/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Marek Olšák */ /* Resource binding slots and sampler states (each described with 8 or * 4 dwords) are stored in lists in memory which is accessed by shaders * using scalar load instructions. * * This file is responsible for managing such lists. It keeps a copy of all * descriptors in CPU memory and re-uploads a whole list if some slots have * been changed. * * This code is also reponsible for updating shader pointers to those lists. * * Note that CP DMA can't be used for updating the lists, because a GPU hang * could leave the list in a mid-IB state and the next IB would get wrong * descriptors and the whole context would be unusable at that point. * (Note: The register shadowing can't be used due to the same reason) * * Also, uploading descriptors to newly allocated memory doesn't require * a KCACHE flush. * * * Possible scenarios for one 16 dword image+sampler slot: * * | Image | w/ FMASK | Buffer | NULL * [ 0: 3] Image[0:3] | Image[0:3] | Null[0:3] | Null[0:3] * [ 4: 7] Image[4:7] | Image[4:7] | Buffer[0:3] | 0 * [ 8:11] Null[0:3] | Fmask[0:3] | Null[0:3] | Null[0:3] * [12:15] Sampler[0:3] | Fmask[4:7] | Sampler[0:3] | Sampler[0:3] * * FMASK implies MSAA, therefore no sampler state. * Sampler states are never unbound except when FMASK is bound. */ #include "radeon/r600_cs.h" #include "si_pipe.h" #include "si_shader.h" #include "sid.h" #include "util/u_memory.h" #include "util/u_upload_mgr.h" /* NULL image and buffer descriptor for textures (alpha = 1) and images * (alpha = 0). * * For images, all fields must be zero except for the swizzle, which * supports arbitrary combinations of 0s and 1s. The texture type must be * any valid type (e.g. 1D). If the texture type isn't set, the hw hangs. * * For buffers, all fields must be zero. If they are not, the hw hangs. * * This is the only reason why the buffer descriptor must be in words [4:7]. */ static uint32_t null_texture_descriptor[8] = { 0, 0, 0, S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_1) | S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D) /* the rest must contain zeros, which is also used by the buffer * descriptor */ }; static uint32_t null_image_descriptor[8] = { 0, 0, 0, S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D) /* the rest must contain zeros, which is also used by the buffer * descriptor */ }; static void si_init_descriptors(struct si_descriptors *desc, unsigned shader_userdata_index, unsigned element_dw_size, unsigned num_elements, const uint32_t *null_descriptor) { int i; assert(num_elements <= sizeof(desc->enabled_mask)*8); desc->list = CALLOC(num_elements, element_dw_size * 4); desc->element_dw_size = element_dw_size; desc->num_elements = num_elements; desc->list_dirty = true; /* upload the list before the next draw */ desc->shader_userdata_offset = shader_userdata_index * 4; /* Initialize the array to NULL descriptors if the element size is 8. */ if (null_descriptor) { assert(element_dw_size % 8 == 0); for (i = 0; i < num_elements * element_dw_size / 8; i++) memcpy(desc->list + i * 8, null_descriptor, 8 * 4); } } static void si_release_descriptors(struct si_descriptors *desc) { pipe_resource_reference((struct pipe_resource**)&desc->buffer, NULL); FREE(desc->list); } static bool si_upload_descriptors(struct si_context *sctx, struct si_descriptors *desc) { unsigned list_size = desc->num_elements * desc->element_dw_size * 4; void *ptr; if (!desc->list_dirty) return true; u_upload_alloc(sctx->b.uploader, 0, list_size, 256, &desc->buffer_offset, (struct pipe_resource**)&desc->buffer, &ptr); if (!desc->buffer) return false; /* skip the draw call */ util_memcpy_cpu_to_le32(ptr, desc->list, list_size); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); desc->list_dirty = false; desc->pointer_dirty = true; si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); return true; } /* SAMPLER VIEWS */ static void si_release_sampler_views(struct si_sampler_views *views) { int i; for (i = 0; i < Elements(views->views); i++) { pipe_sampler_view_reference(&views->views[i], NULL); } si_release_descriptors(&views->desc); } static void si_sampler_view_add_buffer(struct si_context *sctx, struct pipe_resource *resource) { struct r600_resource *rres = (struct r600_resource*)resource; if (!resource) return; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, rres, RADEON_USAGE_READ, r600_get_sampler_view_priority(rres)); } static void si_sampler_views_begin_new_cs(struct si_context *sctx, struct si_sampler_views *views) { uint64_t mask = views->desc.enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan64(&mask); si_sampler_view_add_buffer(sctx, views->views[i]->texture); } if (!views->desc.buffer) return; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, views->desc.buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_DESCRIPTORS); } static void si_set_sampler_view(struct si_context *sctx, struct si_sampler_views *views, unsigned slot, struct pipe_sampler_view *view) { struct si_sampler_view *rview = (struct si_sampler_view*)view; if (view && view->texture && view->texture->target != PIPE_BUFFER && G_008F28_COMPRESSION_EN(rview->state[6]) && ((struct r600_texture*)view->texture)->dcc_offset == 0) { rview->state[6] &= C_008F28_COMPRESSION_EN & C_008F28_ALPHA_IS_ON_MSB; } else if (views->views[slot] == view) return; if (view) { struct r600_texture *rtex = (struct r600_texture *)view->texture; si_sampler_view_add_buffer(sctx, view->texture); pipe_sampler_view_reference(&views->views[slot], view); memcpy(views->desc.list + slot * 16, rview->state, 8*4); if (view->texture && view->texture->target != PIPE_BUFFER && rtex->fmask.size) { memcpy(views->desc.list + slot*16 + 8, rview->fmask_state, 8*4); } else { /* Disable FMASK and bind sampler state in [12:15]. */ memcpy(views->desc.list + slot*16 + 8, null_texture_descriptor, 4*4); if (views->sampler_states[slot]) memcpy(views->desc.list + slot*16 + 12, views->sampler_states[slot], 4*4); } views->desc.enabled_mask |= 1llu << slot; } else { pipe_sampler_view_reference(&views->views[slot], NULL); memcpy(views->desc.list + slot*16, null_texture_descriptor, 8*4); /* Only clear the lower dwords of FMASK. */ memcpy(views->desc.list + slot*16 + 8, null_texture_descriptor, 4*4); views->desc.enabled_mask &= ~(1llu << slot); } views->desc.list_dirty = true; } static bool is_compressed_colortex(struct r600_texture *rtex) { return rtex->cmask.size || rtex->fmask.size || (rtex->dcc_offset && rtex->dirty_level_mask); } static void si_set_sampler_views(struct pipe_context *ctx, unsigned shader, unsigned start, unsigned count, struct pipe_sampler_view **views) { struct si_context *sctx = (struct si_context *)ctx; struct si_textures_info *samplers = &sctx->samplers[shader]; int i; if (!count || shader >= SI_NUM_SHADERS) return; for (i = 0; i < count; i++) { unsigned slot = start + i; if (!views || !views[i]) { samplers->depth_texture_mask &= ~(1llu << slot); samplers->compressed_colortex_mask &= ~(1llu << slot); si_set_sampler_view(sctx, &samplers->views, slot, NULL); continue; } si_set_sampler_view(sctx, &samplers->views, slot, views[i]); if (views[i]->texture && views[i]->texture->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture*)views[i]->texture; if (rtex->is_depth && !rtex->is_flushing_texture) { samplers->depth_texture_mask |= 1llu << slot; } else { samplers->depth_texture_mask &= ~(1llu << slot); } if (is_compressed_colortex(rtex)) { samplers->compressed_colortex_mask |= 1llu << slot; } else { samplers->compressed_colortex_mask &= ~(1llu << slot); } } else { samplers->depth_texture_mask &= ~(1llu << slot); samplers->compressed_colortex_mask &= ~(1llu << slot); } } } static void si_samplers_update_compressed_colortex_mask(struct si_textures_info *samplers) { uint64_t mask = samplers->views.desc.enabled_mask; while (mask) { int i = u_bit_scan64(&mask); struct pipe_resource *res = samplers->views.views[i]->texture; if (res && res->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture *)res; if (is_compressed_colortex(rtex)) { samplers->compressed_colortex_mask |= 1llu << i; } else { samplers->compressed_colortex_mask &= ~(1llu << i); } } } } /* IMAGE VIEWS */ static void si_release_image_views(struct si_images_info *images) { unsigned i; for (i = 0; i < SI_NUM_IMAGES; ++i) { struct pipe_image_view *view = &images->views[i]; pipe_resource_reference(&view->resource, NULL); } si_release_descriptors(&images->desc); } static void si_image_views_begin_new_cs(struct si_context *sctx, struct si_images_info *images) { uint mask = images->desc.enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); struct pipe_image_view *view = &images->views[i]; assert(view->resource); si_sampler_view_add_buffer(sctx, view->resource); } if (images->desc.buffer) { radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, images->desc.buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } } static void si_disable_shader_image(struct si_images_info *images, unsigned slot) { if (images->desc.enabled_mask & (1llu << slot)) { pipe_resource_reference(&images->views[slot].resource, NULL); images->compressed_colortex_mask &= ~(1 << slot); memcpy(images->desc.list + slot*8, null_image_descriptor, 8*4); images->desc.enabled_mask &= ~(1llu << slot); images->desc.list_dirty = true; } } static void si_set_shader_images(struct pipe_context *pipe, unsigned shader, unsigned start_slot, unsigned count, struct pipe_image_view *views) { struct si_context *ctx = (struct si_context *)pipe; struct si_screen *screen = ctx->screen; struct si_images_info *images = &ctx->images[shader]; unsigned i, slot; assert(shader < SI_NUM_SHADERS); if (!count) return; assert(start_slot + count <= SI_NUM_IMAGES); for (i = 0, slot = start_slot; i < count; ++i, ++slot) { struct r600_resource *res; if (!views || !views[i].resource) { si_disable_shader_image(images, slot); continue; } res = (struct r600_resource *)views[i].resource; util_copy_image_view(&images->views[slot], &views[i]); si_sampler_view_add_buffer(ctx, &res->b.b); if (res->b.b.target == PIPE_BUFFER) { si_make_buffer_descriptor(screen, res, views[i].format, views[i].u.buf.first_element, views[i].u.buf.last_element, images->desc.list + slot * 8); images->compressed_colortex_mask &= ~(1 << slot); } else { static const unsigned char swizzle[4] = { 0, 1, 2, 3 }; struct r600_texture *tex = (struct r600_texture *)res; unsigned level; unsigned width, height, depth; assert(!tex->is_depth); assert(tex->fmask.size == 0); if (tex->dcc_offset && views[i].access & PIPE_IMAGE_ACCESS_WRITE) r600_texture_disable_dcc(&screen->b, tex); if (is_compressed_colortex(tex)) { images->compressed_colortex_mask |= 1 << slot; } else { images->compressed_colortex_mask &= ~(1 << slot); } /* Always force the base level to the selected level. * * This is required for 3D textures, where otherwise * selecting a single slice for non-layered bindings * fails. It doesn't hurt the other targets. */ level = views[i].u.tex.level; width = u_minify(res->b.b.width0, level); height = u_minify(res->b.b.height0, level); depth = u_minify(res->b.b.depth0, level); si_make_texture_descriptor(screen, tex, false, res->b.b.target, views[i].format, swizzle, level, 0, 0, views[i].u.tex.first_layer, views[i].u.tex.last_layer, width, height, depth, images->desc.list + slot * 8, NULL); } images->desc.enabled_mask |= 1llu << slot; images->desc.list_dirty = true; } } static void si_images_update_compressed_colortex_mask(struct si_images_info *images) { uint64_t mask = images->desc.enabled_mask; while (mask) { int i = u_bit_scan64(&mask); struct pipe_resource *res = images->views[i].resource; if (res && res->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture *)res; if (is_compressed_colortex(rtex)) { images->compressed_colortex_mask |= 1 << i; } else { images->compressed_colortex_mask &= ~(1 << i); } } } } /* SAMPLER STATES */ static void si_bind_sampler_states(struct pipe_context *ctx, unsigned shader, unsigned start, unsigned count, void **states) { struct si_context *sctx = (struct si_context *)ctx; struct si_textures_info *samplers = &sctx->samplers[shader]; struct si_descriptors *desc = &samplers->views.desc; struct si_sampler_state **sstates = (struct si_sampler_state**)states; int i; if (!count || shader >= SI_NUM_SHADERS) return; for (i = 0; i < count; i++) { unsigned slot = start + i; if (!sstates[i] || sstates[i] == samplers->views.sampler_states[slot]) continue; samplers->views.sampler_states[slot] = sstates[i]; /* If FMASK is bound, don't overwrite it. * The sampler state will be set after FMASK is unbound. */ if (samplers->views.views[i] && samplers->views.views[i]->texture && samplers->views.views[i]->texture->target != PIPE_BUFFER && ((struct r600_texture*)samplers->views.views[i]->texture)->fmask.size) continue; memcpy(desc->list + slot * 16 + 12, sstates[i]->val, 4*4); desc->list_dirty = true; } } /* BUFFER RESOURCES */ static void si_init_buffer_resources(struct si_buffer_resources *buffers, unsigned num_buffers, unsigned shader_userdata_index, enum radeon_bo_usage shader_usage, enum radeon_bo_priority priority) { buffers->shader_usage = shader_usage; buffers->priority = priority; buffers->buffers = CALLOC(num_buffers, sizeof(struct pipe_resource*)); si_init_descriptors(&buffers->desc, shader_userdata_index, 4, num_buffers, NULL); } static void si_release_buffer_resources(struct si_buffer_resources *buffers) { int i; for (i = 0; i < buffers->desc.num_elements; i++) { pipe_resource_reference(&buffers->buffers[i], NULL); } FREE(buffers->buffers); si_release_descriptors(&buffers->desc); } static void si_buffer_resources_begin_new_cs(struct si_context *sctx, struct si_buffer_resources *buffers) { uint64_t mask = buffers->desc.enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan64(&mask); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffers->buffers[i], buffers->shader_usage, buffers->priority); } if (!buffers->desc.buffer) return; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, buffers->desc.buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_DESCRIPTORS); } /* VERTEX BUFFERS */ static void si_vertex_buffers_begin_new_cs(struct si_context *sctx) { struct si_descriptors *desc = &sctx->vertex_buffers; int count = sctx->vertex_elements ? sctx->vertex_elements->count : 0; int i; for (i = 0; i < count; i++) { int vb = sctx->vertex_elements->elements[i].vertex_buffer_index; if (vb >= Elements(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer) continue; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)sctx->vertex_buffer[vb].buffer, RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER); } if (!desc->buffer) return; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } static bool si_upload_vertex_buffer_descriptors(struct si_context *sctx) { struct si_descriptors *desc = &sctx->vertex_buffers; bool bound[SI_NUM_VERTEX_BUFFERS] = {}; unsigned i, count = sctx->vertex_elements->count; uint64_t va; uint32_t *ptr; if (!sctx->vertex_buffers_dirty) return true; if (!count || !sctx->vertex_elements) return true; /* Vertex buffer descriptors are the only ones which are uploaded * directly through a staging buffer and don't go through * the fine-grained upload path. */ u_upload_alloc(sctx->b.uploader, 0, count * 16, 256, &desc->buffer_offset, (struct pipe_resource**)&desc->buffer, (void**)&ptr); if (!desc->buffer) return false; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); assert(count <= SI_NUM_VERTEX_BUFFERS); for (i = 0; i < count; i++) { struct pipe_vertex_element *ve = &sctx->vertex_elements->elements[i]; struct pipe_vertex_buffer *vb; struct r600_resource *rbuffer; unsigned offset; uint32_t *desc = &ptr[i*4]; if (ve->vertex_buffer_index >= Elements(sctx->vertex_buffer)) { memset(desc, 0, 16); continue; } vb = &sctx->vertex_buffer[ve->vertex_buffer_index]; rbuffer = (struct r600_resource*)vb->buffer; if (!rbuffer) { memset(desc, 0, 16); continue; } offset = vb->buffer_offset + ve->src_offset; va = rbuffer->gpu_address + offset; /* Fill in T# buffer resource description */ desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(vb->stride); if (sctx->b.chip_class <= CIK && vb->stride) /* Round up by rounding down and adding 1 */ desc[2] = (vb->buffer->width0 - offset - sctx->vertex_elements->format_size[i]) / vb->stride + 1; else desc[2] = vb->buffer->width0 - offset; desc[3] = sctx->vertex_elements->rsrc_word3[i]; if (!bound[ve->vertex_buffer_index]) { radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)vb->buffer, RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER); bound[ve->vertex_buffer_index] = true; } } /* Don't flush the const cache. It would have a very negative effect * on performance (confirmed by testing). New descriptors are always * uploaded to a fresh new buffer, so I don't think flushing the const * cache is needed. */ desc->pointer_dirty = true; si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); sctx->vertex_buffers_dirty = false; return true; } /* CONSTANT BUFFERS */ void si_upload_const_buffer(struct si_context *sctx, struct r600_resource **rbuffer, const uint8_t *ptr, unsigned size, uint32_t *const_offset) { void *tmp; u_upload_alloc(sctx->b.uploader, 0, size, 256, const_offset, (struct pipe_resource**)rbuffer, &tmp); if (rbuffer) util_memcpy_cpu_to_le32(tmp, ptr, size); } static void si_set_constant_buffer(struct pipe_context *ctx, uint shader, uint slot, struct pipe_constant_buffer *input) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->const_buffers[shader]; if (shader >= SI_NUM_SHADERS) return; assert(slot < buffers->desc.num_elements); pipe_resource_reference(&buffers->buffers[slot], NULL); /* CIK cannot unbind a constant buffer (S_BUFFER_LOAD is buggy * with a NULL buffer). We need to use a dummy buffer instead. */ if (sctx->b.chip_class == CIK && (!input || (!input->buffer && !input->user_buffer))) input = &sctx->null_const_buf; if (input && (input->buffer || input->user_buffer)) { struct pipe_resource *buffer = NULL; uint64_t va; /* Upload the user buffer if needed. */ if (input->user_buffer) { unsigned buffer_offset; si_upload_const_buffer(sctx, (struct r600_resource**)&buffer, input->user_buffer, input->buffer_size, &buffer_offset); if (!buffer) { /* Just unbind on failure. */ si_set_constant_buffer(ctx, shader, slot, NULL); return; } va = r600_resource(buffer)->gpu_address + buffer_offset; } else { pipe_resource_reference(&buffer, input->buffer); va = r600_resource(buffer)->gpu_address + input->buffer_offset; } /* Set the descriptor. */ uint32_t *desc = buffers->desc.list + slot*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = input->buffer_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); buffers->buffers[slot] = buffer; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority); buffers->desc.enabled_mask |= 1llu << slot; } else { /* Clear the descriptor. */ memset(buffers->desc.list + slot*4, 0, sizeof(uint32_t) * 4); buffers->desc.enabled_mask &= ~(1llu << slot); } buffers->desc.list_dirty = true; } /* SHADER BUFFERS */ static void si_set_shader_buffers(struct pipe_context *ctx, unsigned shader, unsigned start_slot, unsigned count, struct pipe_shader_buffer *sbuffers) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->shader_buffers[shader]; unsigned i; assert(start_slot + count <= SI_NUM_SHADER_BUFFERS); for (i = 0; i < count; ++i) { struct pipe_shader_buffer *sbuffer = sbuffers ? &sbuffers[i] : NULL; struct r600_resource *buf; unsigned slot = start_slot + i; uint32_t *desc = buffers->desc.list + slot * 4; uint64_t va; if (!sbuffer || !sbuffer->buffer) { pipe_resource_reference(&buffers->buffers[slot], NULL); memset(desc, 0, sizeof(uint32_t) * 4); buffers->desc.enabled_mask &= ~(1llu << slot); continue; } buf = (struct r600_resource *)sbuffer->buffer; va = buf->gpu_address + sbuffer->buffer_offset; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = sbuffer->buffer_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); pipe_resource_reference(&buffers->buffers[slot], &buf->b.b); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, buf, buffers->shader_usage, buffers->priority); buffers->desc.enabled_mask |= 1llu << slot; } buffers->desc.list_dirty = true; } /* RING BUFFERS */ void si_set_ring_buffer(struct pipe_context *ctx, uint shader, uint slot, struct pipe_resource *buffer, unsigned stride, unsigned num_records, bool add_tid, bool swizzle, unsigned element_size, unsigned index_stride, uint64_t offset) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers[shader]; if (shader >= SI_NUM_SHADERS) return; /* The stride field in the resource descriptor has 14 bits */ assert(stride < (1 << 14)); assert(slot < buffers->desc.num_elements); pipe_resource_reference(&buffers->buffers[slot], NULL); if (buffer) { uint64_t va; va = r600_resource(buffer)->gpu_address + offset; switch (element_size) { default: assert(!"Unsupported ring buffer element size"); case 0: case 2: element_size = 0; break; case 4: element_size = 1; break; case 8: element_size = 2; break; case 16: element_size = 3; break; } switch (index_stride) { default: assert(!"Unsupported ring buffer index stride"); case 0: case 8: index_stride = 0; break; case 16: index_stride = 1; break; case 32: index_stride = 2; break; case 64: index_stride = 3; break; } if (sctx->b.chip_class >= VI && stride) num_records *= stride; /* Set the descriptor. */ uint32_t *desc = buffers->desc.list + slot*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride) | S_008F04_SWIZZLE_ENABLE(swizzle); desc[2] = num_records; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(element_size) | S_008F0C_INDEX_STRIDE(index_stride) | S_008F0C_ADD_TID_ENABLE(add_tid); pipe_resource_reference(&buffers->buffers[slot], buffer); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority); buffers->desc.enabled_mask |= 1llu << slot; } else { /* Clear the descriptor. */ memset(buffers->desc.list + slot*4, 0, sizeof(uint32_t) * 4); buffers->desc.enabled_mask &= ~(1llu << slot); } buffers->desc.list_dirty = true; } /* STREAMOUT BUFFERS */ static void si_set_streamout_targets(struct pipe_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers[PIPE_SHADER_VERTEX]; unsigned old_num_targets = sctx->b.streamout.num_targets; unsigned i, bufidx; /* We are going to unbind the buffers. Mark which caches need to be flushed. */ if (sctx->b.streamout.num_targets && sctx->b.streamout.begin_emitted) { /* Since streamout uses vector writes which go through TC L2 * and most other clients can use TC L2 as well, we don't need * to flush it. * * The only case which requires flushing it is VGT DMA index * fetching, which is a rare case. Thus, flag the TC L2 * dirtiness in the resource and handle it when index fetching * is used. */ for (i = 0; i < sctx->b.streamout.num_targets; i++) if (sctx->b.streamout.targets[i]) r600_resource(sctx->b.streamout.targets[i]->b.buffer)->TC_L2_dirty = true; /* Invalidate the scalar cache in case a streamout buffer is * going to be used as a constant buffer. * * Invalidate TC L1, because streamout bypasses it (done by * setting GLC=1 in the store instruction), but it can contain * outdated data of streamout buffers. * * VS_PARTIAL_FLUSH is required if the buffers are going to be * used as an input immediately. */ sctx->b.flags |= SI_CONTEXT_INV_SMEM_L1 | SI_CONTEXT_INV_VMEM_L1 | SI_CONTEXT_VS_PARTIAL_FLUSH; } /* All readers of the streamout targets need to be finished before we can * start writing to the targets. */ if (num_targets) sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH; /* Streamout buffers must be bound in 2 places: * 1) in VGT by setting the VGT_STRMOUT registers * 2) as shader resources */ /* Set the VGT regs. */ r600_set_streamout_targets(ctx, num_targets, targets, offsets); /* Set the shader resources.*/ for (i = 0; i < num_targets; i++) { bufidx = SI_SO_BUF_OFFSET + i; if (targets[i]) { struct pipe_resource *buffer = targets[i]->buffer; uint64_t va = r600_resource(buffer)->gpu_address; /* Set the descriptor. * * On VI, the format must be non-INVALID, otherwise * the buffer will be considered not bound and store * instructions will be no-ops. */ uint32_t *desc = buffers->desc.list + bufidx*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32); desc[2] = 0xffffffff; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); /* Set the resource. */ pipe_resource_reference(&buffers->buffers[bufidx], buffer); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority); buffers->desc.enabled_mask |= 1llu << bufidx; } else { /* Clear the descriptor and unset the resource. */ memset(buffers->desc.list + bufidx*4, 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->desc.enabled_mask &= ~(1llu << bufidx); } } for (; i < old_num_targets; i++) { bufidx = SI_SO_BUF_OFFSET + i; /* Clear the descriptor and unset the resource. */ memset(buffers->desc.list + bufidx*4, 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->desc.enabled_mask &= ~(1llu << bufidx); } buffers->desc.list_dirty = true; } static void si_desc_reset_buffer_offset(struct pipe_context *ctx, uint32_t *desc, uint64_t old_buf_va, struct pipe_resource *new_buf) { /* Retrieve the buffer offset from the descriptor. */ uint64_t old_desc_va = desc[0] | ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32); assert(old_buf_va <= old_desc_va); uint64_t offset_within_buffer = old_desc_va - old_buf_va; /* Update the descriptor. */ uint64_t va = r600_resource(new_buf)->gpu_address + offset_within_buffer; desc[0] = va; desc[1] = (desc[1] & C_008F04_BASE_ADDRESS_HI) | S_008F04_BASE_ADDRESS_HI(va >> 32); } /* TEXTURE METADATA ENABLE/DISABLE */ /* CMASK can be enabled (for fast clear) and disabled (for texture export) * while the texture is bound, possibly by a different context. In that case, * call this function to update compressed_colortex_masks. */ void si_update_compressed_colortex_masks(struct si_context *sctx) { for (int i = 0; i < SI_NUM_SHADERS; ++i) { si_samplers_update_compressed_colortex_mask(&sctx->samplers[i]); si_images_update_compressed_colortex_mask(&sctx->images[i]); } } /* BUFFER DISCARD/INVALIDATION */ /** Reset descriptors of buffer resources after \p buf has been invalidated. */ static void si_reset_buffer_resources(struct si_context *sctx, struct si_buffer_resources *buffers, struct pipe_resource *buf, uint64_t old_va) { uint64_t mask = buffers->desc.enabled_mask; while (mask) { unsigned i = u_bit_scan64(&mask); if (buffers->buffers[i] == buf) { si_desc_reset_buffer_offset(&sctx->b.b, buffers->desc.list + i*4, old_va, buf); buffers->desc.list_dirty = true; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource *)buf, buffers->shader_usage, buffers->priority); } } } /* Reallocate a buffer a update all resource bindings where the buffer is * bound. * * This is used to avoid CPU-GPU synchronizations, because it makes the buffer * idle by discarding its contents. Apps usually tell us when to do this using * map_buffer flags, for example. */ static void si_invalidate_buffer(struct pipe_context *ctx, struct pipe_resource *buf) { struct si_context *sctx = (struct si_context*)ctx; struct r600_resource *rbuffer = r600_resource(buf); unsigned i, shader, alignment = rbuffer->buf->alignment; uint64_t old_va = rbuffer->gpu_address; unsigned num_elems = sctx->vertex_elements ? sctx->vertex_elements->count : 0; struct si_sampler_view *view; /* Reallocate the buffer in the same pipe_resource. */ r600_init_resource(&sctx->screen->b, rbuffer, rbuffer->b.b.width0, alignment, TRUE); /* We changed the buffer, now we need to bind it where the old one * was bound. This consists of 2 things: * 1) Updating the resource descriptor and dirtying it. * 2) Adding a relocation to the CS, so that it's usable. */ /* Vertex buffers. */ for (i = 0; i < num_elems; i++) { int vb = sctx->vertex_elements->elements[i].vertex_buffer_index; if (vb >= Elements(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer) continue; if (sctx->vertex_buffer[vb].buffer == buf) { sctx->vertex_buffers_dirty = true; break; } } /* Read/Write buffers. */ for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_buffer_resources *buffers = &sctx->rw_buffers[shader]; uint64_t mask = buffers->desc.enabled_mask; while (mask) { i = u_bit_scan64(&mask); if (buffers->buffers[i] == buf) { si_desc_reset_buffer_offset(ctx, buffers->desc.list + i*4, old_va, buf); buffers->desc.list_dirty = true; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, rbuffer, buffers->shader_usage, buffers->priority); if (i >= SI_SO_BUF_OFFSET && shader == PIPE_SHADER_VERTEX) { /* Update the streamout state. */ if (sctx->b.streamout.begin_emitted) { r600_emit_streamout_end(&sctx->b); } sctx->b.streamout.append_bitmask = sctx->b.streamout.enabled_mask; r600_streamout_buffers_dirty(&sctx->b); } } } } /* Constant and shader buffers. */ for (shader = 0; shader < SI_NUM_SHADERS; shader++) { si_reset_buffer_resources(sctx, &sctx->const_buffers[shader], buf, old_va); si_reset_buffer_resources(sctx, &sctx->shader_buffers[shader], buf, old_va); } /* Texture buffers - update virtual addresses in sampler view descriptors. */ LIST_FOR_EACH_ENTRY(view, &sctx->b.texture_buffers, list) { if (view->base.texture == buf) { si_desc_reset_buffer_offset(ctx, &view->state[4], old_va, buf); } } /* Texture buffers - update bindings. */ for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_sampler_views *views = &sctx->samplers[shader].views; uint64_t mask = views->desc.enabled_mask; while (mask) { unsigned i = u_bit_scan64(&mask); if (views->views[i]->texture == buf) { si_desc_reset_buffer_offset(ctx, views->desc.list + i * 16 + 4, old_va, buf); views->desc.list_dirty = true; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, rbuffer, RADEON_USAGE_READ, RADEON_PRIO_SAMPLER_BUFFER); } } } /* Shader images */ for (shader = 0; shader < SI_NUM_SHADERS; ++shader) { struct si_images_info *images = &sctx->images[shader]; unsigned mask = images->desc.enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (images->views[i].resource == buf) { si_desc_reset_buffer_offset( ctx, images->desc.list + i * 8 + 4, old_va, buf); images->desc.list_dirty = true; radeon_add_to_buffer_list( &sctx->b, &sctx->b.gfx, rbuffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SAMPLER_BUFFER); } } } } /* SHADER USER DATA */ static void si_mark_shader_pointers_dirty(struct si_context *sctx, unsigned shader) { sctx->const_buffers[shader].desc.pointer_dirty = true; sctx->rw_buffers[shader].desc.pointer_dirty = true; sctx->shader_buffers[shader].desc.pointer_dirty = true; sctx->samplers[shader].views.desc.pointer_dirty = true; sctx->images[shader].desc.pointer_dirty = true; if (shader == PIPE_SHADER_VERTEX) sctx->vertex_buffers.pointer_dirty = true; si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); } static void si_shader_userdata_begin_new_cs(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_mark_shader_pointers_dirty(sctx, i); } } /* Set a base register address for user data constants in the given shader. * This assigns a mapping from PIPE_SHADER_* to SPI_SHADER_USER_DATA_*. */ static void si_set_user_data_base(struct si_context *sctx, unsigned shader, uint32_t new_base) { uint32_t *base = &sctx->shader_userdata.sh_base[shader]; if (*base != new_base) { *base = new_base; if (new_base) si_mark_shader_pointers_dirty(sctx, shader); } } /* This must be called when these shaders are changed from non-NULL to NULL * and vice versa: * - geometry shader * - tessellation control shader * - tessellation evaluation shader */ void si_shader_change_notify(struct si_context *sctx) { /* VS can be bound as VS, ES, or LS. */ if (sctx->tes_shader.cso) si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B530_SPI_SHADER_USER_DATA_LS_0); else if (sctx->gs_shader.cso) si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B330_SPI_SHADER_USER_DATA_ES_0); else si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0); /* TES can be bound as ES, VS, or not bound. */ if (sctx->tes_shader.cso) { if (sctx->gs_shader.cso) si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B330_SPI_SHADER_USER_DATA_ES_0); else si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B130_SPI_SHADER_USER_DATA_VS_0); } else { si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, 0); } } static void si_emit_shader_pointer(struct si_context *sctx, struct si_descriptors *desc, unsigned sh_base, bool keep_dirty) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; uint64_t va; if (!desc->pointer_dirty || !desc->buffer) return; va = desc->buffer->gpu_address + desc->buffer_offset; radeon_emit(cs, PKT3(PKT3_SET_SH_REG, 2, 0)); radeon_emit(cs, (sh_base + desc->shader_userdata_offset - SI_SH_REG_OFFSET) >> 2); radeon_emit(cs, va); radeon_emit(cs, va >> 32); desc->pointer_dirty = keep_dirty; } void si_emit_shader_userdata(struct si_context *sctx, struct r600_atom *atom) { unsigned i; uint32_t *sh_base = sctx->shader_userdata.sh_base; if (sctx->gs_shader.cso) { /* The VS copy shader needs these for clipping, streamout, and rings. */ unsigned vs_base = R_00B130_SPI_SHADER_USER_DATA_VS_0; unsigned i = PIPE_SHADER_VERTEX; si_emit_shader_pointer(sctx, &sctx->const_buffers[i].desc, vs_base, true); si_emit_shader_pointer(sctx, &sctx->rw_buffers[i].desc, vs_base, true); if (sctx->tes_shader.cso) { /* The TESSEVAL shader needs this for the ESGS ring buffer. */ si_emit_shader_pointer(sctx, &sctx->rw_buffers[i].desc, R_00B330_SPI_SHADER_USER_DATA_ES_0, true); } } else if (sctx->tes_shader.cso) { /* The TESSEVAL shader needs this for streamout. */ si_emit_shader_pointer(sctx, &sctx->rw_buffers[PIPE_SHADER_VERTEX].desc, R_00B130_SPI_SHADER_USER_DATA_VS_0, true); } for (i = 0; i < SI_NUM_SHADERS; i++) { unsigned base = sh_base[i]; if (!base) continue; if (i != PIPE_SHADER_TESS_EVAL) si_emit_shader_pointer(sctx, &sctx->rw_buffers[i].desc, base, false); si_emit_shader_pointer(sctx, &sctx->const_buffers[i].desc, base, false); si_emit_shader_pointer(sctx, &sctx->shader_buffers[i].desc, base, false); si_emit_shader_pointer(sctx, &sctx->samplers[i].views.desc, base, false); si_emit_shader_pointer(sctx, &sctx->images[i].desc, base, false); } si_emit_shader_pointer(sctx, &sctx->vertex_buffers, sh_base[PIPE_SHADER_VERTEX], false); } /* INIT/DEINIT/UPLOAD */ void si_init_all_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_init_buffer_resources(&sctx->const_buffers[i], SI_NUM_CONST_BUFFERS, SI_SGPR_CONST_BUFFERS, RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER); si_init_buffer_resources(&sctx->rw_buffers[i], SI_NUM_RW_BUFFERS, SI_SGPR_RW_BUFFERS, RADEON_USAGE_READWRITE, RADEON_PRIO_RINGS_STREAMOUT); si_init_buffer_resources(&sctx->shader_buffers[i], SI_NUM_SHADER_BUFFERS, SI_SGPR_SHADER_BUFFERS, RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RW_BUFFER); si_init_descriptors(&sctx->samplers[i].views.desc, SI_SGPR_SAMPLERS, 16, SI_NUM_SAMPLERS, null_texture_descriptor); si_init_descriptors(&sctx->images[i].desc, SI_SGPR_IMAGES, 8, SI_NUM_IMAGES, null_image_descriptor); } si_init_descriptors(&sctx->vertex_buffers, SI_SGPR_VERTEX_BUFFERS, 4, SI_NUM_VERTEX_BUFFERS, NULL); /* Set pipe_context functions. */ sctx->b.b.bind_sampler_states = si_bind_sampler_states; sctx->b.b.set_shader_images = si_set_shader_images; sctx->b.b.set_constant_buffer = si_set_constant_buffer; sctx->b.b.set_shader_buffers = si_set_shader_buffers; sctx->b.b.set_sampler_views = si_set_sampler_views; sctx->b.b.set_stream_output_targets = si_set_streamout_targets; sctx->b.invalidate_buffer = si_invalidate_buffer; /* Shader user data. */ si_init_atom(sctx, &sctx->shader_userdata.atom, &sctx->atoms.s.shader_userdata, si_emit_shader_userdata); /* Set default and immutable mappings. */ si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0); si_set_user_data_base(sctx, PIPE_SHADER_TESS_CTRL, R_00B430_SPI_SHADER_USER_DATA_HS_0); si_set_user_data_base(sctx, PIPE_SHADER_GEOMETRY, R_00B230_SPI_SHADER_USER_DATA_GS_0); si_set_user_data_base(sctx, PIPE_SHADER_FRAGMENT, R_00B030_SPI_SHADER_USER_DATA_PS_0); } bool si_upload_shader_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { if (!si_upload_descriptors(sctx, &sctx->const_buffers[i].desc) || !si_upload_descriptors(sctx, &sctx->rw_buffers[i].desc) || !si_upload_descriptors(sctx, &sctx->shader_buffers[i].desc) || !si_upload_descriptors(sctx, &sctx->samplers[i].views.desc) || !si_upload_descriptors(sctx, &sctx->images[i].desc)) return false; } return si_upload_vertex_buffer_descriptors(sctx); } void si_release_all_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_release_buffer_resources(&sctx->const_buffers[i]); si_release_buffer_resources(&sctx->rw_buffers[i]); si_release_buffer_resources(&sctx->shader_buffers[i]); si_release_sampler_views(&sctx->samplers[i].views); si_release_image_views(&sctx->images[i]); } si_release_descriptors(&sctx->vertex_buffers); } void si_all_descriptors_begin_new_cs(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_buffer_resources_begin_new_cs(sctx, &sctx->const_buffers[i]); si_buffer_resources_begin_new_cs(sctx, &sctx->rw_buffers[i]); si_buffer_resources_begin_new_cs(sctx, &sctx->shader_buffers[i]); si_sampler_views_begin_new_cs(sctx, &sctx->samplers[i].views); si_image_views_begin_new_cs(sctx, &sctx->images[i]); } si_vertex_buffers_begin_new_cs(sctx); si_shader_userdata_begin_new_cs(sctx); }