddxy_lds, indices, 2, ""); for (c = 0; c < 4; ++c) { unsigned i; swizzle[c] = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], c); for (i = 0; i < c; ++i) { if (swizzle[i] == swizzle[c]) { result[c] = result[i]; break; } } if (i != c) continue; LLVMBuildStore(gallivm->builder, LLVMBuildBitCast(gallivm->builder, lp_build_emit_fetch(bld_base, inst, 0, c), i32, ""), store_ptr); tl = LLVMBuildLoad(gallivm->builder, load_ptr0, ""); tl = LLVMBuildBitCast(gallivm->builder, tl, base->elem_type, ""); trbl = LLVMBuildLoad(gallivm->builder, load_ptr1, ""); trbl = LLVMBuildBitCast(gallivm->builder, trbl, base->elem_type, ""); result[c] = LLVMBuildFSub(gallivm->builder, trbl, tl, ""); } emit_data->output[0] = lp_build_gather_values(gallivm, result, 4); } #endif /* HAVE_LLVM >= 0x0304 */ /* Emit one vertex from the geometry shader */ static void si_llvm_emit_vertex( const struct lp_build_tgsi_action *action, struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct lp_build_context *uint = &bld_base->uint_bld; struct si_shader *shader = &si_shader_ctx->shader->shader; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef soffset = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS2VS_OFFSET); LLVMValueRef gs_next_vertex; LLVMValueRef can_emit, kill; LLVMValueRef t_list_ptr; LLVMValueRef t_list; LLVMValueRef args[2]; unsigned chan; int i; /* Load the GSVS ring resource descriptor */ t_list_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RW_BUFFERS); t_list = build_indexed_load(si_shader_ctx, t_list_ptr, lp_build_const_int32(gallivm, SI_RING_GSVS)); if (shader->noutput == 0) { struct tgsi_parse_context *parse = &si_shader_ctx->parse; while (!tgsi_parse_end_of_tokens(parse)) { tgsi_parse_token(parse); if (parse->FullToken.Token.Type == TGSI_TOKEN_TYPE_DECLARATION) { struct tgsi_full_declaration *d = &parse->FullToken.FullDeclaration; if (d->Declaration.File == TGSI_FILE_OUTPUT) si_store_shader_io_attribs(shader, d); } } } /* Write vertex attribute values to GSVS ring */ gs_next_vertex = LLVMBuildLoad(gallivm->builder, si_shader_ctx->gs_next_vertex, ""); /* If this thread has already emitted the declared maximum number of * vertices, kill it: excessive vertex emissions are not supposed to * have any effect, and GS threads have no externally observable * effects other than emitting vertices. */ can_emit = LLVMBuildICmp(gallivm->builder, LLVMIntULE, gs_next_vertex, lp_build_const_int32(gallivm, shader->gs_max_out_vertices), ""); kill = lp_build_select(&bld_base->base, can_emit, lp_build_const_float(gallivm, 1.0f), lp_build_const_float(gallivm, -1.0f)); build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill", LLVMVoidTypeInContext(gallivm->context), &kill, 1, 0); for (i = 0; i < shader->noutput; i++) { LLVMValueRef *out_ptr = si_shader_ctx->radeon_bld.soa.outputs[shader->output[i].index]; for (chan = 0; chan < 4; chan++) { LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""); LLVMValueRef voffset = lp_build_const_int32(gallivm, (i * 4 + chan) * shader->gs_max_out_vertices); voffset = lp_build_add(uint, voffset, gs_next_vertex); voffset = lp_build_mul_imm(uint, voffset, 4); out_val = LLVMBuildBitCast(gallivm->builder, out_val, i32, ""); build_tbuffer_store(si_shader_ctx, t_list, out_val, 1, voffset, soffset, 0, V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0); } } gs_next_vertex = lp_build_add(uint, gs_next_vertex, lp_build_const_int32(gallivm, 1)); LLVMBuildStore(gallivm->builder, gs_next_vertex, si_shader_ctx->gs_next_vertex); /* Signal vertex emission */ args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_EMIT | SENDMSG_GS); args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID); build_intrinsic(gallivm->builder, "llvm.SI.sendmsg", LLVMVoidTypeInContext(gallivm->context), args, 2, LLVMNoUnwindAttribute); } /* Cut one primitive from the geometry shader */ static void si_llvm_emit_primitive( const struct lp_build_tgsi_action *action, struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { struct si_shader_context *si_shader_ctx = si_shader_context(bld_base); struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMValueRef args[2]; /* Signal primitive cut */ args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_CUT | SENDMSG_GS); args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID); build_intrinsic(gallivm->builder, "llvm.SI.sendmsg", LLVMVoidTypeInContext(gallivm->context), args, 2, LLVMNoUnwindAttribute); } static const struct lp_build_tgsi_action tex_action = { .fetch_args = tex_fetch_args, .emit = build_tex_intrinsic, .intr_name = "llvm.SI.sample." }; static const struct lp_build_tgsi_action txb_action = { .fetch_args = tex_fetch_args, .emit = build_tex_intrinsic, .intr_name = "llvm.SI.sampleb." }; #if HAVE_LLVM >= 0x0304 static const struct lp_build_tgsi_action txd_action = { .fetch_args = tex_fetch_args, .emit = build_tex_intrinsic, .intr_name = "llvm.SI.sampled." }; #endif static const struct lp_build_tgsi_action txf_action = { .fetch_args = tex_fetch_args, .emit = build_tex_intrinsic, .intr_name = "llvm.SI.imageload." }; static const struct lp_build_tgsi_action txl_action = { .fetch_args = tex_fetch_args, .emit = build_tex_intrinsic, .intr_name = "llvm.SI.samplel." }; static const struct lp_build_tgsi_action txq_action = { .fetch_args = txq_fetch_args, .emit = build_txq_intrinsic, .intr_name = "llvm.SI.resinfo" }; static void create_meta_data(struct si_shader_context *si_shader_ctx) { struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm; LLVMValueRef args[3]; args[0] = LLVMMDStringInContext(gallivm->context, "const", 5); args[1] = 0; args[2] = lp_build_const_int32(gallivm, 1); si_shader_ctx->const_md = LLVMMDNodeInContext(gallivm->context, args, 3); } static void create_function(struct si_shader_context *si_shader_ctx) { struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state *gallivm = bld_base->base.gallivm; struct si_pipe_shader *shader = si_shader_ctx->shader; LLVMTypeRef params[SI_NUM_PARAMS], f32, i8, i32, v2i32, v3i32; unsigned i, last_sgpr, num_params; i8 = LLVMInt8TypeInContext(gallivm->context); i32 = LLVMInt32TypeInContext(gallivm->context); f32 = LLVMFloatTypeInContext(gallivm->context); v2i32 = LLVMVectorType(i32, 2); v3i32 = LLVMVectorType(i32, 3); params[SI_PARAM_CONST] = LLVMPointerType( LLVMArrayType(LLVMVectorType(i8, 16), NUM_CONST_BUFFERS), CONST_ADDR_SPACE); params[SI_PARAM_RW_BUFFERS] = params[SI_PARAM_CONST]; /* We assume at most 16 textures per program at the moment. * This need probably need to be changed to support bindless textures */ params[SI_PARAM_SAMPLER] = LLVMPointerType( LLVMArrayType(LLVMVectorType(i8, 16), NUM_SAMPLER_VIEWS), CONST_ADDR_SPACE); params[SI_PARAM_RESOURCE] = LLVMPointerType( LLVMArrayType(LLVMVectorType(i8, 32), NUM_SAMPLER_STATES), CONST_ADDR_SPACE); switch (si_shader_ctx->type) { case TGSI_PROCESSOR_VERTEX: params[SI_PARAM_VERTEX_BUFFER] = params[SI_PARAM_CONST]; params[SI_PARAM_START_INSTANCE] = i32; num_params = SI_PARAM_START_INSTANCE+1; if (shader->key.vs.as_es) { params[SI_PARAM_ES2GS_OFFSET] = i32; num_params++; } else { /* The locations of the other parameters are assigned dynamically. */ /* Streamout SGPRs. */ if (shader->selector->so.num_outputs) { params[si_shader_ctx->param_streamout_config = num_params++] = i32; params[si_shader_ctx->param_streamout_write_index = num_params++] = i32; } /* A streamout buffer offset is loaded if the stride is non-zero. */ for (i = 0; i < 4; i++) { if (!shader->selector->so.stride[i]) continue; params[si_shader_ctx->param_streamout_offset[i] = num_params++] = i32; } } last_sgpr = num_params-1; /* VGPRs */ params[si_shader_ctx->param_vertex_id = num_params++] = i32; params[num_params++] = i32; /* unused*/ params[num_params++] = i32; /* unused */ params[si_shader_ctx->param_instance_id = num_params++] = i32; break; case TGSI_PROCESSOR_GEOMETRY: params[SI_PARAM_GS2VS_OFFSET] = i32; params[SI_PARAM_GS_WAVE_ID] = i32; last_sgpr = SI_PARAM_GS_WAVE_ID; /* VGPRs */ params[SI_PARAM_VTX0_OFFSET] = i32; params[SI_PARAM_VTX1_OFFSET] = i32; params[SI_PARAM_PRIMITIVE_ID] = i32; params[SI_PARAM_VTX2_OFFSET] = i32; params[SI_PARAM_VTX3_OFFSET] = i32; params[SI_PARAM_VTX4_OFFSET] = i32; params[SI_PARAM_VTX5_OFFSET] = i32; params[SI_PARAM_GS_INSTANCE_ID] = i32; num_params = SI_PARAM_GS_INSTANCE_ID+1; break; case TGSI_PROCESSOR_FRAGMENT: params[SI_PARAM_ALPHA_REF] = f32; params[SI_PARAM_PRIM_MASK] = i32; last_sgpr = SI_PARAM_PRIM_MASK; params[SI_PARAM_PERSP_SAMPLE] = v2i32; params[SI_PARAM_PERSP_CENTER] = v2i32; params[SI_PARAM_PERSP_CENTROID] = v2i32; params[SI_PARAM_PERSP_PULL_MODEL] = v3i32; params[SI_PARAM_LINEAR_SAMPLE] = v2i32; params[SI_PARAM_LINEAR_CENTER] = v2i32; params[SI_PARAM_LINEAR_CENTROID] = v2i32; params[SI_PARAM_LINE_STIPPLE_TEX] = f32; params[SI_PARAM_POS_X_FLOAT] = f32; params[SI_PARAM_POS_Y_FLOAT] = f32; params[SI_PARAM_POS_Z_FLOAT] = f32; params[SI_PARAM_POS_W_FLOAT] = f32; params[SI_PARAM_FRONT_FACE] = f32; params[SI_PARAM_ANCILLARY] = f32; params[SI_PARAM_SAMPLE_COVERAGE] = f32; params[SI_PARAM_POS_FIXED_PT] = f32; num_params = SI_PARAM_POS_FIXED_PT+1; break; default: assert(0 && "unimplemented shader"); return; } assert(num_params <= Elements(params)); radeon_llvm_create_func(&si_shader_ctx->radeon_bld, params, num_params); radeon_llvm_shader_type(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->type); for (i = 0; i <= last_sgpr; ++i) { LLVMValueRef P = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, i); switch (i) { default: LLVMAddAttribute(P, LLVMInRegAttribute); break; #if HAVE_LLVM >= 0x0304 /* We tell llvm that array inputs are passed by value to allow Sinking pass * to move load. Inputs are constant so this is fine. */ case SI_PARAM_CONST: case SI_PARAM_SAMPLER: case SI_PARAM_RESOURCE: LLVMAddAttribute(P, LLVMByValAttribute); break; #endif } } #if HAVE_LLVM >= 0x0304 if (bld_base->info && (bld_base->info->opcode_count[TGSI_OPCODE_DDX] > 0 || bld_base->info->opcode_count[TGSI_OPCODE_DDY] > 0)) si_shader_ctx->ddxy_lds = LLVMAddGlobalInAddressSpace(gallivm->module, LLVMArrayType(i32, 64), "ddxy_lds", LOCAL_ADDR_SPACE); #endif } static void preload_constants(struct si_shader_context *si_shader_ctx) { struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state * gallivm = bld_base->base.gallivm; const struct tgsi_shader_info * info = bld_base->info; unsigned buf; LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST); for (buf = 0; buf < NUM_CONST_BUFFERS; buf++) { unsigned i, num_const = info->const_file_max[buf] + 1; if (num_const == 0) continue; /* Allocate space for the constant values */ si_shader_ctx->constants[buf] = CALLOC(num_const * 4, sizeof(LLVMValueRef)); /* Load the resource descriptor */ si_shader_ctx->const_resource[buf] = build_indexed_load(si_shader_ctx, ptr, lp_build_const_int32(gallivm, buf)); /* Load the constants, we rely on the code sinking to do the rest */ for (i = 0; i < num_const * 4; ++i) { LLVMValueRef args[2] = { si_shader_ctx->const_resource[buf], lp_build_const_int32(gallivm, i * 4) }; si_shader_ctx->constants[buf][i] = build_intrinsic(gallivm->builder, "llvm.SI.load.const", bld_base->base.elem_type, args, 2, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } } } static void preload_samplers(struct si_shader_context *si_shader_ctx) { struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state * gallivm = bld_base->base.gallivm; const struct tgsi_shader_info * info = bld_base->info; unsigned i, num_samplers = info->file_max[TGSI_FILE_SAMPLER] + 1; LLVMValueRef res_ptr, samp_ptr; LLVMValueRef offset; if (num_samplers == 0) return; /* Allocate space for the values */ si_shader_ctx->resources = CALLOC(NUM_SAMPLER_VIEWS, sizeof(LLVMValueRef)); si_shader_ctx->samplers = CALLOC(num_samplers, sizeof(LLVMValueRef)); res_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RESOURCE); samp_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER); /* Load the resources and samplers, we rely on the code sinking to do the rest */ for (i = 0; i < num_samplers; ++i) { /* Resource */ offset = lp_build_const_int32(gallivm, i); si_shader_ctx->resources[i] = build_indexed_load(si_shader_ctx, res_ptr, offset); /* Sampler */ offset = lp_build_const_int32(gallivm, i); si_shader_ctx->samplers[i] = build_indexed_load(si_shader_ctx, samp_ptr, offset); /* FMASK resource */ if (info->is_msaa_sampler[i]) { offset = lp_build_const_int32(gallivm, FMASK_TEX_OFFSET + i); si_shader_ctx->resources[FMASK_TEX_OFFSET + i] = build_indexed_load(si_shader_ctx, res_ptr, offset); } } } static void preload_streamout_buffers(struct si_shader_context *si_shader_ctx) { struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct gallivm_state * gallivm = bld_base->base.gallivm; unsigned i; if (si_shader_ctx->type != TGSI_PROCESSOR_VERTEX || si_shader_ctx->shader->key.vs.as_es || !si_shader_ctx->shader->selector->so.num_outputs) return; LLVMValueRef buf_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RW_BUFFERS); /* Load the resources, we rely on the code sinking to do the rest */ for (i = 0; i < 4; ++i) { if (si_shader_ctx->shader->selector->so.stride[i]) { LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RW_SO + i); si_shader_ctx->so_buffers[i] = build_indexed_load(si_shader_ctx, buf_ptr, offset); } } } int si_compile_llvm(struct si_context *sctx, struct si_pipe_shader *shader, LLVMModuleRef mod) { unsigned i; uint32_t *ptr; struct radeon_shader_binary binary; bool dump = r600_can_dump_shader(&sctx->screen->b, shader->selector ? shader->selector->tokens : NULL); memset(&binary, 0, sizeof(binary)); radeon_llvm_compile(mod, &binary, r600_get_llvm_processor_name(sctx->screen->b.family), dump); if (dump && ! binary.disassembled) { fprintf(stderr, "SI CODE:\n"); for (i = 0; i < binary.code_size; i+=4 ) { fprintf(stderr, "%02x%02x%02x%02x\n", binary.code[i + 3], binary.code[i + 2], binary.code[i + 1], binary.code[i]); } } /* XXX: We may be able to emit some of these values directly rather than * extracting fields to be emitted later. */ for (i = 0; i < binary.config_size; i+= 8) { unsigned reg = util_le32_to_cpu(*(uint32_t*)(binary.config + i)); unsigned value = util_le32_to_cpu(*(uint32_t*)(binary.config + i + 4)); switch (reg) { case R_00B028_SPI_SHADER_PGM_RSRC1_PS: case R_00B128_SPI_SHADER_PGM_RSRC1_VS: case R_00B228_SPI_SHADER_PGM_RSRC1_GS: case R_00B848_COMPUTE_PGM_RSRC1: shader->num_sgprs = (G_00B028_SGPRS(value) + 1) * 8; shader->num_vgprs = (G_00B028_VGPRS(value) + 1) * 4; break; case R_00B02C_SPI_SHADER_PGM_RSRC2_PS: shader->lds_size = G_00B02C_EXTRA_LDS_SIZE(value); break; case R_00B84C_COMPUTE_PGM_RSRC2: shader->lds_size = G_00B84C_LDS_SIZE(value); break; case R_0286CC_SPI_PS_INPUT_ENA: shader->spi_ps_input_ena = value; break; default: fprintf(stderr, "Warning: Compiler emitted unknown " "config register: 0x%x\n", reg); break; } } /* copy new shader */ r600_resource_reference(&shader->bo, NULL); shader->bo = si_resource_create_custom(sctx->b.b.screen, PIPE_USAGE_IMMUTABLE, binary.code_size); if (shader->bo == NULL) { return -ENOMEM; } ptr = (uint32_t*)sctx->b.ws->buffer_map(shader->bo->cs_buf, sctx->b.rings.gfx.cs, PIPE_TRANSFER_WRITE); if (SI_BIG_ENDIAN) { for (i = 0; i < binary.code_size / 4; ++i) { ptr[i] = util_cpu_to_le32((*(uint32_t*)(binary.code + i*4))); } } else { memcpy(ptr, binary.code, binary.code_size); } sctx->b.ws->buffer_unmap(shader->bo->cs_buf); free(binary.code); free(binary.config); return 0; } /* Generate code for the hardware VS shader stage to go with a geometry shader */ static int si_generate_gs_copy_shader(struct si_context *sctx, struct si_shader_context *si_shader_ctx, bool dump) { struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm; struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base; struct lp_build_context *base = &bld_base->base; struct lp_build_context *uint = &bld_base->uint_bld; struct si_shader *shader = &si_shader_ctx->shader->shader; struct si_shader *gs = &si_shader_ctx->shader->selector->current->shader; struct si_shader_output_values *outputs; LLVMValueRef t_list_ptr, t_list; LLVMValueRef args[9]; int i, r; outputs = MALLOC(gs->noutput * sizeof(outputs[0])); si_shader_ctx->type = TGSI_PROCESSOR_VERTEX; si_shader_ctx->gs_for_vs = gs; radeon_llvm_context_init(&si_shader_ctx->radeon_bld); create_meta_data(si_shader_ctx); create_function(si_shader_ctx); preload_streamout_buffers(si_shader_ctx); /* Load the GSVS ring resource descriptor */ t_list_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RW_BUFFERS); t_list = build_indexed_load(si_shader_ctx, t_list_ptr, lp_build_const_int32(gallivm, SI_RING_GSVS)); args[0] = t_list; args[1] = lp_build_mul_imm(uint, LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->param_vertex_id), 4); args[3] = uint->zero; args[4] = uint->one; /* OFFEN */ args[5] = uint->zero; /* IDXEN */ args[6] = uint->one; /* GLC */ args[7] = uint->one; /* SLC */ args[8] = uint->zero; /* TFE */ /* Fetch vertex data from GSVS ring */ for (i = 0; i < gs->noutput; ++i) { struct si_shader_output *out = gs->output + i; unsigned chan; shader->output[i] = *out; outputs[i].name = out->name; outputs[i].index = out->index; outputs[i].sid = out->sid; outputs[i].usage = out->usage; for (chan = 0; chan < 4; chan++) { args[2] = lp_build_const_int32(gallivm, (i * 4 + chan) * gs->gs_max_out_vertices * 16 * 4); outputs[i].values[chan] = LLVMBuildBitCast(gallivm->builder, build_intrinsic(gallivm->builder, "llvm.SI.buffer.load.dword.i32.i32", LLVMInt32TypeInContext(gallivm->context), args, 9, LLVMReadOnlyAttribute | LLVMNoUnwindAttribute), base->elem_type, ""); } } shader->noutput = gs->noutput; si_llvm_export_vs(bld_base, outputs, gs->noutput); radeon_llvm_finalize_module(&si_shader_ctx->radeon_bld); if (dump) fprintf(stderr, "Copy Vertex Shader for Geometry Shader:\n\n"); r = si_compile_llvm(sctx, si_shader_ctx->shader, bld_base->base.gallivm->module); radeon_llvm_dispose(&si_shader_ctx->radeon_bld); FREE(outputs); return r; } int si_pipe_shader_create( struct pipe_context *ctx, struct si_pipe_shader *shader) { struct si_context *sctx = (struct si_context*)ctx; struct si_pipe_shader_selector *sel = shader->selector; struct si_shader_context si_shader_ctx; struct tgsi_shader_info shader_info; struct lp_build_tgsi_context * bld_base; LLVMModuleRef mod; int r = 0; bool dump = r600_can_dump_shader(&sctx->screen->b, sel->tokens); /* Dump TGSI code before doing TGSI->LLVM conversion in case the * conversion fails. */ if (dump) { tgsi_dump(sel->tokens, 0); si_dump_streamout(&sel->so); } assert(shader->shader.noutput == 0); assert(shader->shader.nparam == 0); assert(shader->shader.ninput == 0); memset(&si_shader_ctx, 0, sizeof(si_shader_ctx)); radeon_llvm_context_init(&si_shader_ctx.radeon_bld); bld_base = &si_shader_ctx.radeon_bld.soa.bld_base; tgsi_scan_shader(sel->tokens, &shader_info); shader->shader.uses_kill = shader_info.uses_kill; shader->shader.uses_instanceid = shader_info.uses_instanceid; bld_base->info = &shader_info; bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant; bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXB] = txb_action; #if HAVE_LLVM >= 0x0304 bld_base->op_actions[TGSI_OPCODE_TXD] = txd_action; #endif bld_base->op_actions[TGSI_OPCODE_TXF] = txf_action; bld_base->op_actions[TGSI_OPCODE_TXL] = txl_action; bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action; bld_base->op_actions[TGSI_OPCODE_TXQ] = txq_action; #if HAVE_LLVM >= 0x0304 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy; bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy; #endif bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_llvm_emit_vertex; bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_llvm_emit_primitive; si_shader_ctx.radeon_bld.load_system_value = declare_system_value; si_shader_ctx.tokens = sel->tokens; tgsi_parse_init(&si_shader_ctx.parse, si_shader_ctx.tokens); si_shader_ctx.shader = shader; si_shader_ctx.type = si_shader_ctx.parse.FullHeader.Processor.Processor; switch (si_shader_ctx.type) { case TGSI_PROCESSOR_VERTEX: si_shader_ctx.radeon_bld.load_input = declare_input_vs; if (shader->key.vs.as_es) { si_shader_ctx.gs_for_vs = &sctx->gs_shader->current->shader; bld_base->emit_epilogue = si_llvm_emit_es_epilogue; } else { bld_base->emit_epilogue = si_llvm_emit_vs_epilogue; } break; case TGSI_PROCESSOR_GEOMETRY: { int i; si_shader_ctx.radeon_bld.load_input = declare_input_gs; bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs; bld_base->emit_epilogue = si_llvm_emit_gs_epilogue; for (i = 0; i < shader_info.num_properties; i++) { switch (shader_info.properties[i].name) { case TGSI_PROPERTY_GS_INPUT_PRIM: shader->shader.gs_input_prim = shader_info.properties[i].data[0]; break; case TGSI_PROPERTY_GS_OUTPUT_PRIM: shader->shader.gs_output_prim = shader_info.properties[i].data[0]; break; case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES: shader->shader.gs_max_out_vertices = shader_info.properties[i].data[0]; break; } } break; } case TGSI_PROCESSOR_FRAGMENT: si_shader_ctx.radeon_bld.load_input = declare_input_fs; bld_base->emit_epilogue = si_llvm_emit_fs_epilogue; break; default: assert(!"Unsupported shader type"); return -1; } create_meta_data(&si_shader_ctx); create_function(&si_shader_ctx); preload_constants(&si_shader_ctx); preload_samplers(&si_shader_ctx); preload_streamout_buffers(&si_shader_ctx); if (si_shader_ctx.type == TGSI_PROCESSOR_GEOMETRY) { si_shader_ctx.gs_next_vertex = lp_build_alloca(bld_base->base.gallivm, bld_base->uint_bld.elem_type, ""); } if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) { fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n"); goto out; } radeon_llvm_finalize_module(&si_shader_ctx.radeon_bld); mod = bld_base->base.gallivm->module; r = si_compile_llvm(sctx, shader, mod); if (r) { fprintf(stderr, "LLVM failed to compile shader\n"); goto out; } radeon_llvm_dispose(&si_shader_ctx.radeon_bld); if (si_shader_ctx.type == TGSI_PROCESSOR_GEOMETRY) { shader->gs_copy_shader = CALLOC_STRUCT(si_pipe_shader); shader->gs_copy_shader->selector = shader->selector; shader->gs_copy_shader->key = shader->key; si_shader_ctx.shader = shader->gs_copy_shader; if ((r = si_generate_gs_copy_shader(sctx, &si_shader_ctx, dump))) { free(shader->gs_copy_shader); shader->gs_copy_shader = NULL; goto out; } } tgsi_parse_free(&si_shader_ctx.parse); out: for (int i = 0; i < NUM_CONST_BUFFERS; i++) FREE(si_shader_ctx.constants[i]); FREE(si_shader_ctx.resources); FREE(si_shader_ctx.samplers); return r; } void si_pipe_shader_destroy(struct pipe_context *ctx, struct si_pipe_shader *shader) { r600_resource_reference(&shader->bo, NULL); }