/* * Copyright 2013-2017 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include "util/os_time.h" #include "util/u_memory.h" #include "util/u_queue.h" #include "util/u_upload_mgr.h" #include "si_build_pm4.h" struct si_fine_fence { struct r600_resource *buf; unsigned offset; }; struct si_multi_fence { struct pipe_reference reference; struct pipe_fence_handle *gfx; struct pipe_fence_handle *sdma; struct tc_unflushed_batch_token *tc_token; struct util_queue_fence ready; /* If the context wasn't flushed at fence creation, this is non-NULL. */ struct { struct si_context *ctx; unsigned ib_index; } gfx_unflushed; struct si_fine_fence fine; }; /** * Write an EOP event. * * \param event EVENT_TYPE_* * \param event_flags Optional cache flush flags (TC) * \param data_sel 1 = fence, 3 = timestamp * \param buf Buffer * \param va GPU address * \param old_value Previous fence value (for a bug workaround) * \param new_value Fence value to write for this event. */ void si_gfx_write_event_eop(struct si_context *ctx, unsigned event, unsigned event_flags, unsigned data_sel, struct r600_resource *buf, uint64_t va, uint32_t new_fence, unsigned query_type) { struct radeon_cmdbuf *cs = ctx->gfx_cs; unsigned op = EVENT_TYPE(event) | EVENT_INDEX(5) | event_flags; unsigned sel = EOP_DATA_SEL(data_sel); /* Wait for write confirmation before writing data, but don't send * an interrupt. */ if (data_sel != EOP_DATA_SEL_DISCARD) sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM); if (ctx->chip_class >= GFX9) { /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion * counters) must immediately precede every timestamp event to * prevent a GPU hang on GFX9. * * Occlusion queries don't need to do it here, because they * always do ZPASS_DONE before the timestamp. */ if (ctx->chip_class == GFX9 && query_type != PIPE_QUERY_OCCLUSION_COUNTER && query_type != PIPE_QUERY_OCCLUSION_PREDICATE && query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { struct r600_resource *scratch = ctx->eop_bug_scratch; assert(16 * ctx->screen->info.num_render_backends <= scratch->b.b.width0); radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); radeon_emit(cs, scratch->gpu_address); radeon_emit(cs, scratch->gpu_address >> 32); radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0)); radeon_emit(cs, op); radeon_emit(cs, sel); radeon_emit(cs, va); /* address lo */ radeon_emit(cs, va >> 32); /* address hi */ radeon_emit(cs, new_fence); /* immediate data lo */ radeon_emit(cs, 0); /* immediate data hi */ radeon_emit(cs, 0); /* unused */ } else { if (ctx->chip_class == CIK || ctx->chip_class == VI) { struct r600_resource *scratch = ctx->eop_bug_scratch; uint64_t va = scratch->gpu_address; /* Two EOP events are required to make all engines go idle * (and optional cache flushes executed) before the timestamp * is written. */ radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); radeon_emit(cs, op); radeon_emit(cs, va); radeon_emit(cs, ((va >> 32) & 0xffff) | sel); radeon_emit(cs, 0); /* immediate data */ radeon_emit(cs, 0); /* unused */ radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); radeon_emit(cs, op); radeon_emit(cs, va); radeon_emit(cs, ((va >> 32) & 0xffff) | sel); radeon_emit(cs, new_fence); /* immediate data */ radeon_emit(cs, 0); /* unused */ } if (buf) { radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } } unsigned si_gfx_write_fence_dwords(struct si_screen *screen) { unsigned dwords = 6; if (screen->info.chip_class == CIK || screen->info.chip_class == VI) dwords *= 2; return dwords; } void si_gfx_wait_fence(struct si_context *ctx, uint64_t va, uint32_t ref, uint32_t mask) { struct radeon_cmdbuf *cs = ctx->gfx_cs; radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit(cs, ref); /* reference value */ radeon_emit(cs, mask); /* mask */ radeon_emit(cs, 4); /* poll interval */ } static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence) { struct radeon_winsys *ws = sctx->ws; if (sctx->dma_cs) ws->cs_add_fence_dependency(sctx->dma_cs, fence); ws->cs_add_fence_dependency(sctx->gfx_cs, fence); } static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence) { sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence); } static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst, struct pipe_fence_handle *src) { struct radeon_winsys *ws = ((struct si_screen*)screen)->ws; struct si_multi_fence **rdst = (struct si_multi_fence **)dst; struct si_multi_fence *rsrc = (struct si_multi_fence *)src; if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) { ws->fence_reference(&(*rdst)->gfx, NULL); ws->fence_reference(&(*rdst)->sdma, NULL); tc_unflushed_batch_token_reference(&(*rdst)->tc_token, NULL); r600_resource_reference(&(*rdst)->fine.buf, NULL); FREE(*rdst); } *rdst = rsrc; } static struct si_multi_fence *si_create_multi_fence() { struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence); if (!fence) return NULL; pipe_reference_init(&fence->reference, 1); util_queue_fence_init(&fence->ready); return fence; } struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx, struct tc_unflushed_batch_token *tc_token) { struct si_multi_fence *fence = si_create_multi_fence(); if (!fence) return NULL; util_queue_fence_reset(&fence->ready); tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); return (struct pipe_fence_handle *)fence; } static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine) { char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ | PIPE_TRANSFER_UNSYNCHRONIZED); if (!map) return false; uint32_t *fence = (uint32_t*)(map + fine->offset); return *fence != 0; } static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags) { uint32_t *fence_ptr; assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); /* Use uncached system memory for the fence. */ u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); if (!fine->buf) return; *fence_ptr = 0; uint64_t fence_va = fine->buf->gpu_address + fine->offset; radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); if (flags & PIPE_FLUSH_TOP_OF_PIPE) { struct radeon_cmdbuf *cs = ctx->gfx_cs; radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0)); radeon_emit(cs, S_370_DST_SEL(V_370_MEM_ASYNC) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP)); radeon_emit(cs, fence_va); radeon_emit(cs, fence_va >> 32); radeon_emit(cs, 0x80000000); } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { si_gfx_write_event_eop(ctx, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000, PIPE_QUERY_GPU_FINISHED); } else { assert(false); } } static boolean si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx, struct pipe_fence_handle *fence, uint64_t timeout) { struct radeon_winsys *rws = ((struct si_screen*)screen)->ws; struct si_multi_fence *rfence = (struct si_multi_fence *)fence; int64_t abs_timeout = os_time_get_absolute_timeout(timeout); if (!util_queue_fence_is_signalled(&rfence->ready)) { if (rfence->tc_token) { /* Ensure that si_flush_from_st will be called for * this fence, but only if we're in the API thread * where the context is current. * * Note that the batch containing the flush may already * be in flight in the driver thread, so the fence * may not be ready yet when this call returns. */ threaded_context_flush(ctx, rfence->tc_token, timeout == 0); } if (!timeout) return false; if (timeout == PIPE_TIMEOUT_INFINITE) { util_queue_fence_wait(&rfence->ready); } else { if (!util_queue_fence_wait_timeout(&rfence->ready, abs_timeout)) return false; } if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { int64_t time = os_time_get_nano(); timeout = abs_timeout > time ? abs_timeout - time : 0; } } if (rfence->sdma) { if (!rws->fence_wait(rws, rfence->sdma, timeout)) return false; /* Recompute the timeout after waiting. */ if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { int64_t time = os_time_get_nano(); timeout = abs_timeout > time ? abs_timeout - time : 0; } } if (!rfence->gfx) return true; if (rfence->fine.buf && si_fine_fence_signaled(rws, &rfence->fine)) { rws->fence_reference(&rfence->gfx, NULL); r600_resource_reference(&rfence->fine.buf, NULL); return true; } /* Flush the gfx IB if it hasn't been flushed yet. */ if (ctx && rfence->gfx_unflushed.ctx) { struct si_context *sctx; sctx = (struct si_context *)threaded_context_unwrap_unsync(ctx); if (rfence->gfx_unflushed.ctx == sctx && rfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) * spec says: * * "If the sync object being blocked upon will not be * signaled in finite time (for example, by an associated * fence command issued previously, but not yet flushed to * the graphics pipeline), then ClientWaitSync may hang * forever. To help prevent this behavior, if * ClientWaitSync is called and all of the following are * true: * * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, * * sync is unsignaled when ClientWaitSync is called, * * and the calls to ClientWaitSync and FenceSync were * issued from the same context, * * then the GL will behave as if the equivalent of Flush * were inserted immediately after the creation of sync." * * This means we need to flush for such fences even when we're * not going to wait. */ threaded_context_unwrap_sync(ctx); si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL); rfence->gfx_unflushed.ctx = NULL; if (!timeout) return false; /* Recompute the timeout after all that. */ if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { int64_t time = os_time_get_nano(); timeout = abs_timeout > time ? abs_timeout - time : 0; } } } if (rws->fence_wait(rws, rfence->gfx, timeout)) return true; /* Re-check in case the GPU is slow or hangs, but the commands before * the fine-grained fence have completed. */ if (rfence->fine.buf && si_fine_fence_signaled(rws, &rfence->fine)) return true; return false; } static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd, enum pipe_fd_type type) { struct si_screen *sscreen = (struct si_screen*)ctx->screen; struct radeon_winsys *ws = sscreen->ws; struct si_multi_fence *rfence; *pfence = NULL; rfence = si_create_multi_fence(); if (!rfence) return; switch (type) { case PIPE_FD_TYPE_NATIVE_SYNC: if (!sscreen->info.has_fence_to_handle) goto finish; rfence->gfx = ws->fence_import_sync_file(ws, fd); break; case PIPE_FD_TYPE_SYNCOBJ: if (!sscreen->info.has_syncobj) goto finish; rfence->gfx = ws->fence_import_syncobj(ws, fd); break; default: unreachable("bad fence fd type when importing"); } finish: if (!rfence->gfx) { FREE(rfence); return; } *pfence = (struct pipe_fence_handle*)rfence; } static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence) { struct si_screen *sscreen = (struct si_screen*)screen; struct radeon_winsys *ws = sscreen->ws; struct si_multi_fence *rfence = (struct si_multi_fence *)fence; int gfx_fd = -1, sdma_fd = -1; if (!sscreen->info.has_fence_to_handle) return -1; util_queue_fence_wait(&rfence->ready); /* Deferred fences aren't supported. */ assert(!rfence->gfx_unflushed.ctx); if (rfence->gfx_unflushed.ctx) return -1; if (rfence->sdma) { sdma_fd = ws->fence_export_sync_file(ws, rfence->sdma); if (sdma_fd == -1) return -1; } if (rfence->gfx) { gfx_fd = ws->fence_export_sync_file(ws, rfence->gfx); if (gfx_fd == -1) { if (sdma_fd != -1) close(sdma_fd); return -1; } } /* If we don't have FDs at this point, it means we don't have fences * either. */ if (sdma_fd == -1 && gfx_fd == -1) return ws->export_signalled_sync_file(ws); if (sdma_fd == -1) return gfx_fd; if (gfx_fd == -1) return sdma_fd; /* Get a fence that will be a combination of both fences. */ sync_accumulate("radeonsi", &gfx_fd, sdma_fd); close(sdma_fd); return gfx_fd; } static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence, unsigned flags) { struct pipe_screen *screen = ctx->screen; struct si_context *sctx = (struct si_context *)ctx; struct radeon_winsys *ws = sctx->ws; struct pipe_fence_handle *gfx_fence = NULL; struct pipe_fence_handle *sdma_fence = NULL; bool deferred_fence = false; struct si_fine_fence fine = {}; unsigned rflags = PIPE_FLUSH_ASYNC; if (flags & PIPE_FLUSH_END_OF_FRAME) rflags |= PIPE_FLUSH_END_OF_FRAME; if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { assert(flags & PIPE_FLUSH_DEFERRED); assert(fence); si_fine_fence_set(sctx, &fine, flags); } /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */ if (sctx->dma_cs) si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL); if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) { if (fence) ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); if (!(flags & PIPE_FLUSH_DEFERRED)) ws->cs_sync_flush(sctx->gfx_cs); } else { /* Instead of flushing, create a deferred fence. Constraints: * - The state tracker must allow a deferred flush. * - The state tracker must request a fence. * - fence_get_fd is not allowed. * Thread safety in fence_finish must be ensured by the state tracker. */ if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) { gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs); deferred_fence = true; } else { si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); } } /* Both engines can signal out of order, so we need to keep both fences. */ if (fence) { struct si_multi_fence *multi_fence; if (flags & TC_FLUSH_ASYNC) { multi_fence = (struct si_multi_fence *)*fence; assert(multi_fence); } else { multi_fence = si_create_multi_fence(); if (!multi_fence) { ws->fence_reference(&sdma_fence, NULL); ws->fence_reference(&gfx_fence, NULL); goto finish; } screen->fence_reference(screen, fence, NULL); *fence = (struct pipe_fence_handle*)multi_fence; } /* If both fences are NULL, fence_finish will always return true. */ multi_fence->gfx = gfx_fence; multi_fence->sdma = sdma_fence; if (deferred_fence) { multi_fence->gfx_unflushed.ctx = sctx; multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; } multi_fence->fine = fine; fine.buf = NULL; if (flags & TC_FLUSH_ASYNC) { util_queue_fence_signal(&multi_fence->ready); tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL); } } assert(!fine.buf); finish: if (!(flags & PIPE_FLUSH_DEFERRED)) { if (sctx->dma_cs) ws->cs_sync_flush(sctx->dma_cs); ws->cs_sync_flush(sctx->gfx_cs); } } static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence) { struct si_context *sctx = (struct si_context *)ctx; struct si_multi_fence *rfence = (struct si_multi_fence *)fence; /* We should have at least one syncobj to signal */ assert(rfence->sdma || rfence->gfx); if (rfence->sdma) si_add_syncobj_signal(sctx, rfence->sdma); if (rfence->gfx) si_add_syncobj_signal(sctx, rfence->gfx); /** * The spec does not require a flush here. We insert a flush * because syncobj based signals are not directly placed into * the command stream. Instead the signal happens when the * submission associated with the syncobj finishes execution. * * Therefore, we must make sure that we flush the pipe to avoid * new work being emitted and getting executed before the signal * operation. */ si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); } static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence) { struct si_context *sctx = (struct si_context *)ctx; struct si_multi_fence *rfence = (struct si_multi_fence *)fence; util_queue_fence_wait(&rfence->ready); /* Unflushed fences from the same context are no-ops. */ if (rfence->gfx_unflushed.ctx && rfence->gfx_unflushed.ctx == sctx) return; /* All unflushed commands will not start execution before * this fence dependency is signalled. * * Therefore we must flush before inserting the dependency */ si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); if (rfence->sdma) si_add_fence_dependency(sctx, rfence->sdma); if (rfence->gfx) si_add_fence_dependency(sctx, rfence->gfx); } void si_init_fence_functions(struct si_context *ctx) { ctx->b.flush = si_flush_from_st; ctx->b.create_fence_fd = si_create_fence_fd; ctx->b.fence_server_sync = si_fence_server_sync; ctx->b.fence_server_signal = si_fence_server_signal; } void si_init_screen_fence_functions(struct si_screen *screen) { screen->b.fence_finish = si_fence_finish; screen->b.fence_reference = si_fence_reference; screen->b.fence_get_fd = si_fence_get_fd; }