/* * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_pipe.h" #include "sid.h" static void si_dma_emit_wait_idle(struct si_context *sctx) { struct radeon_cmdbuf *cs = sctx->dma_cs; /* NOP waits for idle. */ if (sctx->chip_class >= GFX7) radeon_emit(cs, 0x00000000); /* NOP */ else radeon_emit(cs, 0xf0000000); /* NOP */ } void si_dma_emit_timestamp(struct si_context *sctx, struct si_resource *dst, uint64_t offset) { struct radeon_cmdbuf *cs = sctx->dma_cs; uint64_t va = dst->gpu_address + offset; if (sctx->chip_class == GFX6) { unreachable("SI DMA doesn't support the timestamp packet."); return; } /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(&dst->b.b, &dst->valid_buffer_range, offset, offset + 8); assert(va % 8 == 0); si_need_dma_space(sctx, 4, dst, NULL); si_dma_emit_wait_idle(sctx); radeon_emit(cs, CIK_SDMA_PACKET(CIK_SDMA_OPCODE_TIMESTAMP, SDMA_TS_SUB_OPCODE_GET_GLOBAL_TIMESTAMP, 0)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); } void si_sdma_clear_buffer(struct si_context *sctx, struct pipe_resource *dst, uint64_t offset, uint64_t size, unsigned clear_value) { struct radeon_cmdbuf *cs = sctx->dma_cs; unsigned i, ncopy, csize; struct si_resource *sdst = si_resource(dst); assert(offset % 4 == 0); assert(size); assert(size % 4 == 0); if (!cs || dst->flags & PIPE_RESOURCE_FLAG_SPARSE) { sctx->b.clear_buffer(&sctx->b, dst, offset, size, &clear_value, 4); return; } /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(dst, &sdst->valid_buffer_range, offset, offset + size); offset += sdst->gpu_address; if (sctx->chip_class == GFX6) { /* the same maximum size as for copying */ ncopy = DIV_ROUND_UP(size, SI_DMA_COPY_MAX_DWORD_ALIGNED_SIZE); si_need_dma_space(sctx, ncopy * 4, sdst, NULL); for (i = 0; i < ncopy; i++) { csize = MIN2(size, SI_DMA_COPY_MAX_DWORD_ALIGNED_SIZE); radeon_emit(cs, SI_DMA_PACKET(SI_DMA_PACKET_CONSTANT_FILL, 0, csize / 4)); radeon_emit(cs, offset); radeon_emit(cs, clear_value); radeon_emit(cs, (offset >> 32) << 16); offset += csize; size -= csize; } return; } /* The following code is for Sea Islands and later. */ /* the same maximum size as for copying */ ncopy = DIV_ROUND_UP(size, CIK_SDMA_COPY_MAX_SIZE); si_need_dma_space(sctx, ncopy * 5, sdst, NULL); for (i = 0; i < ncopy; i++) { csize = MIN2(size, CIK_SDMA_COPY_MAX_SIZE); radeon_emit(cs, CIK_SDMA_PACKET(CIK_SDMA_PACKET_CONSTANT_FILL, 0, 0x8000 /* dword copy */)); radeon_emit(cs, offset); radeon_emit(cs, offset >> 32); radeon_emit(cs, clear_value); radeon_emit(cs, sctx->chip_class >= GFX9 ? csize - 1 : csize); offset += csize; size -= csize; } } void si_need_dma_space(struct si_context *ctx, unsigned num_dw, struct si_resource *dst, struct si_resource *src) { struct radeon_winsys *ws = ctx->ws; uint64_t vram = ctx->dma_cs->used_vram; uint64_t gtt = ctx->dma_cs->used_gart; if (dst) { vram += dst->vram_usage; gtt += dst->gart_usage; } if (src) { vram += src->vram_usage; gtt += src->gart_usage; } /* Flush the GFX IB if DMA depends on it. */ if (!ctx->sdma_uploads_in_progress && radeon_emitted(ctx->gfx_cs, ctx->initial_gfx_cs_size) && ((dst && ws->cs_is_buffer_referenced(ctx->gfx_cs, dst->buf, RADEON_USAGE_READWRITE)) || (src && ws->cs_is_buffer_referenced(ctx->gfx_cs, src->buf, RADEON_USAGE_WRITE)))) si_flush_gfx_cs(ctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); /* Flush if there's not enough space, or if the memory usage per IB * is too large. * * IBs using too little memory are limited by the IB submission overhead. * IBs using too much memory are limited by the kernel/TTM overhead. * Too long IBs create CPU-GPU pipeline bubbles and add latency. * * This heuristic makes sure that DMA requests are executed * very soon after the call is made and lowers memory usage. * It improves texture upload performance by keeping the DMA * engine busy while uploads are being submitted. */ num_dw++; /* for emit_wait_idle below */ if (!ctx->sdma_uploads_in_progress && (!ws->cs_check_space(ctx->dma_cs, num_dw, false) || ctx->dma_cs->used_vram + ctx->dma_cs->used_gart > 64 * 1024 * 1024 || !radeon_cs_memory_below_limit(ctx->screen, ctx->dma_cs, vram, gtt))) { si_flush_dma_cs(ctx, PIPE_FLUSH_ASYNC, NULL); assert((num_dw + ctx->dma_cs->current.cdw) <= ctx->dma_cs->current.max_dw); } /* Wait for idle if either buffer has been used in the IB before to * prevent read-after-write hazards. */ if ((dst && ws->cs_is_buffer_referenced(ctx->dma_cs, dst->buf, RADEON_USAGE_READWRITE)) || (src && ws->cs_is_buffer_referenced(ctx->dma_cs, src->buf, RADEON_USAGE_WRITE))) si_dma_emit_wait_idle(ctx); unsigned sync = ctx->sdma_uploads_in_progress ? 0 : RADEON_USAGE_SYNCHRONIZED; if (dst) { ws->cs_add_buffer(ctx->dma_cs, dst->buf, RADEON_USAGE_WRITE | sync, dst->domains, 0); } if (src) { ws->cs_add_buffer(ctx->dma_cs, src->buf, RADEON_USAGE_READ | sync, src->domains, 0); } /* this function is called before all DMA calls, so increment this. */ ctx->num_dma_calls++; } void si_flush_dma_cs(struct si_context *ctx, unsigned flags, struct pipe_fence_handle **fence) { struct radeon_cmdbuf *cs = ctx->dma_cs; struct radeon_saved_cs saved; bool check_vm = (ctx->screen->debug_flags & DBG(CHECK_VM)) != 0; if (!radeon_emitted(cs, 0)) { if (fence) ctx->ws->fence_reference(fence, ctx->last_sdma_fence); return; } if (check_vm) si_save_cs(ctx->ws, cs, &saved, true); ctx->ws->cs_flush(cs, flags, &ctx->last_sdma_fence); if (fence) ctx->ws->fence_reference(fence, ctx->last_sdma_fence); if (check_vm) { /* Use conservative timeout 800ms, after which we won't wait any * longer and assume the GPU is hung. */ ctx->ws->fence_wait(ctx->ws, ctx->last_sdma_fence, 800*1000*1000); si_check_vm_faults(ctx, &saved, RING_DMA); si_clear_saved_cs(&saved); } } void si_screen_clear_buffer(struct si_screen *sscreen, struct pipe_resource *dst, uint64_t offset, uint64_t size, unsigned value) { struct si_context *ctx = (struct si_context*)sscreen->aux_context; simple_mtx_lock(&sscreen->aux_context_lock); si_sdma_clear_buffer(ctx, dst, offset, size, value); sscreen->aux_context->flush(sscreen->aux_context, NULL, 0); simple_mtx_unlock(&sscreen->aux_context_lock); }