/* * Copyright 2010 Jerome Glisse * Copyright 2014 Marek Olšák * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_pipe.h" #include "si_query.h" #include "util/u_memory.h" #include "util/u_upload_mgr.h" #include "util/os_time.h" #include "util/u_suballoc.h" #include "tgsi/tgsi_text.h" #include "amd/common/sid.h" #define SI_MAX_STREAMS 4 struct si_hw_query_params { unsigned start_offset; unsigned end_offset; unsigned fence_offset; unsigned pair_stride; unsigned pair_count; }; /* Queries without buffer handling or suspend/resume. */ struct si_query_sw { struct si_query b; uint64_t begin_result; uint64_t end_result; uint64_t begin_time; uint64_t end_time; /* Fence for GPU_FINISHED. */ struct pipe_fence_handle *fence; }; static void si_query_sw_destroy(struct si_screen *sscreen, struct si_query *rquery) { struct si_query_sw *query = (struct si_query_sw *)rquery; sscreen->b.fence_reference(&sscreen->b, &query->fence, NULL); FREE(query); } static enum radeon_value_id winsys_id_from_type(unsigned type) { switch (type) { case SI_QUERY_REQUESTED_VRAM: return RADEON_REQUESTED_VRAM_MEMORY; case SI_QUERY_REQUESTED_GTT: return RADEON_REQUESTED_GTT_MEMORY; case SI_QUERY_MAPPED_VRAM: return RADEON_MAPPED_VRAM; case SI_QUERY_MAPPED_GTT: return RADEON_MAPPED_GTT; case SI_QUERY_BUFFER_WAIT_TIME: return RADEON_BUFFER_WAIT_TIME_NS; case SI_QUERY_NUM_MAPPED_BUFFERS: return RADEON_NUM_MAPPED_BUFFERS; case SI_QUERY_NUM_GFX_IBS: return RADEON_NUM_GFX_IBS; case SI_QUERY_NUM_SDMA_IBS: return RADEON_NUM_SDMA_IBS; case SI_QUERY_GFX_BO_LIST_SIZE: return RADEON_GFX_BO_LIST_COUNTER; case SI_QUERY_GFX_IB_SIZE: return RADEON_GFX_IB_SIZE_COUNTER; case SI_QUERY_NUM_BYTES_MOVED: return RADEON_NUM_BYTES_MOVED; case SI_QUERY_NUM_EVICTIONS: return RADEON_NUM_EVICTIONS; case SI_QUERY_NUM_VRAM_CPU_PAGE_FAULTS: return RADEON_NUM_VRAM_CPU_PAGE_FAULTS; case SI_QUERY_VRAM_USAGE: return RADEON_VRAM_USAGE; case SI_QUERY_VRAM_VIS_USAGE: return RADEON_VRAM_VIS_USAGE; case SI_QUERY_GTT_USAGE: return RADEON_GTT_USAGE; case SI_QUERY_GPU_TEMPERATURE: return RADEON_GPU_TEMPERATURE; case SI_QUERY_CURRENT_GPU_SCLK: return RADEON_CURRENT_SCLK; case SI_QUERY_CURRENT_GPU_MCLK: return RADEON_CURRENT_MCLK; case SI_QUERY_CS_THREAD_BUSY: return RADEON_CS_THREAD_TIME; default: unreachable("query type does not correspond to winsys id"); } } static bool si_query_sw_begin(struct si_context *sctx, struct si_query *rquery) { struct si_query_sw *query = (struct si_query_sw *)rquery; enum radeon_value_id ws_id; switch(query->b.type) { case PIPE_QUERY_TIMESTAMP_DISJOINT: case PIPE_QUERY_GPU_FINISHED: break; case SI_QUERY_DRAW_CALLS: query->begin_result = sctx->num_draw_calls; break; case SI_QUERY_DECOMPRESS_CALLS: query->begin_result = sctx->num_decompress_calls; break; case SI_QUERY_MRT_DRAW_CALLS: query->begin_result = sctx->num_mrt_draw_calls; break; case SI_QUERY_PRIM_RESTART_CALLS: query->begin_result = sctx->num_prim_restart_calls; break; case SI_QUERY_SPILL_DRAW_CALLS: query->begin_result = sctx->num_spill_draw_calls; break; case SI_QUERY_COMPUTE_CALLS: query->begin_result = sctx->num_compute_calls; break; case SI_QUERY_SPILL_COMPUTE_CALLS: query->begin_result = sctx->num_spill_compute_calls; break; case SI_QUERY_DMA_CALLS: query->begin_result = sctx->num_dma_calls; break; case SI_QUERY_CP_DMA_CALLS: query->begin_result = sctx->num_cp_dma_calls; break; case SI_QUERY_NUM_VS_FLUSHES: query->begin_result = sctx->num_vs_flushes; break; case SI_QUERY_NUM_PS_FLUSHES: query->begin_result = sctx->num_ps_flushes; break; case SI_QUERY_NUM_CS_FLUSHES: query->begin_result = sctx->num_cs_flushes; break; case SI_QUERY_NUM_CB_CACHE_FLUSHES: query->begin_result = sctx->num_cb_cache_flushes; break; case SI_QUERY_NUM_DB_CACHE_FLUSHES: query->begin_result = sctx->num_db_cache_flushes; break; case SI_QUERY_NUM_L2_INVALIDATES: query->begin_result = sctx->num_L2_invalidates; break; case SI_QUERY_NUM_L2_WRITEBACKS: query->begin_result = sctx->num_L2_writebacks; break; case SI_QUERY_NUM_RESIDENT_HANDLES: query->begin_result = sctx->num_resident_handles; break; case SI_QUERY_TC_OFFLOADED_SLOTS: query->begin_result = sctx->tc ? sctx->tc->num_offloaded_slots : 0; break; case SI_QUERY_TC_DIRECT_SLOTS: query->begin_result = sctx->tc ? sctx->tc->num_direct_slots : 0; break; case SI_QUERY_TC_NUM_SYNCS: query->begin_result = sctx->tc ? sctx->tc->num_syncs : 0; break; case SI_QUERY_REQUESTED_VRAM: case SI_QUERY_REQUESTED_GTT: case SI_QUERY_MAPPED_VRAM: case SI_QUERY_MAPPED_GTT: case SI_QUERY_VRAM_USAGE: case SI_QUERY_VRAM_VIS_USAGE: case SI_QUERY_GTT_USAGE: case SI_QUERY_GPU_TEMPERATURE: case SI_QUERY_CURRENT_GPU_SCLK: case SI_QUERY_CURRENT_GPU_MCLK: case SI_QUERY_BACK_BUFFER_PS_DRAW_RATIO: case SI_QUERY_NUM_MAPPED_BUFFERS: query->begin_result = 0; break; case SI_QUERY_BUFFER_WAIT_TIME: case SI_QUERY_GFX_IB_SIZE: case SI_QUERY_NUM_GFX_IBS: case SI_QUERY_NUM_SDMA_IBS: case SI_QUERY_NUM_BYTES_MOVED: case SI_QUERY_NUM_EVICTIONS: case SI_QUERY_NUM_VRAM_CPU_PAGE_FAULTS: { enum radeon_value_id ws_id = winsys_id_from_type(query->b.type); query->begin_result = sctx->ws->query_value(sctx->ws, ws_id); break; } case SI_QUERY_GFX_BO_LIST_SIZE: ws_id = winsys_id_from_type(query->b.type); query->begin_result = sctx->ws->query_value(sctx->ws, ws_id); query->begin_time = sctx->ws->query_value(sctx->ws, RADEON_NUM_GFX_IBS); break; case SI_QUERY_CS_THREAD_BUSY: ws_id = winsys_id_from_type(query->b.type); query->begin_result = sctx->ws->query_value(sctx->ws, ws_id); query->begin_time = os_time_get_nano(); break; case SI_QUERY_GALLIUM_THREAD_BUSY: query->begin_result = sctx->tc ? util_queue_get_thread_time_nano(&sctx->tc->queue, 0) : 0; query->begin_time = os_time_get_nano(); break; case SI_QUERY_GPU_LOAD: case SI_QUERY_GPU_SHADERS_BUSY: case SI_QUERY_GPU_TA_BUSY: case SI_QUERY_GPU_GDS_BUSY: case SI_QUERY_GPU_VGT_BUSY: case SI_QUERY_GPU_IA_BUSY: case SI_QUERY_GPU_SX_BUSY: case SI_QUERY_GPU_WD_BUSY: case SI_QUERY_GPU_BCI_BUSY: case SI_QUERY_GPU_SC_BUSY: case SI_QUERY_GPU_PA_BUSY: case SI_QUERY_GPU_DB_BUSY: case SI_QUERY_GPU_CP_BUSY: case SI_QUERY_GPU_CB_BUSY: case SI_QUERY_GPU_SDMA_BUSY: case SI_QUERY_GPU_PFP_BUSY: case SI_QUERY_GPU_MEQ_BUSY: case SI_QUERY_GPU_ME_BUSY: case SI_QUERY_GPU_SURF_SYNC_BUSY: case SI_QUERY_GPU_CP_DMA_BUSY: case SI_QUERY_GPU_SCRATCH_RAM_BUSY: query->begin_result = si_begin_counter(sctx->screen, query->b.type); break; case SI_QUERY_NUM_COMPILATIONS: query->begin_result = p_atomic_read(&sctx->screen->num_compilations); break; case SI_QUERY_NUM_SHADERS_CREATED: query->begin_result = p_atomic_read(&sctx->screen->num_shaders_created); break; case SI_QUERY_NUM_SHADER_CACHE_HITS: query->begin_result = p_atomic_read(&sctx->screen->num_shader_cache_hits); break; case SI_QUERY_GPIN_ASIC_ID: case SI_QUERY_GPIN_NUM_SIMD: case SI_QUERY_GPIN_NUM_RB: case SI_QUERY_GPIN_NUM_SPI: case SI_QUERY_GPIN_NUM_SE: break; default: unreachable("si_query_sw_begin: bad query type"); } return true; } static bool si_query_sw_end(struct si_context *sctx, struct si_query *rquery) { struct si_query_sw *query = (struct si_query_sw *)rquery; enum radeon_value_id ws_id; switch(query->b.type) { case PIPE_QUERY_TIMESTAMP_DISJOINT: break; case PIPE_QUERY_GPU_FINISHED: sctx->b.flush(&sctx->b, &query->fence, PIPE_FLUSH_DEFERRED); break; case SI_QUERY_DRAW_CALLS: query->end_result = sctx->num_draw_calls; break; case SI_QUERY_DECOMPRESS_CALLS: query->end_result = sctx->num_decompress_calls; break; case SI_QUERY_MRT_DRAW_CALLS: query->end_result = sctx->num_mrt_draw_calls; break; case SI_QUERY_PRIM_RESTART_CALLS: query->end_result = sctx->num_prim_restart_calls; break; case SI_QUERY_SPILL_DRAW_CALLS: query->end_result = sctx->num_spill_draw_calls; break; case SI_QUERY_COMPUTE_CALLS: query->end_result = sctx->num_compute_calls; break; case SI_QUERY_SPILL_COMPUTE_CALLS: query->end_result = sctx->num_spill_compute_calls; break; case SI_QUERY_DMA_CALLS: query->end_result = sctx->num_dma_calls; break; case SI_QUERY_CP_DMA_CALLS: query->end_result = sctx->num_cp_dma_calls; break; case SI_QUERY_NUM_VS_FLUSHES: query->end_result = sctx->num_vs_flushes; break; case SI_QUERY_NUM_PS_FLUSHES: query->end_result = sctx->num_ps_flushes; break; case SI_QUERY_NUM_CS_FLUSHES: query->end_result = sctx->num_cs_flushes; break; case SI_QUERY_NUM_CB_CACHE_FLUSHES: query->end_result = sctx->num_cb_cache_flushes; break; case SI_QUERY_NUM_DB_CACHE_FLUSHES: query->end_result = sctx->num_db_cache_flushes; break; case SI_QUERY_NUM_L2_INVALIDATES: query->end_result = sctx->num_L2_invalidates; break; case SI_QUERY_NUM_L2_WRITEBACKS: query->end_result = sctx->num_L2_writebacks; break; case SI_QUERY_NUM_RESIDENT_HANDLES: query->end_result = sctx->num_resident_handles; break; case SI_QUERY_TC_OFFLOADED_SLOTS: query->end_result = sctx->tc ? sctx->tc->num_offloaded_slots : 0; break; case SI_QUERY_TC_DIRECT_SLOTS: query->end_result = sctx->tc ? sctx->tc->num_direct_slots : 0; break; case SI_QUERY_TC_NUM_SYNCS: query->end_result = sctx->tc ? sctx->tc->num_syncs : 0; break; case SI_QUERY_REQUESTED_VRAM: case SI_QUERY_REQUESTED_GTT: case SI_QUERY_MAPPED_VRAM: case SI_QUERY_MAPPED_GTT: case SI_QUERY_VRAM_USAGE: case SI_QUERY_VRAM_VIS_USAGE: case SI_QUERY_GTT_USAGE: case SI_QUERY_GPU_TEMPERATURE: case SI_QUERY_CURRENT_GPU_SCLK: case SI_QUERY_CURRENT_GPU_MCLK: case SI_QUERY_BUFFER_WAIT_TIME: case SI_QUERY_GFX_IB_SIZE: case SI_QUERY_NUM_MAPPED_BUFFERS: case SI_QUERY_NUM_GFX_IBS: case SI_QUERY_NUM_SDMA_IBS: case SI_QUERY_NUM_BYTES_MOVED: case SI_QUERY_NUM_EVICTIONS: case SI_QUERY_NUM_VRAM_CPU_PAGE_FAULTS: { enum radeon_value_id ws_id = winsys_id_from_type(query->b.type); query->end_result = sctx->ws->query_value(sctx->ws, ws_id); break; } case SI_QUERY_GFX_BO_LIST_SIZE: ws_id = winsys_id_from_type(query->b.type); query->end_result = sctx->ws->query_value(sctx->ws, ws_id); query->end_time = sctx->ws->query_value(sctx->ws, RADEON_NUM_GFX_IBS); break; case SI_QUERY_CS_THREAD_BUSY: ws_id = winsys_id_from_type(query->b.type); query->end_result = sctx->ws->query_value(sctx->ws, ws_id); query->end_time = os_time_get_nano(); break; case SI_QUERY_GALLIUM_THREAD_BUSY: query->end_result = sctx->tc ? util_queue_get_thread_time_nano(&sctx->tc->queue, 0) : 0; query->end_time = os_time_get_nano(); break; case SI_QUERY_GPU_LOAD: case SI_QUERY_GPU_SHADERS_BUSY: case SI_QUERY_GPU_TA_BUSY: case SI_QUERY_GPU_GDS_BUSY: case SI_QUERY_GPU_VGT_BUSY: case SI_QUERY_GPU_IA_BUSY: case SI_QUERY_GPU_SX_BUSY: case SI_QUERY_GPU_WD_BUSY: case SI_QUERY_GPU_BCI_BUSY: case SI_QUERY_GPU_SC_BUSY: case SI_QUERY_GPU_PA_BUSY: case SI_QUERY_GPU_DB_BUSY: case SI_QUERY_GPU_CP_BUSY: case SI_QUERY_GPU_CB_BUSY: case SI_QUERY_GPU_SDMA_BUSY: case SI_QUERY_GPU_PFP_BUSY: case SI_QUERY_GPU_MEQ_BUSY: case SI_QUERY_GPU_ME_BUSY: case SI_QUERY_GPU_SURF_SYNC_BUSY: case SI_QUERY_GPU_CP_DMA_BUSY: case SI_QUERY_GPU_SCRATCH_RAM_BUSY: query->end_result = si_end_counter(sctx->screen, query->b.type, query->begin_result); query->begin_result = 0; break; case SI_QUERY_NUM_COMPILATIONS: query->end_result = p_atomic_read(&sctx->screen->num_compilations); break; case SI_QUERY_NUM_SHADERS_CREATED: query->end_result = p_atomic_read(&sctx->screen->num_shaders_created); break; case SI_QUERY_BACK_BUFFER_PS_DRAW_RATIO: query->end_result = sctx->last_tex_ps_draw_ratio; break; case SI_QUERY_NUM_SHADER_CACHE_HITS: query->end_result = p_atomic_read(&sctx->screen->num_shader_cache_hits); break; case SI_QUERY_GPIN_ASIC_ID: case SI_QUERY_GPIN_NUM_SIMD: case SI_QUERY_GPIN_NUM_RB: case SI_QUERY_GPIN_NUM_SPI: case SI_QUERY_GPIN_NUM_SE: break; default: unreachable("si_query_sw_end: bad query type"); } return true; } static bool si_query_sw_get_result(struct si_context *sctx, struct si_query *rquery, bool wait, union pipe_query_result *result) { struct si_query_sw *query = (struct si_query_sw *)rquery; switch (query->b.type) { case PIPE_QUERY_TIMESTAMP_DISJOINT: /* Convert from cycles per millisecond to cycles per second (Hz). */ result->timestamp_disjoint.frequency = (uint64_t)sctx->screen->info.clock_crystal_freq * 1000; result->timestamp_disjoint.disjoint = false; return true; case PIPE_QUERY_GPU_FINISHED: { struct pipe_screen *screen = sctx->b.screen; struct pipe_context *ctx = rquery->b.flushed ? NULL : &sctx->b; result->b = screen->fence_finish(screen, ctx, query->fence, wait ? PIPE_TIMEOUT_INFINITE : 0); return result->b; } case SI_QUERY_GFX_BO_LIST_SIZE: result->u64 = (query->end_result - query->begin_result) / (query->end_time - query->begin_time); return true; case SI_QUERY_CS_THREAD_BUSY: case SI_QUERY_GALLIUM_THREAD_BUSY: result->u64 = (query->end_result - query->begin_result) * 100 / (query->end_time - query->begin_time); return true; case SI_QUERY_GPIN_ASIC_ID: result->u32 = 0; return true; case SI_QUERY_GPIN_NUM_SIMD: result->u32 = sctx->screen->info.num_good_compute_units; return true; case SI_QUERY_GPIN_NUM_RB: result->u32 = sctx->screen->info.num_render_backends; return true; case SI_QUERY_GPIN_NUM_SPI: result->u32 = 1; /* all supported chips have one SPI per SE */ return true; case SI_QUERY_GPIN_NUM_SE: result->u32 = sctx->screen->info.max_se; return true; } result->u64 = query->end_result - query->begin_result; switch (query->b.type) { case SI_QUERY_BUFFER_WAIT_TIME: case SI_QUERY_GPU_TEMPERATURE: result->u64 /= 1000; break; case SI_QUERY_CURRENT_GPU_SCLK: case SI_QUERY_CURRENT_GPU_MCLK: result->u64 *= 1000000; break; } return true; } static struct si_query_ops sw_query_ops = { .destroy = si_query_sw_destroy, .begin = si_query_sw_begin, .end = si_query_sw_end, .get_result = si_query_sw_get_result, .get_result_resource = NULL }; static struct pipe_query *si_query_sw_create(unsigned query_type) { struct si_query_sw *query; query = CALLOC_STRUCT(si_query_sw); if (!query) return NULL; query->b.type = query_type; query->b.ops = &sw_query_ops; return (struct pipe_query *)query; } void si_query_hw_destroy(struct si_screen *sscreen, struct si_query *rquery) { struct si_query_hw *query = (struct si_query_hw *)rquery; struct si_query_buffer *prev = query->buffer.previous; /* Release all query buffers. */ while (prev) { struct si_query_buffer *qbuf = prev; prev = prev->previous; r600_resource_reference(&qbuf->buf, NULL); FREE(qbuf); } r600_resource_reference(&query->buffer.buf, NULL); r600_resource_reference(&query->workaround_buf, NULL); FREE(rquery); } static struct r600_resource *si_new_query_buffer(struct si_screen *sscreen, struct si_query_hw *query) { unsigned buf_size = MAX2(query->result_size, sscreen->info.min_alloc_size); /* Queries are normally read by the CPU after * being written by the gpu, hence staging is probably a good * usage pattern. */ struct r600_resource *buf = r600_resource( pipe_buffer_create(&sscreen->b, 0, PIPE_USAGE_STAGING, buf_size)); if (!buf) return NULL; if (!query->ops->prepare_buffer(sscreen, query, buf)) { r600_resource_reference(&buf, NULL); return NULL; } return buf; } static bool si_query_hw_prepare_buffer(struct si_screen *sscreen, struct si_query_hw *query, struct r600_resource *buffer) { /* Callers ensure that the buffer is currently unused by the GPU. */ uint32_t *results = sscreen->ws->buffer_map(buffer->buf, NULL, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED); if (!results) return false; memset(results, 0, buffer->b.b.width0); if (query->b.type == PIPE_QUERY_OCCLUSION_COUNTER || query->b.type == PIPE_QUERY_OCCLUSION_PREDICATE || query->b.type == PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { unsigned max_rbs = sscreen->info.num_render_backends; unsigned enabled_rb_mask = sscreen->info.enabled_rb_mask; unsigned num_results; unsigned i, j; /* Set top bits for unused backends. */ num_results = buffer->b.b.width0 / query->result_size; for (j = 0; j < num_results; j++) { for (i = 0; i < max_rbs; i++) { if (!(enabled_rb_mask & (1<buffer.buf = si_new_query_buffer(sscreen, query); if (!query->buffer.buf) return false; return true; } static struct pipe_query *si_query_hw_create(struct si_screen *sscreen, unsigned query_type, unsigned index) { struct si_query_hw *query = CALLOC_STRUCT(si_query_hw); if (!query) return NULL; query->b.type = query_type; query->b.ops = &query_hw_ops; query->ops = &query_hw_default_hw_ops; switch (query_type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE: query->result_size = 16 * sscreen->info.num_render_backends; query->result_size += 16; /* for the fence + alignment */ query->num_cs_dw_end = 6 + si_gfx_write_fence_dwords(sscreen); break; case PIPE_QUERY_TIME_ELAPSED: query->result_size = 24; query->num_cs_dw_end = 8 + si_gfx_write_fence_dwords(sscreen); break; case PIPE_QUERY_TIMESTAMP: query->result_size = 16; query->num_cs_dw_end = 8 + si_gfx_write_fence_dwords(sscreen); query->flags = SI_QUERY_HW_FLAG_NO_START; break; case PIPE_QUERY_PRIMITIVES_EMITTED: case PIPE_QUERY_PRIMITIVES_GENERATED: case PIPE_QUERY_SO_STATISTICS: case PIPE_QUERY_SO_OVERFLOW_PREDICATE: /* NumPrimitivesWritten, PrimitiveStorageNeeded. */ query->result_size = 32; query->num_cs_dw_end = 6; query->stream = index; break; case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE: /* NumPrimitivesWritten, PrimitiveStorageNeeded. */ query->result_size = 32 * SI_MAX_STREAMS; query->num_cs_dw_end = 6 * SI_MAX_STREAMS; break; case PIPE_QUERY_PIPELINE_STATISTICS: /* 11 values on GCN. */ query->result_size = 11 * 16; query->result_size += 8; /* for the fence + alignment */ query->num_cs_dw_end = 6 + si_gfx_write_fence_dwords(sscreen); break; default: assert(0); FREE(query); return NULL; } if (!si_query_hw_init(sscreen, query)) { FREE(query); return NULL; } return (struct pipe_query *)query; } static void si_update_occlusion_query_state(struct si_context *sctx, unsigned type, int diff) { if (type == PIPE_QUERY_OCCLUSION_COUNTER || type == PIPE_QUERY_OCCLUSION_PREDICATE || type == PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { bool old_enable = sctx->num_occlusion_queries != 0; bool old_perfect_enable = sctx->num_perfect_occlusion_queries != 0; bool enable, perfect_enable; sctx->num_occlusion_queries += diff; assert(sctx->num_occlusion_queries >= 0); if (type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { sctx->num_perfect_occlusion_queries += diff; assert(sctx->num_perfect_occlusion_queries >= 0); } enable = sctx->num_occlusion_queries != 0; perfect_enable = sctx->num_perfect_occlusion_queries != 0; if (enable != old_enable || perfect_enable != old_perfect_enable) { si_set_occlusion_query_state(sctx, old_perfect_enable); } } } static unsigned event_type_for_stream(unsigned stream) { switch (stream) { default: case 0: return V_028A90_SAMPLE_STREAMOUTSTATS; case 1: return V_028A90_SAMPLE_STREAMOUTSTATS1; case 2: return V_028A90_SAMPLE_STREAMOUTSTATS2; case 3: return V_028A90_SAMPLE_STREAMOUTSTATS3; } } static void emit_sample_streamout(struct radeon_cmdbuf *cs, uint64_t va, unsigned stream) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(event_type_for_stream(stream)) | EVENT_INDEX(3)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); } static void si_query_hw_do_emit_start(struct si_context *sctx, struct si_query_hw *query, struct r600_resource *buffer, uint64_t va) { struct radeon_cmdbuf *cs = sctx->gfx_cs; switch (query->b.type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE: radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_ZPASS_DONE) | EVENT_INDEX(1)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); break; case PIPE_QUERY_PRIMITIVES_EMITTED: case PIPE_QUERY_PRIMITIVES_GENERATED: case PIPE_QUERY_SO_STATISTICS: case PIPE_QUERY_SO_OVERFLOW_PREDICATE: emit_sample_streamout(cs, va, query->stream); break; case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE: for (unsigned stream = 0; stream < SI_MAX_STREAMS; ++stream) emit_sample_streamout(cs, va + 32 * stream, stream); break; case PIPE_QUERY_TIME_ELAPSED: /* Write the timestamp from the CP not waiting for * outstanding draws (top-of-pipe). */ radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); radeon_emit(cs, COPY_DATA_COUNT_SEL | COPY_DATA_SRC_SEL(COPY_DATA_TIMESTAMP) | COPY_DATA_DST_SEL(COPY_DATA_MEM_ASYNC)); radeon_emit(cs, 0); radeon_emit(cs, 0); radeon_emit(cs, va); radeon_emit(cs, va >> 32); break; case PIPE_QUERY_PIPELINE_STATISTICS: radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_SAMPLE_PIPELINESTAT) | EVENT_INDEX(2)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); break; default: assert(0); } radeon_add_to_buffer_list(sctx, sctx->gfx_cs, query->buffer.buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } static void si_query_hw_emit_start(struct si_context *sctx, struct si_query_hw *query) { uint64_t va; if (!query->buffer.buf) return; // previous buffer allocation failure si_update_occlusion_query_state(sctx, query->b.type, 1); si_update_prims_generated_query_state(sctx, query->b.type, 1); si_need_gfx_cs_space(sctx); /* Get a new query buffer if needed. */ if (query->buffer.results_end + query->result_size > query->buffer.buf->b.b.width0) { struct si_query_buffer *qbuf = MALLOC_STRUCT(si_query_buffer); *qbuf = query->buffer; query->buffer.results_end = 0; query->buffer.previous = qbuf; query->buffer.buf = si_new_query_buffer(sctx->screen, query); if (!query->buffer.buf) return; } /* emit begin query */ va = query->buffer.buf->gpu_address + query->buffer.results_end; query->ops->emit_start(sctx, query, query->buffer.buf, va); sctx->num_cs_dw_queries_suspend += query->num_cs_dw_end; } static void si_query_hw_do_emit_stop(struct si_context *sctx, struct si_query_hw *query, struct r600_resource *buffer, uint64_t va) { struct radeon_cmdbuf *cs = sctx->gfx_cs; uint64_t fence_va = 0; switch (query->b.type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE: va += 8; radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_ZPASS_DONE) | EVENT_INDEX(1)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); fence_va = va + sctx->screen->info.num_render_backends * 16 - 8; break; case PIPE_QUERY_PRIMITIVES_EMITTED: case PIPE_QUERY_PRIMITIVES_GENERATED: case PIPE_QUERY_SO_STATISTICS: case PIPE_QUERY_SO_OVERFLOW_PREDICATE: va += 16; emit_sample_streamout(cs, va, query->stream); break; case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE: va += 16; for (unsigned stream = 0; stream < SI_MAX_STREAMS; ++stream) emit_sample_streamout(cs, va + 32 * stream, stream); break; case PIPE_QUERY_TIME_ELAPSED: va += 8; /* fall through */ case PIPE_QUERY_TIMESTAMP: si_gfx_write_event_eop(sctx, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DATA_SEL_TIMESTAMP, NULL, va, 0, query->b.type); fence_va = va + 8; break; case PIPE_QUERY_PIPELINE_STATISTICS: { unsigned sample_size = (query->result_size - 8) / 2; va += sample_size; radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_SAMPLE_PIPELINESTAT) | EVENT_INDEX(2)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); fence_va = va + sample_size; break; } default: assert(0); } radeon_add_to_buffer_list(sctx, sctx->gfx_cs, query->buffer.buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); if (fence_va) si_gfx_write_event_eop(sctx, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DATA_SEL_VALUE_32BIT, query->buffer.buf, fence_va, 0x80000000, query->b.type); } static void si_query_hw_emit_stop(struct si_context *sctx, struct si_query_hw *query) { uint64_t va; if (!query->buffer.buf) return; // previous buffer allocation failure /* The queries which need begin already called this in begin_query. */ if (query->flags & SI_QUERY_HW_FLAG_NO_START) si_need_gfx_cs_space(sctx); /* emit end query */ va = query->buffer.buf->gpu_address + query->buffer.results_end; query->ops->emit_stop(sctx, query, query->buffer.buf, va); query->buffer.results_end += query->result_size; if (!(query->flags & SI_QUERY_HW_FLAG_NO_START)) sctx->num_cs_dw_queries_suspend -= query->num_cs_dw_end; si_update_occlusion_query_state(sctx, query->b.type, -1); si_update_prims_generated_query_state(sctx, query->b.type, -1); } static void emit_set_predicate(struct si_context *ctx, struct r600_resource *buf, uint64_t va, uint32_t op) { struct radeon_cmdbuf *cs = ctx->gfx_cs; if (ctx->chip_class >= GFX9) { radeon_emit(cs, PKT3(PKT3_SET_PREDICATION, 2, 0)); radeon_emit(cs, op); radeon_emit(cs, va); radeon_emit(cs, va >> 32); } else { radeon_emit(cs, PKT3(PKT3_SET_PREDICATION, 1, 0)); radeon_emit(cs, va); radeon_emit(cs, op | ((va >> 32) & 0xFF)); } radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_READ, RADEON_PRIO_QUERY); } static void si_emit_query_predication(struct si_context *ctx) { struct si_query_hw *query = (struct si_query_hw *)ctx->render_cond; struct si_query_buffer *qbuf; uint32_t op; bool flag_wait, invert; if (!query) return; invert = ctx->render_cond_invert; flag_wait = ctx->render_cond_mode == PIPE_RENDER_COND_WAIT || ctx->render_cond_mode == PIPE_RENDER_COND_BY_REGION_WAIT; if (query->workaround_buf) { op = PRED_OP(PREDICATION_OP_BOOL64); } else { switch (query->b.type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE: op = PRED_OP(PREDICATION_OP_ZPASS); break; case PIPE_QUERY_SO_OVERFLOW_PREDICATE: case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE: op = PRED_OP(PREDICATION_OP_PRIMCOUNT); invert = !invert; break; default: assert(0); return; } } /* if true then invert, see GL_ARB_conditional_render_inverted */ if (invert) op |= PREDICATION_DRAW_NOT_VISIBLE; /* Draw if not visible or overflow */ else op |= PREDICATION_DRAW_VISIBLE; /* Draw if visible or no overflow */ /* Use the value written by compute shader as a workaround. Note that * the wait flag does not apply in this predication mode. * * The shader outputs the result value to L2. Workarounds only affect VI * and later, where the CP reads data from L2, so we don't need an * additional flush. */ if (query->workaround_buf) { uint64_t va = query->workaround_buf->gpu_address + query->workaround_offset; emit_set_predicate(ctx, query->workaround_buf, va, op); return; } op |= flag_wait ? PREDICATION_HINT_WAIT : PREDICATION_HINT_NOWAIT_DRAW; /* emit predicate packets for all data blocks */ for (qbuf = &query->buffer; qbuf; qbuf = qbuf->previous) { unsigned results_base = 0; uint64_t va_base = qbuf->buf->gpu_address; while (results_base < qbuf->results_end) { uint64_t va = va_base + results_base; if (query->b.type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE) { for (unsigned stream = 0; stream < SI_MAX_STREAMS; ++stream) { emit_set_predicate(ctx, qbuf->buf, va + 32 * stream, op); /* set CONTINUE bit for all packets except the first */ op |= PREDICATION_CONTINUE; } } else { emit_set_predicate(ctx, qbuf->buf, va, op); op |= PREDICATION_CONTINUE; } results_base += query->result_size; } } } static struct pipe_query *si_create_query(struct pipe_context *ctx, unsigned query_type, unsigned index) { struct si_screen *sscreen = (struct si_screen *)ctx->screen; if (query_type == PIPE_QUERY_TIMESTAMP_DISJOINT || query_type == PIPE_QUERY_GPU_FINISHED || query_type >= PIPE_QUERY_DRIVER_SPECIFIC) return si_query_sw_create(query_type); return si_query_hw_create(sscreen, query_type, index); } static void si_destroy_query(struct pipe_context *ctx, struct pipe_query *query) { struct si_context *sctx = (struct si_context *)ctx; struct si_query *rquery = (struct si_query *)query; rquery->ops->destroy(sctx->screen, rquery); } static boolean si_begin_query(struct pipe_context *ctx, struct pipe_query *query) { struct si_context *sctx = (struct si_context *)ctx; struct si_query *rquery = (struct si_query *)query; return rquery->ops->begin(sctx, rquery); } void si_query_hw_reset_buffers(struct si_context *sctx, struct si_query_hw *query) { struct si_query_buffer *prev = query->buffer.previous; /* Discard the old query buffers. */ while (prev) { struct si_query_buffer *qbuf = prev; prev = prev->previous; r600_resource_reference(&qbuf->buf, NULL); FREE(qbuf); } query->buffer.results_end = 0; query->buffer.previous = NULL; /* Obtain a new buffer if the current one can't be mapped without a stall. */ if (si_rings_is_buffer_referenced(sctx, query->buffer.buf->buf, RADEON_USAGE_READWRITE) || !sctx->ws->buffer_wait(query->buffer.buf->buf, 0, RADEON_USAGE_READWRITE)) { r600_resource_reference(&query->buffer.buf, NULL); query->buffer.buf = si_new_query_buffer(sctx->screen, query); } else { if (!query->ops->prepare_buffer(sctx->screen, query, query->buffer.buf)) r600_resource_reference(&query->buffer.buf, NULL); } } bool si_query_hw_begin(struct si_context *sctx, struct si_query *rquery) { struct si_query_hw *query = (struct si_query_hw *)rquery; if (query->flags & SI_QUERY_HW_FLAG_NO_START) { assert(0); return false; } if (!(query->flags & SI_QUERY_HW_FLAG_BEGIN_RESUMES)) si_query_hw_reset_buffers(sctx, query); r600_resource_reference(&query->workaround_buf, NULL); si_query_hw_emit_start(sctx, query); if (!query->buffer.buf) return false; LIST_ADDTAIL(&query->list, &sctx->active_queries); return true; } static bool si_end_query(struct pipe_context *ctx, struct pipe_query *query) { struct si_context *sctx = (struct si_context *)ctx; struct si_query *rquery = (struct si_query *)query; return rquery->ops->end(sctx, rquery); } bool si_query_hw_end(struct si_context *sctx, struct si_query *rquery) { struct si_query_hw *query = (struct si_query_hw *)rquery; if (query->flags & SI_QUERY_HW_FLAG_NO_START) si_query_hw_reset_buffers(sctx, query); si_query_hw_emit_stop(sctx, query); if (!(query->flags & SI_QUERY_HW_FLAG_NO_START)) LIST_DELINIT(&query->list); if (!query->buffer.buf) return false; return true; } static void si_get_hw_query_params(struct si_context *sctx, struct si_query_hw *rquery, int index, struct si_hw_query_params *params) { unsigned max_rbs = sctx->screen->info.num_render_backends; params->pair_stride = 0; params->pair_count = 1; switch (rquery->b.type) { case PIPE_QUERY_OCCLUSION_COUNTER: case PIPE_QUERY_OCCLUSION_PREDICATE: case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE: params->start_offset = 0; params->end_offset = 8; params->fence_offset = max_rbs * 16; params->pair_stride = 16; params->pair_count = max_rbs; break; case PIPE_QUERY_TIME_ELAPSED: params->start_offset = 0; params->end_offset = 8; params->fence_offset = 16; break; case PIPE_QUERY_TIMESTAMP: params->start_offset = 0; params->end_offset = 0; params->fence_offset = 8; break; case PIPE_QUERY_PRIMITIVES_EMITTED: params->start_offset = 8; params->end_offset = 24; params->fence_offset = params->end_offset + 4; break; case PIPE_QUERY_PRIMITIVES_GENERATED: params->start_offset = 0; params->end_offset = 16; params->fence_offset = params->end_offset + 4; break; case PIPE_QUERY_SO_STATISTICS: params->start_offset = 8 - index * 8; params->end_offset = 24 - index * 8; params->fence_offset = params->end_offset + 4; break; case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE: params->pair_count = SI_MAX_STREAMS; params->pair_stride = 32; case PIPE_QUERY_SO_OVERFLOW_PREDICATE: params->start_offset = 0; params->end_offset = 16; /* We can re-use the high dword of the last 64-bit value as a * fence: it is initialized as 0, and the high bit is set by * the write of the streamout stats event. */ params->fence_offset = rquery->result_size - 4; break; case PIPE_QUERY_PIPELINE_STATISTICS: { /* Offsets apply to EG+ */ static const unsigned offsets[] = {56, 48, 24, 32, 40, 16, 8, 0, 64, 72, 80}; params->start_offset = offsets[index]; params->end_offset = 88 + offsets[index]; params->fence_offset = 2 * 88; break; } default: unreachable("si_get_hw_query_params unsupported"); } } static unsigned si_query_read_result(void *map, unsigned start_index, unsigned end_index, bool test_status_bit) { uint32_t *current_result = (uint32_t*)map; uint64_t start, end; start = (uint64_t)current_result[start_index] | (uint64_t)current_result[start_index+1] << 32; end = (uint64_t)current_result[end_index] | (uint64_t)current_result[end_index+1] << 32; if (!test_status_bit || ((start & 0x8000000000000000UL) && (end & 0x8000000000000000UL))) { return end - start; } return 0; } static void si_query_hw_add_result(struct si_screen *sscreen, struct si_query_hw *query, void *buffer, union pipe_query_result *result) { unsigned max_rbs = sscreen->info.num_render_backends; switch (query->b.type) { case PIPE_QUERY_OCCLUSION_COUNTER: { for (unsigned i = 0; i < max_rbs; ++i) { unsigned results_base = i * 16; result->u64 += si_query_read_result(buffer + results_base, 0, 2, true); } break; } case PIPE_QUERY_OCCLUSION_PREDICATE: case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE: { for (unsigned i = 0; i < max_rbs; ++i) { unsigned results_base = i * 16; result->b = result->b || si_query_read_result(buffer + results_base, 0, 2, true) != 0; } break; } case PIPE_QUERY_TIME_ELAPSED: result->u64 += si_query_read_result(buffer, 0, 2, false); break; case PIPE_QUERY_TIMESTAMP: result->u64 = *(uint64_t*)buffer; break; case PIPE_QUERY_PRIMITIVES_EMITTED: /* SAMPLE_STREAMOUTSTATS stores this structure: * { * u64 NumPrimitivesWritten; * u64 PrimitiveStorageNeeded; * } * We only need NumPrimitivesWritten here. */ result->u64 += si_query_read_result(buffer, 2, 6, true); break; case PIPE_QUERY_PRIMITIVES_GENERATED: /* Here we read PrimitiveStorageNeeded. */ result->u64 += si_query_read_result(buffer, 0, 4, true); break; case PIPE_QUERY_SO_STATISTICS: result->so_statistics.num_primitives_written += si_query_read_result(buffer, 2, 6, true); result->so_statistics.primitives_storage_needed += si_query_read_result(buffer, 0, 4, true); break; case PIPE_QUERY_SO_OVERFLOW_PREDICATE: result->b = result->b || si_query_read_result(buffer, 2, 6, true) != si_query_read_result(buffer, 0, 4, true); break; case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE: for (unsigned stream = 0; stream < SI_MAX_STREAMS; ++stream) { result->b = result->b || si_query_read_result(buffer, 2, 6, true) != si_query_read_result(buffer, 0, 4, true); buffer = (char *)buffer + 32; } break; case PIPE_QUERY_PIPELINE_STATISTICS: result->pipeline_statistics.ps_invocations += si_query_read_result(buffer, 0, 22, false); result->pipeline_statistics.c_primitives += si_query_read_result(buffer, 2, 24, false); result->pipeline_statistics.c_invocations += si_query_read_result(buffer, 4, 26, false); result->pipeline_statistics.vs_invocations += si_query_read_result(buffer, 6, 28, false); result->pipeline_statistics.gs_invocations += si_query_read_result(buffer, 8, 30, false); result->pipeline_statistics.gs_primitives += si_query_read_result(buffer, 10, 32, false); result->pipeline_statistics.ia_primitives += si_query_read_result(buffer, 12, 34, false); result->pipeline_statistics.ia_vertices += si_query_read_result(buffer, 14, 36, false); result->pipeline_statistics.hs_invocations += si_query_read_result(buffer, 16, 38, false); result->pipeline_statistics.ds_invocations += si_query_read_result(buffer, 18, 40, false); result->pipeline_statistics.cs_invocations += si_query_read_result(buffer, 20, 42, false); #if 0 /* for testing */ printf("Pipeline stats: IA verts=%llu, IA prims=%llu, VS=%llu, HS=%llu, " "DS=%llu, GS=%llu, GS prims=%llu, Clipper=%llu, " "Clipper prims=%llu, PS=%llu, CS=%llu\n", result->pipeline_statistics.ia_vertices, result->pipeline_statistics.ia_primitives, result->pipeline_statistics.vs_invocations, result->pipeline_statistics.hs_invocations, result->pipeline_statistics.ds_invocations, result->pipeline_statistics.gs_invocations, result->pipeline_statistics.gs_primitives, result->pipeline_statistics.c_invocations, result->pipeline_statistics.c_primitives, result->pipeline_statistics.ps_invocations, result->pipeline_statistics.cs_invocations); #endif break; default: assert(0); } } static boolean si_get_query_result(struct pipe_context *ctx, struct pipe_query *query, boolean wait, union pipe_query_result *result) { struct si_context *sctx = (struct si_context *)ctx; struct si_query *rquery = (struct si_query *)query; return rquery->ops->get_result(sctx, rquery, wait, result); } static void si_get_query_result_resource(struct pipe_context *ctx, struct pipe_query *query, boolean wait, enum pipe_query_value_type result_type, int index, struct pipe_resource *resource, unsigned offset) { struct si_context *sctx = (struct si_context *)ctx; struct si_query *rquery = (struct si_query *)query; rquery->ops->get_result_resource(sctx, rquery, wait, result_type, index, resource, offset); } static void si_query_hw_clear_result(struct si_query_hw *query, union pipe_query_result *result) { util_query_clear_result(result, query->b.type); } bool si_query_hw_get_result(struct si_context *sctx, struct si_query *rquery, bool wait, union pipe_query_result *result) { struct si_screen *sscreen = sctx->screen; struct si_query_hw *query = (struct si_query_hw *)rquery; struct si_query_buffer *qbuf; query->ops->clear_result(query, result); for (qbuf = &query->buffer; qbuf; qbuf = qbuf->previous) { unsigned usage = PIPE_TRANSFER_READ | (wait ? 0 : PIPE_TRANSFER_DONTBLOCK); unsigned results_base = 0; void *map; if (rquery->b.flushed) map = sctx->ws->buffer_map(qbuf->buf->buf, NULL, usage); else map = si_buffer_map_sync_with_rings(sctx, qbuf->buf, usage); if (!map) return false; while (results_base != qbuf->results_end) { query->ops->add_result(sscreen, query, map + results_base, result); results_base += query->result_size; } } /* Convert the time to expected units. */ if (rquery->type == PIPE_QUERY_TIME_ELAPSED || rquery->type == PIPE_QUERY_TIMESTAMP) { result->u64 = (1000000 * result->u64) / sscreen->info.clock_crystal_freq; } return true; } /* Create the compute shader that is used to collect the results. * * One compute grid with a single thread is launched for every query result * buffer. The thread (optionally) reads a previous summary buffer, then * accumulates data from the query result buffer, and writes the result either * to a summary buffer to be consumed by the next grid invocation or to the * user-supplied buffer. * * Data layout: * * CONST * 0.x = end_offset * 0.y = result_stride * 0.z = result_count * 0.w = bit field: * 1: read previously accumulated values * 2: write accumulated values for chaining * 4: write result available * 8: convert result to boolean (0/1) * 16: only read one dword and use that as result * 32: apply timestamp conversion * 64: store full 64 bits result * 128: store signed 32 bits result * 256: SO_OVERFLOW mode: take the difference of two successive half-pairs * 1.x = fence_offset * 1.y = pair_stride * 1.z = pair_count * * BUFFER[0] = query result buffer * BUFFER[1] = previous summary buffer * BUFFER[2] = next summary buffer or user-supplied buffer */ static void si_create_query_result_shader(struct si_context *sctx) { /* TEMP[0].xy = accumulated result so far * TEMP[0].z = result not available * * TEMP[1].x = current result index * TEMP[1].y = current pair index */ static const char text_tmpl[] = "COMP\n" "PROPERTY CS_FIXED_BLOCK_WIDTH 1\n" "PROPERTY CS_FIXED_BLOCK_HEIGHT 1\n" "PROPERTY CS_FIXED_BLOCK_DEPTH 1\n" "DCL BUFFER[0]\n" "DCL BUFFER[1]\n" "DCL BUFFER[2]\n" "DCL CONST[0][0..1]\n" "DCL TEMP[0..5]\n" "IMM[0] UINT32 {0, 31, 2147483647, 4294967295}\n" "IMM[1] UINT32 {1, 2, 4, 8}\n" "IMM[2] UINT32 {16, 32, 64, 128}\n" "IMM[3] UINT32 {1000000, 0, %u, 0}\n" /* for timestamp conversion */ "IMM[4] UINT32 {256, 0, 0, 0}\n" "AND TEMP[5], CONST[0][0].wwww, IMM[2].xxxx\n" "UIF TEMP[5]\n" /* Check result availability. */ "LOAD TEMP[1].x, BUFFER[0], CONST[0][1].xxxx\n" "ISHR TEMP[0].z, TEMP[1].xxxx, IMM[0].yyyy\n" "MOV TEMP[1], TEMP[0].zzzz\n" "NOT TEMP[0].z, TEMP[0].zzzz\n" /* Load result if available. */ "UIF TEMP[1]\n" "LOAD TEMP[0].xy, BUFFER[0], IMM[0].xxxx\n" "ENDIF\n" "ELSE\n" /* Load previously accumulated result if requested. */ "MOV TEMP[0], IMM[0].xxxx\n" "AND TEMP[4], CONST[0][0].wwww, IMM[1].xxxx\n" "UIF TEMP[4]\n" "LOAD TEMP[0].xyz, BUFFER[1], IMM[0].xxxx\n" "ENDIF\n" "MOV TEMP[1].x, IMM[0].xxxx\n" "BGNLOOP\n" /* Break if accumulated result so far is not available. */ "UIF TEMP[0].zzzz\n" "BRK\n" "ENDIF\n" /* Break if result_index >= result_count. */ "USGE TEMP[5], TEMP[1].xxxx, CONST[0][0].zzzz\n" "UIF TEMP[5]\n" "BRK\n" "ENDIF\n" /* Load fence and check result availability */ "UMAD TEMP[5].x, TEMP[1].xxxx, CONST[0][0].yyyy, CONST[0][1].xxxx\n" "LOAD TEMP[5].x, BUFFER[0], TEMP[5].xxxx\n" "ISHR TEMP[0].z, TEMP[5].xxxx, IMM[0].yyyy\n" "NOT TEMP[0].z, TEMP[0].zzzz\n" "UIF TEMP[0].zzzz\n" "BRK\n" "ENDIF\n" "MOV TEMP[1].y, IMM[0].xxxx\n" "BGNLOOP\n" /* Load start and end. */ "UMUL TEMP[5].x, TEMP[1].xxxx, CONST[0][0].yyyy\n" "UMAD TEMP[5].x, TEMP[1].yyyy, CONST[0][1].yyyy, TEMP[5].xxxx\n" "LOAD TEMP[2].xy, BUFFER[0], TEMP[5].xxxx\n" "UADD TEMP[5].y, TEMP[5].xxxx, CONST[0][0].xxxx\n" "LOAD TEMP[3].xy, BUFFER[0], TEMP[5].yyyy\n" "U64ADD TEMP[4].xy, TEMP[3], -TEMP[2]\n" "AND TEMP[5].z, CONST[0][0].wwww, IMM[4].xxxx\n" "UIF TEMP[5].zzzz\n" /* Load second start/end half-pair and * take the difference */ "UADD TEMP[5].xy, TEMP[5], IMM[1].wwww\n" "LOAD TEMP[2].xy, BUFFER[0], TEMP[5].xxxx\n" "LOAD TEMP[3].xy, BUFFER[0], TEMP[5].yyyy\n" "U64ADD TEMP[3].xy, TEMP[3], -TEMP[2]\n" "U64ADD TEMP[4].xy, TEMP[4], -TEMP[3]\n" "ENDIF\n" "U64ADD TEMP[0].xy, TEMP[0], TEMP[4]\n" /* Increment pair index */ "UADD TEMP[1].y, TEMP[1].yyyy, IMM[1].xxxx\n" "USGE TEMP[5], TEMP[1].yyyy, CONST[0][1].zzzz\n" "UIF TEMP[5]\n" "BRK\n" "ENDIF\n" "ENDLOOP\n" /* Increment result index */ "UADD TEMP[1].x, TEMP[1].xxxx, IMM[1].xxxx\n" "ENDLOOP\n" "ENDIF\n" "AND TEMP[4], CONST[0][0].wwww, IMM[1].yyyy\n" "UIF TEMP[4]\n" /* Store accumulated data for chaining. */ "STORE BUFFER[2].xyz, IMM[0].xxxx, TEMP[0]\n" "ELSE\n" "AND TEMP[4], CONST[0][0].wwww, IMM[1].zzzz\n" "UIF TEMP[4]\n" /* Store result availability. */ "NOT TEMP[0].z, TEMP[0]\n" "AND TEMP[0].z, TEMP[0].zzzz, IMM[1].xxxx\n" "STORE BUFFER[2].x, IMM[0].xxxx, TEMP[0].zzzz\n" "AND TEMP[4], CONST[0][0].wwww, IMM[2].zzzz\n" "UIF TEMP[4]\n" "STORE BUFFER[2].y, IMM[0].xxxx, IMM[0].xxxx\n" "ENDIF\n" "ELSE\n" /* Store result if it is available. */ "NOT TEMP[4], TEMP[0].zzzz\n" "UIF TEMP[4]\n" /* Apply timestamp conversion */ "AND TEMP[4], CONST[0][0].wwww, IMM[2].yyyy\n" "UIF TEMP[4]\n" "U64MUL TEMP[0].xy, TEMP[0], IMM[3].xyxy\n" "U64DIV TEMP[0].xy, TEMP[0], IMM[3].zwzw\n" "ENDIF\n" /* Convert to boolean */ "AND TEMP[4], CONST[0][0].wwww, IMM[1].wwww\n" "UIF TEMP[4]\n" "U64SNE TEMP[0].x, TEMP[0].xyxy, IMM[4].zwzw\n" "AND TEMP[0].x, TEMP[0].xxxx, IMM[1].xxxx\n" "MOV TEMP[0].y, IMM[0].xxxx\n" "ENDIF\n" "AND TEMP[4], CONST[0][0].wwww, IMM[2].zzzz\n" "UIF TEMP[4]\n" "STORE BUFFER[2].xy, IMM[0].xxxx, TEMP[0].xyxy\n" "ELSE\n" /* Clamping */ "UIF TEMP[0].yyyy\n" "MOV TEMP[0].x, IMM[0].wwww\n" "ENDIF\n" "AND TEMP[4], CONST[0][0].wwww, IMM[2].wwww\n" "UIF TEMP[4]\n" "UMIN TEMP[0].x, TEMP[0].xxxx, IMM[0].zzzz\n" "ENDIF\n" "STORE BUFFER[2].x, IMM[0].xxxx, TEMP[0].xxxx\n" "ENDIF\n" "ENDIF\n" "ENDIF\n" "ENDIF\n" "END\n"; char text[sizeof(text_tmpl) + 32]; struct tgsi_token tokens[1024]; struct pipe_compute_state state = {}; /* Hard code the frequency into the shader so that the backend can * use the full range of optimizations for divide-by-constant. */ snprintf(text, sizeof(text), text_tmpl, sctx->screen->info.clock_crystal_freq); if (!tgsi_text_translate(text, tokens, ARRAY_SIZE(tokens))) { assert(false); return; } state.ir_type = PIPE_SHADER_IR_TGSI; state.prog = tokens; sctx->query_result_shader = sctx->b.create_compute_state(&sctx->b, &state); } static void si_restore_qbo_state(struct si_context *sctx, struct si_qbo_state *st) { sctx->b.bind_compute_state(&sctx->b, st->saved_compute); sctx->b.set_constant_buffer(&sctx->b, PIPE_SHADER_COMPUTE, 0, &st->saved_const0); pipe_resource_reference(&st->saved_const0.buffer, NULL); sctx->b.set_shader_buffers(&sctx->b, PIPE_SHADER_COMPUTE, 0, 3, st->saved_ssbo); for (unsigned i = 0; i < 3; ++i) pipe_resource_reference(&st->saved_ssbo[i].buffer, NULL); } static void si_query_hw_get_result_resource(struct si_context *sctx, struct si_query *rquery, bool wait, enum pipe_query_value_type result_type, int index, struct pipe_resource *resource, unsigned offset) { struct si_query_hw *query = (struct si_query_hw *)rquery; struct si_query_buffer *qbuf; struct si_query_buffer *qbuf_prev; struct pipe_resource *tmp_buffer = NULL; unsigned tmp_buffer_offset = 0; struct si_qbo_state saved_state = {}; struct pipe_grid_info grid = {}; struct pipe_constant_buffer constant_buffer = {}; struct pipe_shader_buffer ssbo[3]; struct si_hw_query_params params; struct { uint32_t end_offset; uint32_t result_stride; uint32_t result_count; uint32_t config; uint32_t fence_offset; uint32_t pair_stride; uint32_t pair_count; } consts; if (!sctx->query_result_shader) { si_create_query_result_shader(sctx); if (!sctx->query_result_shader) return; } if (query->buffer.previous) { u_suballocator_alloc(sctx->allocator_zeroed_memory, 16, 16, &tmp_buffer_offset, &tmp_buffer); if (!tmp_buffer) return; } si_save_qbo_state(sctx, &saved_state); si_get_hw_query_params(sctx, query, index >= 0 ? index : 0, ¶ms); consts.end_offset = params.end_offset - params.start_offset; consts.fence_offset = params.fence_offset - params.start_offset; consts.result_stride = query->result_size; consts.pair_stride = params.pair_stride; consts.pair_count = params.pair_count; constant_buffer.buffer_size = sizeof(consts); constant_buffer.user_buffer = &consts; ssbo[1].buffer = tmp_buffer; ssbo[1].buffer_offset = tmp_buffer_offset; ssbo[1].buffer_size = 16; ssbo[2] = ssbo[1]; sctx->b.bind_compute_state(&sctx->b, sctx->query_result_shader); grid.block[0] = 1; grid.block[1] = 1; grid.block[2] = 1; grid.grid[0] = 1; grid.grid[1] = 1; grid.grid[2] = 1; consts.config = 0; if (index < 0) consts.config |= 4; if (query->b.type == PIPE_QUERY_OCCLUSION_PREDICATE || query->b.type == PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) consts.config |= 8; else if (query->b.type == PIPE_QUERY_SO_OVERFLOW_PREDICATE || query->b.type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE) consts.config |= 8 | 256; else if (query->b.type == PIPE_QUERY_TIMESTAMP || query->b.type == PIPE_QUERY_TIME_ELAPSED) consts.config |= 32; switch (result_type) { case PIPE_QUERY_TYPE_U64: case PIPE_QUERY_TYPE_I64: consts.config |= 64; break; case PIPE_QUERY_TYPE_I32: consts.config |= 128; break; case PIPE_QUERY_TYPE_U32: break; } sctx->flags |= sctx->screen->barrier_flags.cp_to_L2; for (qbuf = &query->buffer; qbuf; qbuf = qbuf_prev) { if (query->b.type != PIPE_QUERY_TIMESTAMP) { qbuf_prev = qbuf->previous; consts.result_count = qbuf->results_end / query->result_size; consts.config &= ~3; if (qbuf != &query->buffer) consts.config |= 1; if (qbuf->previous) consts.config |= 2; } else { /* Only read the last timestamp. */ qbuf_prev = NULL; consts.result_count = 0; consts.config |= 16; params.start_offset += qbuf->results_end - query->result_size; } sctx->b.set_constant_buffer(&sctx->b, PIPE_SHADER_COMPUTE, 0, &constant_buffer); ssbo[0].buffer = &qbuf->buf->b.b; ssbo[0].buffer_offset = params.start_offset; ssbo[0].buffer_size = qbuf->results_end - params.start_offset; if (!qbuf->previous) { ssbo[2].buffer = resource; ssbo[2].buffer_offset = offset; ssbo[2].buffer_size = 8; r600_resource(resource)->TC_L2_dirty = true; } sctx->b.set_shader_buffers(&sctx->b, PIPE_SHADER_COMPUTE, 0, 3, ssbo); if (wait && qbuf == &query->buffer) { uint64_t va; /* Wait for result availability. Wait only for readiness * of the last entry, since the fence writes should be * serialized in the CP. */ va = qbuf->buf->gpu_address + qbuf->results_end - query->result_size; va += params.fence_offset; si_gfx_wait_fence(sctx, va, 0x80000000, 0x80000000); } sctx->b.launch_grid(&sctx->b, &grid); sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH; } si_restore_qbo_state(sctx, &saved_state); pipe_resource_reference(&tmp_buffer, NULL); } static void si_render_condition(struct pipe_context *ctx, struct pipe_query *query, boolean condition, enum pipe_render_cond_flag mode) { struct si_context *sctx = (struct si_context *)ctx; struct si_query_hw *rquery = (struct si_query_hw *)query; struct si_atom *atom = &sctx->atoms.s.render_cond; if (query) { bool needs_workaround = false; /* There was a firmware regression in VI which causes successive * SET_PREDICATION packets to give the wrong answer for * non-inverted stream overflow predication. */ if (((sctx->chip_class == VI && sctx->screen->info.pfp_fw_feature < 49) || (sctx->chip_class == GFX9 && sctx->screen->info.pfp_fw_feature < 38)) && !condition && (rquery->b.type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE || (rquery->b.type == PIPE_QUERY_SO_OVERFLOW_PREDICATE && (rquery->buffer.previous || rquery->buffer.results_end > rquery->result_size)))) { needs_workaround = true; } if (needs_workaround && !rquery->workaround_buf) { bool old_force_off = sctx->render_cond_force_off; sctx->render_cond_force_off = true; u_suballocator_alloc( sctx->allocator_zeroed_memory, 8, 8, &rquery->workaround_offset, (struct pipe_resource **)&rquery->workaround_buf); /* Reset to NULL to avoid a redundant SET_PREDICATION * from launching the compute grid. */ sctx->render_cond = NULL; ctx->get_query_result_resource( ctx, query, true, PIPE_QUERY_TYPE_U64, 0, &rquery->workaround_buf->b.b, rquery->workaround_offset); /* Settings this in the render cond atom is too late, * so set it here. */ sctx->flags |= sctx->screen->barrier_flags.L2_to_cp | SI_CONTEXT_FLUSH_FOR_RENDER_COND; sctx->render_cond_force_off = old_force_off; } } sctx->render_cond = query; sctx->render_cond_invert = condition; sctx->render_cond_mode = mode; si_set_atom_dirty(sctx, atom, query != NULL); } void si_suspend_queries(struct si_context *sctx) { struct si_query_hw *query; LIST_FOR_EACH_ENTRY(query, &sctx->active_queries, list) { si_query_hw_emit_stop(sctx, query); } assert(sctx->num_cs_dw_queries_suspend == 0); } void si_resume_queries(struct si_context *sctx) { struct si_query_hw *query; assert(sctx->num_cs_dw_queries_suspend == 0); /* Check CS space here. Resuming must not be interrupted by flushes. */ si_need_gfx_cs_space(sctx); LIST_FOR_EACH_ENTRY(query, &sctx->active_queries, list) { si_query_hw_emit_start(sctx, query); } } #define XFULL(name_, query_type_, type_, result_type_, group_id_) \ { \ .name = name_, \ .query_type = SI_QUERY_##query_type_, \ .type = PIPE_DRIVER_QUERY_TYPE_##type_, \ .result_type = PIPE_DRIVER_QUERY_RESULT_TYPE_##result_type_, \ .group_id = group_id_ \ } #define X(name_, query_type_, type_, result_type_) \ XFULL(name_, query_type_, type_, result_type_, ~(unsigned)0) #define XG(group_, name_, query_type_, type_, result_type_) \ XFULL(name_, query_type_, type_, result_type_, SI_QUERY_GROUP_##group_) static struct pipe_driver_query_info si_driver_query_list[] = { X("num-compilations", NUM_COMPILATIONS, UINT64, CUMULATIVE), X("num-shaders-created", NUM_SHADERS_CREATED, UINT64, CUMULATIVE), X("num-shader-cache-hits", NUM_SHADER_CACHE_HITS, UINT64, CUMULATIVE), X("draw-calls", DRAW_CALLS, UINT64, AVERAGE), X("decompress-calls", DECOMPRESS_CALLS, UINT64, AVERAGE), X("MRT-draw-calls", MRT_DRAW_CALLS, UINT64, AVERAGE), X("prim-restart-calls", PRIM_RESTART_CALLS, UINT64, AVERAGE), X("spill-draw-calls", SPILL_DRAW_CALLS, UINT64, AVERAGE), X("compute-calls", COMPUTE_CALLS, UINT64, AVERAGE), X("spill-compute-calls", SPILL_COMPUTE_CALLS, UINT64, AVERAGE), X("dma-calls", DMA_CALLS, UINT64, AVERAGE), X("cp-dma-calls", CP_DMA_CALLS, UINT64, AVERAGE), X("num-vs-flushes", NUM_VS_FLUSHES, UINT64, AVERAGE), X("num-ps-flushes", NUM_PS_FLUSHES, UINT64, AVERAGE), X("num-cs-flushes", NUM_CS_FLUSHES, UINT64, AVERAGE), X("num-CB-cache-flushes", NUM_CB_CACHE_FLUSHES, UINT64, AVERAGE), X("num-DB-cache-flushes", NUM_DB_CACHE_FLUSHES, UINT64, AVERAGE), X("num-L2-invalidates", NUM_L2_INVALIDATES, UINT64, AVERAGE), X("num-L2-writebacks", NUM_L2_WRITEBACKS, UINT64, AVERAGE), X("num-resident-handles", NUM_RESIDENT_HANDLES, UINT64, AVERAGE), X("tc-offloaded-slots", TC_OFFLOADED_SLOTS, UINT64, AVERAGE), X("tc-direct-slots", TC_DIRECT_SLOTS, UINT64, AVERAGE), X("tc-num-syncs", TC_NUM_SYNCS, UINT64, AVERAGE), X("CS-thread-busy", CS_THREAD_BUSY, UINT64, AVERAGE), X("gallium-thread-busy", GALLIUM_THREAD_BUSY, UINT64, AVERAGE), X("requested-VRAM", REQUESTED_VRAM, BYTES, AVERAGE), X("requested-GTT", REQUESTED_GTT, BYTES, AVERAGE), X("mapped-VRAM", MAPPED_VRAM, BYTES, AVERAGE), X("mapped-GTT", MAPPED_GTT, BYTES, AVERAGE), X("buffer-wait-time", BUFFER_WAIT_TIME, MICROSECONDS, CUMULATIVE), X("num-mapped-buffers", NUM_MAPPED_BUFFERS, UINT64, AVERAGE), X("num-GFX-IBs", NUM_GFX_IBS, UINT64, AVERAGE), X("num-SDMA-IBs", NUM_SDMA_IBS, UINT64, AVERAGE), X("GFX-BO-list-size", GFX_BO_LIST_SIZE, UINT64, AVERAGE), X("GFX-IB-size", GFX_IB_SIZE, UINT64, AVERAGE), X("num-bytes-moved", NUM_BYTES_MOVED, BYTES, CUMULATIVE), X("num-evictions", NUM_EVICTIONS, UINT64, CUMULATIVE), X("VRAM-CPU-page-faults", NUM_VRAM_CPU_PAGE_FAULTS, UINT64, CUMULATIVE), X("VRAM-usage", VRAM_USAGE, BYTES, AVERAGE), X("VRAM-vis-usage", VRAM_VIS_USAGE, BYTES, AVERAGE), X("GTT-usage", GTT_USAGE, BYTES, AVERAGE), X("back-buffer-ps-draw-ratio", BACK_BUFFER_PS_DRAW_RATIO, UINT64, AVERAGE), /* GPIN queries are for the benefit of old versions of GPUPerfStudio, * which use it as a fallback path to detect the GPU type. * * Note: The names of these queries are significant for GPUPerfStudio * (and possibly their order as well). */ XG(GPIN, "GPIN_000", GPIN_ASIC_ID, UINT, AVERAGE), XG(GPIN, "GPIN_001", GPIN_NUM_SIMD, UINT, AVERAGE), XG(GPIN, "GPIN_002", GPIN_NUM_RB, UINT, AVERAGE), XG(GPIN, "GPIN_003", GPIN_NUM_SPI, UINT, AVERAGE), XG(GPIN, "GPIN_004", GPIN_NUM_SE, UINT, AVERAGE), X("temperature", GPU_TEMPERATURE, UINT64, AVERAGE), X("shader-clock", CURRENT_GPU_SCLK, HZ, AVERAGE), X("memory-clock", CURRENT_GPU_MCLK, HZ, AVERAGE), /* The following queries must be at the end of the list because their * availability is adjusted dynamically based on the DRM version. */ X("GPU-load", GPU_LOAD, UINT64, AVERAGE), X("GPU-shaders-busy", GPU_SHADERS_BUSY, UINT64, AVERAGE), X("GPU-ta-busy", GPU_TA_BUSY, UINT64, AVERAGE), X("GPU-gds-busy", GPU_GDS_BUSY, UINT64, AVERAGE), X("GPU-vgt-busy", GPU_VGT_BUSY, UINT64, AVERAGE), X("GPU-ia-busy", GPU_IA_BUSY, UINT64, AVERAGE), X("GPU-sx-busy", GPU_SX_BUSY, UINT64, AVERAGE), X("GPU-wd-busy", GPU_WD_BUSY, UINT64, AVERAGE), X("GPU-bci-busy", GPU_BCI_BUSY, UINT64, AVERAGE), X("GPU-sc-busy", GPU_SC_BUSY, UINT64, AVERAGE), X("GPU-pa-busy", GPU_PA_BUSY, UINT64, AVERAGE), X("GPU-db-busy", GPU_DB_BUSY, UINT64, AVERAGE), X("GPU-cp-busy", GPU_CP_BUSY, UINT64, AVERAGE), X("GPU-cb-busy", GPU_CB_BUSY, UINT64, AVERAGE), /* SRBM_STATUS2 */ X("GPU-sdma-busy", GPU_SDMA_BUSY, UINT64, AVERAGE), /* CP_STAT */ X("GPU-pfp-busy", GPU_PFP_BUSY, UINT64, AVERAGE), X("GPU-meq-busy", GPU_MEQ_BUSY, UINT64, AVERAGE), X("GPU-me-busy", GPU_ME_BUSY, UINT64, AVERAGE), X("GPU-surf-sync-busy", GPU_SURF_SYNC_BUSY, UINT64, AVERAGE), X("GPU-cp-dma-busy", GPU_CP_DMA_BUSY, UINT64, AVERAGE), X("GPU-scratch-ram-busy", GPU_SCRATCH_RAM_BUSY, UINT64, AVERAGE), }; #undef X #undef XG #undef XFULL static unsigned si_get_num_queries(struct si_screen *sscreen) { /* amdgpu */ if (sscreen->info.drm_major == 3) { if (sscreen->info.chip_class >= VI) return ARRAY_SIZE(si_driver_query_list); else return ARRAY_SIZE(si_driver_query_list) - 7; } /* radeon */ if (sscreen->info.has_read_registers_query) { if (sscreen->info.chip_class == CIK) return ARRAY_SIZE(si_driver_query_list) - 6; else return ARRAY_SIZE(si_driver_query_list) - 7; } return ARRAY_SIZE(si_driver_query_list) - 21; } static int si_get_driver_query_info(struct pipe_screen *screen, unsigned index, struct pipe_driver_query_info *info) { struct si_screen *sscreen = (struct si_screen*)screen; unsigned num_queries = si_get_num_queries(sscreen); if (!info) { unsigned num_perfcounters = si_get_perfcounter_info(sscreen, 0, NULL); return num_queries + num_perfcounters; } if (index >= num_queries) return si_get_perfcounter_info(sscreen, index - num_queries, info); *info = si_driver_query_list[index]; switch (info->query_type) { case SI_QUERY_REQUESTED_VRAM: case SI_QUERY_VRAM_USAGE: case SI_QUERY_MAPPED_VRAM: info->max_value.u64 = sscreen->info.vram_size; break; case SI_QUERY_REQUESTED_GTT: case SI_QUERY_GTT_USAGE: case SI_QUERY_MAPPED_GTT: info->max_value.u64 = sscreen->info.gart_size; break; case SI_QUERY_GPU_TEMPERATURE: info->max_value.u64 = 125; break; case SI_QUERY_VRAM_VIS_USAGE: info->max_value.u64 = sscreen->info.vram_vis_size; break; } if (info->group_id != ~(unsigned)0 && sscreen->perfcounters) info->group_id += sscreen->perfcounters->num_groups; return 1; } /* Note: Unfortunately, GPUPerfStudio hardcodes the order of hardware * performance counter groups, so be careful when changing this and related * functions. */ static int si_get_driver_query_group_info(struct pipe_screen *screen, unsigned index, struct pipe_driver_query_group_info *info) { struct si_screen *sscreen = (struct si_screen *)screen; unsigned num_pc_groups = 0; if (sscreen->perfcounters) num_pc_groups = sscreen->perfcounters->num_groups; if (!info) return num_pc_groups + SI_NUM_SW_QUERY_GROUPS; if (index < num_pc_groups) return si_get_perfcounter_group_info(sscreen, index, info); index -= num_pc_groups; if (index >= SI_NUM_SW_QUERY_GROUPS) return 0; info->name = "GPIN"; info->max_active_queries = 5; info->num_queries = 5; return 1; } void si_init_query_functions(struct si_context *sctx) { sctx->b.create_query = si_create_query; sctx->b.create_batch_query = si_create_batch_query; sctx->b.destroy_query = si_destroy_query; sctx->b.begin_query = si_begin_query; sctx->b.end_query = si_end_query; sctx->b.get_query_result = si_get_query_result; sctx->b.get_query_result_resource = si_get_query_result_resource; sctx->atoms.s.render_cond.emit = si_emit_query_predication; if (((struct si_screen*)sctx->b.screen)->info.num_render_backends > 0) sctx->b.render_condition = si_render_condition; LIST_INITHEAD(&sctx->active_queries); } void si_init_screen_query_functions(struct si_screen *sscreen) { sscreen->b.get_driver_query_info = si_get_driver_query_info; sscreen->b.get_driver_query_group_info = si_get_driver_query_group_info; }