/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Marek Olšák */ /* Resource binding slots and sampler states (each described with 8 or 4 dwords) * live in memory on SI. * * This file is responsible for managing lists of resources and sampler states * in memory and binding them, which means updating those structures in memory. * * There is also code for updating shader pointers to resources and sampler * states. CP DMA functions are here too. */ #include "radeon/r600_cs.h" #include "si_pipe.h" #include "si_shader.h" #include "sid.h" #include "util/u_memory.h" #include "util/u_upload_mgr.h" #define SI_NUM_CONTEXTS 16 static uint32_t null_desc[8]; /* zeros */ /* Set this if you want the 3D engine to wait until CP DMA is done. * It should be set on the last CP DMA packet. */ #define R600_CP_DMA_SYNC (1 << 0) /* R600+ */ /* Set this if the source data was used as a destination in a previous CP DMA * packet. It's for preventing a read-after-write (RAW) hazard between two * CP DMA packets. */ #define SI_CP_DMA_RAW_WAIT (1 << 1) /* SI+ */ #define CIK_CP_DMA_USE_L2 (1 << 2) /* Emit a CP DMA packet to do a copy from one buffer to another. * The size must fit in bits [20:0]. */ static void si_emit_cp_dma_copy_buffer(struct si_context *sctx, uint64_t dst_va, uint64_t src_va, unsigned size, unsigned flags) { struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs; uint32_t sync_flag = flags & R600_CP_DMA_SYNC ? PKT3_CP_DMA_CP_SYNC : 0; uint32_t raw_wait = flags & SI_CP_DMA_RAW_WAIT ? PKT3_CP_DMA_CMD_RAW_WAIT : 0; uint32_t sel = flags & CIK_CP_DMA_USE_L2 ? PKT3_CP_DMA_SRC_SEL(3) | PKT3_CP_DMA_DST_SEL(3) : 0; assert(size); assert((size & ((1<<21)-1)) == size); if (sctx->b.chip_class >= CIK) { radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0)); radeon_emit(cs, sync_flag | sel); /* CP_SYNC [31] */ radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */ radeon_emit(cs, size | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ } else { radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0)); radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, sync_flag | ((src_va >> 32) & 0xffff)); /* CP_SYNC [31] | SRC_ADDR_HI [15:0] */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ radeon_emit(cs, size | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ } } /* Emit a CP DMA packet to clear a buffer. The size must fit in bits [20:0]. */ static void si_emit_cp_dma_clear_buffer(struct si_context *sctx, uint64_t dst_va, unsigned size, uint32_t clear_value, unsigned flags) { struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs; uint32_t sync_flag = flags & R600_CP_DMA_SYNC ? PKT3_CP_DMA_CP_SYNC : 0; uint32_t raw_wait = flags & SI_CP_DMA_RAW_WAIT ? PKT3_CP_DMA_CMD_RAW_WAIT : 0; uint32_t dst_sel = flags & CIK_CP_DMA_USE_L2 ? PKT3_CP_DMA_DST_SEL(3) : 0; assert(size); assert((size & ((1<<21)-1)) == size); if (sctx->b.chip_class >= CIK) { radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0)); radeon_emit(cs, sync_flag | dst_sel | PKT3_CP_DMA_SRC_SEL(2)); /* CP_SYNC [31] | SRC_SEL[30:29] */ radeon_emit(cs, clear_value); /* DATA [31:0] */ radeon_emit(cs, 0); radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [15:0] */ radeon_emit(cs, size | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ } else { radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0)); radeon_emit(cs, clear_value); /* DATA [31:0] */ radeon_emit(cs, sync_flag | PKT3_CP_DMA_SRC_SEL(2)); /* CP_SYNC [31] | SRC_SEL[30:29] */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ radeon_emit(cs, size | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ } } static void si_init_descriptors(struct si_context *sctx, struct si_descriptors *desc, unsigned shader_userdata_reg, unsigned element_dw_size, unsigned num_elements, void (*emit_func)(struct si_context *ctx, struct r600_atom *state)) { assert(num_elements <= sizeof(desc->enabled_mask)*8); assert(num_elements <= sizeof(desc->dirty_mask)*8); desc->atom.emit = (void*)emit_func; desc->shader_userdata_reg = shader_userdata_reg; desc->element_dw_size = element_dw_size; desc->num_elements = num_elements; desc->context_size = num_elements * element_dw_size * 4; desc->buffer = (struct r600_resource*) pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM, PIPE_USAGE_DEFAULT, SI_NUM_CONTEXTS * desc->context_size); r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, desc->buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_DATA); /* We don't check for CS space here, because this should be called * only once at context initialization. */ si_emit_cp_dma_clear_buffer(sctx, desc->buffer->gpu_address, desc->buffer->b.b.width0, 0, R600_CP_DMA_SYNC | CIK_CP_DMA_USE_L2); } static void si_release_descriptors(struct si_descriptors *desc) { pipe_resource_reference((struct pipe_resource**)&desc->buffer, NULL); } static void si_update_descriptors(struct si_context *sctx, struct si_descriptors *desc) { if (desc->dirty_mask) { desc->atom.num_dw = 7 + /* copy */ (4 + desc->element_dw_size) * util_bitcount(desc->dirty_mask) + /* update */ 4; /* pointer update */ if (desc->shader_userdata_reg >= R_00B130_SPI_SHADER_USER_DATA_VS_0 && desc->shader_userdata_reg < R_00B230_SPI_SHADER_USER_DATA_GS_0) desc->atom.num_dw += 4; /* second pointer update */ desc->atom.dirty = true; /* TODO: Investigate if these flushes can be removed after * adding CE support. */ /* The descriptors are read with the K cache. */ sctx->b.flags |= SI_CONTEXT_INV_KCACHE; /* Since SI uses uncached CP DMA to update descriptors, * we have to flush TC L2, which is used to fetch constants * along with KCACHE. */ if (sctx->b.chip_class == SI) sctx->b.flags |= SI_CONTEXT_INV_TC_L2; } else { desc->atom.dirty = false; } } static void si_emit_shader_pointer(struct si_context *sctx, struct r600_atom *atom) { struct si_descriptors *desc = (struct si_descriptors*)atom; struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs; uint64_t va = desc->buffer->gpu_address + desc->current_context_id * desc->context_size + desc->buffer_offset; radeon_emit(cs, PKT3(PKT3_SET_SH_REG, 2, 0)); radeon_emit(cs, (desc->shader_userdata_reg - SI_SH_REG_OFFSET) >> 2); radeon_emit(cs, va); radeon_emit(cs, va >> 32); if (desc->shader_userdata_reg >= R_00B130_SPI_SHADER_USER_DATA_VS_0 && desc->shader_userdata_reg < R_00B230_SPI_SHADER_USER_DATA_GS_0) { radeon_emit(cs, PKT3(PKT3_SET_SH_REG, 2, 0)); radeon_emit(cs, (desc->shader_userdata_reg + (R_00B330_SPI_SHADER_USER_DATA_ES_0 - R_00B130_SPI_SHADER_USER_DATA_VS_0) - SI_SH_REG_OFFSET) >> 2); radeon_emit(cs, va); radeon_emit(cs, va >> 32); } } static void si_emit_descriptors(struct si_context *sctx, struct si_descriptors *desc, uint32_t **descriptors) { struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs; uint64_t va_base; int packet_start = 0; int packet_size = 0; int last_index = desc->num_elements; /* point to a non-existing element */ unsigned dirty_mask = desc->dirty_mask; unsigned new_context_id = (desc->current_context_id + 1) % SI_NUM_CONTEXTS; assert(dirty_mask); va_base = desc->buffer->gpu_address; /* Copy the descriptors to a new context slot. */ si_emit_cp_dma_copy_buffer(sctx, va_base + new_context_id * desc->context_size, va_base + desc->current_context_id * desc->context_size, desc->context_size, R600_CP_DMA_SYNC | CIK_CP_DMA_USE_L2); va_base += new_context_id * desc->context_size; /* Update the descriptors. * Updates of consecutive descriptors are merged to one WRITE_DATA packet. * * XXX When unbinding lots of resources, consider clearing the memory * with CP DMA instead of emitting zeros. */ while (dirty_mask) { int i = u_bit_scan(&dirty_mask); assert(i < desc->num_elements); if (last_index+1 == i && packet_size) { /* Append new data at the end of the last packet. */ packet_size += desc->element_dw_size; cs->buf[packet_start] = PKT3(PKT3_WRITE_DATA, packet_size, 0); } else { /* Start a new packet. */ uint64_t va = va_base + i * desc->element_dw_size * 4; packet_start = cs->cdw; packet_size = 2 + desc->element_dw_size; radeon_emit(cs, PKT3(PKT3_WRITE_DATA, packet_size, 0)); radeon_emit(cs, PKT3_WRITE_DATA_DST_SEL(sctx->b.chip_class == SI ? PKT3_WRITE_DATA_DST_SEL_MEM_SYNC : PKT3_WRITE_DATA_DST_SEL_TC_L2) | PKT3_WRITE_DATA_WR_CONFIRM | PKT3_WRITE_DATA_ENGINE_SEL(PKT3_WRITE_DATA_ENGINE_SEL_ME)); radeon_emit(cs, va & 0xFFFFFFFFUL); radeon_emit(cs, (va >> 32UL) & 0xFFFFFFFFUL); } radeon_emit_array(cs, descriptors[i], desc->element_dw_size); last_index = i; } desc->dirty_mask = 0; desc->current_context_id = new_context_id; /* Now update the shader userdata pointer. */ si_emit_shader_pointer(sctx, &desc->atom); } static unsigned si_get_shader_user_data_base(unsigned shader) { switch (shader) { case PIPE_SHADER_VERTEX: return R_00B130_SPI_SHADER_USER_DATA_VS_0; case PIPE_SHADER_GEOMETRY: return R_00B230_SPI_SHADER_USER_DATA_GS_0; case PIPE_SHADER_FRAGMENT: return R_00B030_SPI_SHADER_USER_DATA_PS_0; default: assert(0); return 0; } } /* SAMPLER VIEWS */ static void si_emit_sampler_views(struct si_context *sctx, struct r600_atom *atom) { struct si_sampler_views *views = (struct si_sampler_views*)atom; si_emit_descriptors(sctx, &views->desc, views->desc_data); } static void si_init_sampler_views(struct si_context *sctx, struct si_sampler_views *views, unsigned shader) { si_init_descriptors(sctx, &views->desc, si_get_shader_user_data_base(shader) + SI_SGPR_RESOURCE * 4, 8, SI_NUM_SAMPLER_VIEWS, si_emit_sampler_views); } static void si_release_sampler_views(struct si_sampler_views *views) { int i; for (i = 0; i < Elements(views->views); i++) { pipe_sampler_view_reference(&views->views[i], NULL); } si_release_descriptors(&views->desc); } static enum radeon_bo_priority si_get_resource_ro_priority(struct r600_resource *res) { if (res->b.b.target == PIPE_BUFFER) return RADEON_PRIO_SHADER_BUFFER_RO; if (res->b.b.nr_samples > 1) return RADEON_PRIO_SHADER_TEXTURE_MSAA; return RADEON_PRIO_SHADER_TEXTURE_RO; } static void si_sampler_views_begin_new_cs(struct si_context *sctx, struct si_sampler_views *views) { unsigned mask = views->desc.enabled_mask; /* Add relocations to the CS. */ while (mask) { int i = u_bit_scan(&mask); struct si_sampler_view *rview = (struct si_sampler_view*)views->views[i]; r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, rview->resource, RADEON_USAGE_READ, si_get_resource_ro_priority(rview->resource)); } r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, views->desc.buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_DATA); si_emit_shader_pointer(sctx, &views->desc.atom); } static void si_set_sampler_view(struct si_context *sctx, unsigned shader, unsigned slot, struct pipe_sampler_view *view, unsigned *view_desc) { struct si_sampler_views *views = &sctx->samplers[shader].views; if (views->views[slot] == view) return; if (view) { struct si_sampler_view *rview = (struct si_sampler_view*)view; r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, rview->resource, RADEON_USAGE_READ, si_get_resource_ro_priority(rview->resource)); pipe_sampler_view_reference(&views->views[slot], view); views->desc_data[slot] = view_desc; views->desc.enabled_mask |= 1 << slot; } else { pipe_sampler_view_reference(&views->views[slot], NULL); views->desc_data[slot] = null_desc; views->desc.enabled_mask &= ~(1 << slot); } views->desc.dirty_mask |= 1 << slot; } static void si_set_sampler_views(struct pipe_context *ctx, unsigned shader, unsigned start, unsigned count, struct pipe_sampler_view **views) { struct si_context *sctx = (struct si_context *)ctx; struct si_textures_info *samplers = &sctx->samplers[shader]; struct si_sampler_view **rviews = (struct si_sampler_view **)views; int i; if (!count || shader >= SI_NUM_SHADERS) return; for (i = 0; i < count; i++) { unsigned slot = start + i; if (!views[i]) { samplers->depth_texture_mask &= ~(1 << slot); samplers->compressed_colortex_mask &= ~(1 << slot); si_set_sampler_view(sctx, shader, slot, NULL, NULL); si_set_sampler_view(sctx, shader, SI_FMASK_TEX_OFFSET + slot, NULL, NULL); continue; } si_set_sampler_view(sctx, shader, slot, views[i], rviews[i]->state); if (views[i]->texture->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture*)views[i]->texture; if (rtex->is_depth && !rtex->is_flushing_texture) { samplers->depth_texture_mask |= 1 << slot; } else { samplers->depth_texture_mask &= ~(1 << slot); } if (rtex->cmask.size || rtex->fmask.size) { samplers->compressed_colortex_mask |= 1 << slot; } else { samplers->compressed_colortex_mask &= ~(1 << slot); } if (rtex->fmask.size) { si_set_sampler_view(sctx, shader, SI_FMASK_TEX_OFFSET + slot, views[i], rviews[i]->fmask_state); } else { si_set_sampler_view(sctx, shader, SI_FMASK_TEX_OFFSET + slot, NULL, NULL); } } else { samplers->depth_texture_mask &= ~(1 << slot); samplers->compressed_colortex_mask &= ~(1 << slot); si_set_sampler_view(sctx, shader, SI_FMASK_TEX_OFFSET + slot, NULL, NULL); } } si_update_descriptors(sctx, &samplers->views.desc); } /* SAMPLER STATES */ static void si_emit_sampler_states(struct si_context *sctx, struct r600_atom *atom) { struct si_sampler_states *states = (struct si_sampler_states*)atom; si_emit_descriptors(sctx, &states->desc, states->desc_data); } static void si_sampler_states_begin_new_cs(struct si_context *sctx, struct si_sampler_states *states) { r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, states->desc.buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_DATA); si_emit_shader_pointer(sctx, &states->desc.atom); } void si_set_sampler_descriptors(struct si_context *sctx, unsigned shader, unsigned start, unsigned count, void **states) { struct si_sampler_states *samplers = &sctx->samplers[shader].states; struct si_sampler_state **sstates = (struct si_sampler_state**)states; int i; if (start == 0) samplers->saved_states[0] = states[0]; if (start == 1) samplers->saved_states[1] = states[0]; else if (start == 0 && count >= 2) samplers->saved_states[1] = states[1]; for (i = 0; i < count; i++) { unsigned slot = start + i; if (!sstates[i]) { samplers->desc.dirty_mask &= ~(1 << slot); continue; } samplers->desc_data[slot] = sstates[i]->val; samplers->desc.dirty_mask |= 1 << slot; } si_update_descriptors(sctx, &samplers->desc); } /* BUFFER RESOURCES */ static void si_emit_buffer_resources(struct si_context *sctx, struct r600_atom *atom) { struct si_buffer_resources *buffers = (struct si_buffer_resources*)atom; si_emit_descriptors(sctx, &buffers->desc, buffers->desc_data); } static void si_init_buffer_resources(struct si_context *sctx, struct si_buffer_resources *buffers, unsigned num_buffers, unsigned shader, unsigned shader_userdata_index, enum radeon_bo_usage shader_usage, enum radeon_bo_priority priority) { int i; buffers->num_buffers = num_buffers; buffers->shader_usage = shader_usage; buffers->priority = priority; buffers->buffers = CALLOC(num_buffers, sizeof(struct pipe_resource*)); buffers->desc_storage = CALLOC(num_buffers, sizeof(uint32_t) * 4); /* si_emit_descriptors only accepts an array of arrays. * This adds such an array. */ buffers->desc_data = CALLOC(num_buffers, sizeof(uint32_t*)); for (i = 0; i < num_buffers; i++) { buffers->desc_data[i] = &buffers->desc_storage[i*4]; } si_init_descriptors(sctx, &buffers->desc, si_get_shader_user_data_base(shader) + shader_userdata_index*4, 4, num_buffers, si_emit_buffer_resources); } static void si_release_buffer_resources(struct si_buffer_resources *buffers) { int i; for (i = 0; i < buffers->num_buffers; i++) { pipe_resource_reference(&buffers->buffers[i], NULL); } FREE(buffers->buffers); FREE(buffers->desc_storage); FREE(buffers->desc_data); si_release_descriptors(&buffers->desc); } static void si_buffer_resources_begin_new_cs(struct si_context *sctx, struct si_buffer_resources *buffers) { unsigned mask = buffers->desc.enabled_mask; /* Add relocations to the CS. */ while (mask) { int i = u_bit_scan(&mask); r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)buffers->buffers[i], buffers->shader_usage, buffers->priority); } r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, buffers->desc.buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_DATA); si_emit_shader_pointer(sctx, &buffers->desc.atom); } /* VERTEX BUFFERS */ static void si_vertex_buffers_begin_new_cs(struct si_context *sctx) { struct si_descriptors *desc = &sctx->vertex_buffers; int count = sctx->vertex_elements ? sctx->vertex_elements->count : 0; int i; for (i = 0; i < count; i++) { int vb = sctx->vertex_elements->elements[i].vertex_buffer_index; if (vb >= Elements(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer) continue; r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)sctx->vertex_buffer[vb].buffer, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BUFFER_RO); } r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA); si_emit_shader_pointer(sctx, &desc->atom); } void si_update_vertex_buffers(struct si_context *sctx) { struct si_descriptors *desc = &sctx->vertex_buffers; bool bound[SI_NUM_VERTEX_BUFFERS] = {}; unsigned i, count = sctx->vertex_elements->count; uint64_t va; uint32_t *ptr; if (!count || !sctx->vertex_elements) return; /* Vertex buffer descriptors are the only ones which are uploaded * directly through a staging buffer and don't go through * the fine-grained upload path. */ u_upload_alloc(sctx->b.uploader, 0, count * 16, &desc->buffer_offset, (struct pipe_resource**)&desc->buffer, (void**)&ptr); r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA); assert(count <= SI_NUM_VERTEX_BUFFERS); assert(desc->current_context_id == 0); for (i = 0; i < count; i++) { struct pipe_vertex_element *ve = &sctx->vertex_elements->elements[i]; struct pipe_vertex_buffer *vb; struct r600_resource *rbuffer; unsigned offset; uint32_t *desc = &ptr[i*4]; if (ve->vertex_buffer_index >= Elements(sctx->vertex_buffer)) { memset(desc, 0, 16); continue; } vb = &sctx->vertex_buffer[ve->vertex_buffer_index]; rbuffer = (struct r600_resource*)vb->buffer; if (rbuffer == NULL) { memset(desc, 0, 16); continue; } offset = vb->buffer_offset + ve->src_offset; va = rbuffer->gpu_address + offset; /* Fill in T# buffer resource description */ desc[0] = va & 0xFFFFFFFF; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(vb->stride); if (vb->stride) /* Round up by rounding down and adding 1 */ desc[2] = (vb->buffer->width0 - offset - sctx->vertex_elements->format_size[i]) / vb->stride + 1; else desc[2] = vb->buffer->width0 - offset; desc[3] = sctx->vertex_elements->rsrc_word3[i]; if (!bound[ve->vertex_buffer_index]) { r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)vb->buffer, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BUFFER_RO); bound[ve->vertex_buffer_index] = true; } } desc->atom.num_dw = 8; /* update 2 shader pointers (VS+ES) */ desc->atom.dirty = true; /* Don't flush the const cache. It would have a very negative effect * on performance (confirmed by testing). New descriptors are always * uploaded to a fresh new buffer, so I don't think flushing the const * cache is needed. */ } /* CONSTANT BUFFERS */ void si_upload_const_buffer(struct si_context *sctx, struct r600_resource **rbuffer, const uint8_t *ptr, unsigned size, uint32_t *const_offset) { void *tmp; u_upload_alloc(sctx->b.uploader, 0, size, const_offset, (struct pipe_resource**)rbuffer, &tmp); util_memcpy_cpu_to_le32(tmp, ptr, size); } static void si_set_constant_buffer(struct pipe_context *ctx, uint shader, uint slot, struct pipe_constant_buffer *input) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->const_buffers[shader]; if (shader >= SI_NUM_SHADERS) return; assert(slot < buffers->num_buffers); pipe_resource_reference(&buffers->buffers[slot], NULL); /* CIK cannot unbind a constant buffer (S_BUFFER_LOAD is buggy * with a NULL buffer). We need to use a dummy buffer instead. */ if (sctx->b.chip_class == CIK && (!input || (!input->buffer && !input->user_buffer))) input = &sctx->null_const_buf; if (input && (input->buffer || input->user_buffer)) { struct pipe_resource *buffer = NULL; uint64_t va; /* Upload the user buffer if needed. */ if (input->user_buffer) { unsigned buffer_offset; si_upload_const_buffer(sctx, (struct r600_resource**)&buffer, input->user_buffer, input->buffer_size, &buffer_offset); va = r600_resource(buffer)->gpu_address + buffer_offset; } else { pipe_resource_reference(&buffer, input->buffer); va = r600_resource(buffer)->gpu_address + input->buffer_offset; } /* Set the descriptor. */ uint32_t *desc = buffers->desc_data[slot]; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = input->buffer_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); buffers->buffers[slot] = buffer; r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority); buffers->desc.enabled_mask |= 1 << slot; } else { /* Clear the descriptor. */ memset(buffers->desc_data[slot], 0, sizeof(uint32_t) * 4); buffers->desc.enabled_mask &= ~(1 << slot); } buffers->desc.dirty_mask |= 1 << slot; si_update_descriptors(sctx, &buffers->desc); } /* RING BUFFERS */ void si_set_ring_buffer(struct pipe_context *ctx, uint shader, uint slot, struct pipe_resource *buffer, unsigned stride, unsigned num_records, bool add_tid, bool swizzle, unsigned element_size, unsigned index_stride) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers[shader]; if (shader >= SI_NUM_SHADERS) return; /* The stride field in the resource descriptor has 14 bits */ assert(stride < (1 << 14)); assert(slot < buffers->num_buffers); pipe_resource_reference(&buffers->buffers[slot], NULL); if (buffer) { uint64_t va; va = r600_resource(buffer)->gpu_address; switch (element_size) { default: assert(!"Unsupported ring buffer element size"); case 0: case 2: element_size = 0; break; case 4: element_size = 1; break; case 8: element_size = 2; break; case 16: element_size = 3; break; } switch (index_stride) { default: assert(!"Unsupported ring buffer index stride"); case 0: case 8: index_stride = 0; break; case 16: index_stride = 1; break; case 32: index_stride = 2; break; case 64: index_stride = 3; break; } /* Set the descriptor. */ uint32_t *desc = buffers->desc_data[slot]; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride) | S_008F04_SWIZZLE_ENABLE(swizzle); desc[2] = num_records; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(element_size) | S_008F0C_INDEX_STRIDE(index_stride) | S_008F0C_ADD_TID_ENABLE(add_tid); pipe_resource_reference(&buffers->buffers[slot], buffer); r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority); buffers->desc.enabled_mask |= 1 << slot; } else { /* Clear the descriptor. */ memset(buffers->desc_data[slot], 0, sizeof(uint32_t) * 4); buffers->desc.enabled_mask &= ~(1 << slot); } buffers->desc.dirty_mask |= 1 << slot; si_update_descriptors(sctx, &buffers->desc); } /* STREAMOUT BUFFERS */ static void si_set_streamout_targets(struct pipe_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers[PIPE_SHADER_VERTEX]; unsigned old_num_targets = sctx->b.streamout.num_targets; unsigned i, bufidx; /* We are going to unbind the buffers. Mark which caches need to be flushed. */ if (sctx->b.streamout.num_targets && sctx->b.streamout.begin_emitted) { /* Since streamout uses vector writes which go through TC L2 * and most other clients can use TC L2 as well, we don't need * to flush it. * * The only case which requires flushing it is VGT DMA index * fetching, which is a rare case. Thus, flag the TC L2 * dirtiness in the resource and handle it when index fetching * is used. */ for (i = 0; i < sctx->b.streamout.num_targets; i++) if (sctx->b.streamout.targets[i]) r600_resource(sctx->b.streamout.targets[i]->b.buffer)->TC_L2_dirty = true; /* Invalidate the scalar cache in case a streamout buffer is * going to be used as a constant buffer. * * Invalidate TC L1, because streamout bypasses it (done by * setting GLC=1 in the store instruction), but it can contain * outdated data of streamout buffers. * * VS_PARTIAL_FLUSH is required if the buffers are going to be * used as an input immediately. */ sctx->b.flags |= SI_CONTEXT_INV_KCACHE | SI_CONTEXT_INV_TC_L1 | SI_CONTEXT_VS_PARTIAL_FLUSH; } /* Streamout buffers must be bound in 2 places: * 1) in VGT by setting the VGT_STRMOUT registers * 2) as shader resources */ /* Set the VGT regs. */ r600_set_streamout_targets(ctx, num_targets, targets, offsets); /* Set the shader resources.*/ for (i = 0; i < num_targets; i++) { bufidx = SI_SO_BUF_OFFSET + i; if (targets[i]) { struct pipe_resource *buffer = targets[i]->buffer; uint64_t va = r600_resource(buffer)->gpu_address; /* Set the descriptor. */ uint32_t *desc = buffers->desc_data[bufidx]; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32); desc[2] = 0xffffffff; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); /* Set the resource. */ pipe_resource_reference(&buffers->buffers[bufidx], buffer); r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority); buffers->desc.enabled_mask |= 1 << bufidx; } else { /* Clear the descriptor and unset the resource. */ memset(buffers->desc_data[bufidx], 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->desc.enabled_mask &= ~(1 << bufidx); } buffers->desc.dirty_mask |= 1 << bufidx; } for (; i < old_num_targets; i++) { bufidx = SI_SO_BUF_OFFSET + i; /* Clear the descriptor and unset the resource. */ memset(buffers->desc_data[bufidx], 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->desc.enabled_mask &= ~(1 << bufidx); buffers->desc.dirty_mask |= 1 << bufidx; } si_update_descriptors(sctx, &buffers->desc); } static void si_desc_reset_buffer_offset(struct pipe_context *ctx, uint32_t *desc, uint64_t old_buf_va, struct pipe_resource *new_buf) { /* Retrieve the buffer offset from the descriptor. */ uint64_t old_desc_va = desc[0] | ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32); assert(old_buf_va <= old_desc_va); uint64_t offset_within_buffer = old_desc_va - old_buf_va; /* Update the descriptor. */ uint64_t va = r600_resource(new_buf)->gpu_address + offset_within_buffer; desc[0] = va; desc[1] = (desc[1] & C_008F04_BASE_ADDRESS_HI) | S_008F04_BASE_ADDRESS_HI(va >> 32); } /* BUFFER DISCARD/INVALIDATION */ /* Reallocate a buffer a update all resource bindings where the buffer is * bound. * * This is used to avoid CPU-GPU synchronizations, because it makes the buffer * idle by discarding its contents. Apps usually tell us when to do this using * map_buffer flags, for example. */ static void si_invalidate_buffer(struct pipe_context *ctx, struct pipe_resource *buf) { struct si_context *sctx = (struct si_context*)ctx; struct r600_resource *rbuffer = r600_resource(buf); unsigned i, shader, alignment = rbuffer->buf->alignment; uint64_t old_va = rbuffer->gpu_address; unsigned num_elems = sctx->vertex_elements ? sctx->vertex_elements->count : 0; struct si_sampler_view *view; /* Reallocate the buffer in the same pipe_resource. */ r600_init_resource(&sctx->screen->b, rbuffer, rbuffer->b.b.width0, alignment, TRUE); /* We changed the buffer, now we need to bind it where the old one * was bound. This consists of 2 things: * 1) Updating the resource descriptor and dirtying it. * 2) Adding a relocation to the CS, so that it's usable. */ /* Vertex buffers. */ for (i = 0; i < num_elems; i++) { int vb = sctx->vertex_elements->elements[i].vertex_buffer_index; if (vb >= Elements(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer) continue; if (sctx->vertex_buffer[vb].buffer == buf) { sctx->vertex_buffers_dirty = true; break; } } /* Read/Write buffers. */ for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_buffer_resources *buffers = &sctx->rw_buffers[shader]; bool found = false; uint32_t mask = buffers->desc.enabled_mask; while (mask) { i = u_bit_scan(&mask); if (buffers->buffers[i] == buf) { si_desc_reset_buffer_offset(ctx, buffers->desc_data[i], old_va, buf); r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, rbuffer, buffers->shader_usage, buffers->priority); buffers->desc.dirty_mask |= 1 << i; found = true; if (i >= SI_SO_BUF_OFFSET && shader == PIPE_SHADER_VERTEX) { /* Update the streamout state. */ if (sctx->b.streamout.begin_emitted) { r600_emit_streamout_end(&sctx->b); } sctx->b.streamout.append_bitmask = sctx->b.streamout.enabled_mask; r600_streamout_buffers_dirty(&sctx->b); } } } if (found) { si_update_descriptors(sctx, &buffers->desc); } } /* Constant buffers. */ for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_buffer_resources *buffers = &sctx->const_buffers[shader]; bool found = false; uint32_t mask = buffers->desc.enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (buffers->buffers[i] == buf) { si_desc_reset_buffer_offset(ctx, buffers->desc_data[i], old_va, buf); r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, rbuffer, buffers->shader_usage, buffers->priority); buffers->desc.dirty_mask |= 1 << i; found = true; } } if (found) { si_update_descriptors(sctx, &buffers->desc); } } /* Texture buffers - update virtual addresses in sampler view descriptors. */ LIST_FOR_EACH_ENTRY(view, &sctx->b.texture_buffers, list) { if (view->base.texture == buf) { si_desc_reset_buffer_offset(ctx, view->state, old_va, buf); } } /* Texture buffers - update bindings. */ for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_sampler_views *views = &sctx->samplers[shader].views; bool found = false; uint32_t mask = views->desc.enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (views->views[i]->texture == buf) { r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, rbuffer, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BUFFER_RO); views->desc.dirty_mask |= 1 << i; found = true; } } if (found) { si_update_descriptors(sctx, &views->desc); } } } /* CP DMA */ /* The max number of bytes to copy per packet. */ #define CP_DMA_MAX_BYTE_COUNT ((1 << 21) - 8) static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst, unsigned offset, unsigned size, unsigned value, bool is_framebuffer) { struct si_context *sctx = (struct si_context*)ctx; unsigned flush_flags, tc_l2_flag; if (!size) return; /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(&r600_resource(dst)->valid_buffer_range, offset, offset + size); /* Fallback for unaligned clears. */ if (offset % 4 != 0 || size % 4 != 0) { uint32_t *map = sctx->b.ws->buffer_map(r600_resource(dst)->cs_buf, sctx->b.rings.gfx.cs, PIPE_TRANSFER_WRITE); size /= 4; for (unsigned i = 0; i < size; i++) *map++ = value; return; } uint64_t va = r600_resource(dst)->gpu_address + offset; /* Flush the caches where the resource is bound. */ if (is_framebuffer) { flush_flags = SI_CONTEXT_FLUSH_AND_INV_FRAMEBUFFER; tc_l2_flag = 0; } else { flush_flags = SI_CONTEXT_INV_TC_L1 | (sctx->b.chip_class == SI ? SI_CONTEXT_INV_TC_L2 : 0) | SI_CONTEXT_INV_KCACHE; tc_l2_flag = sctx->b.chip_class == SI ? 0 : CIK_CP_DMA_USE_L2; } sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | flush_flags; while (size) { unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT); unsigned dma_flags = tc_l2_flag; si_need_cs_space(sctx, 7 + (sctx->b.flags ? sctx->cache_flush.num_dw : 0), FALSE); /* This must be done after need_cs_space. */ r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)dst, RADEON_USAGE_WRITE, RADEON_PRIO_MIN); /* Flush the caches for the first copy only. * Also wait for the previous CP DMA operations. */ if (sctx->b.flags) { si_emit_cache_flush(&sctx->b, NULL); dma_flags |= SI_CP_DMA_RAW_WAIT; /* same as WAIT_UNTIL=CP_DMA_IDLE */ } /* Do the synchronization after the last copy, so that all data is written to memory. */ if (size == byte_count) dma_flags |= R600_CP_DMA_SYNC; /* Emit the clear packet. */ si_emit_cp_dma_clear_buffer(sctx, va, byte_count, value, dma_flags); size -= byte_count; va += byte_count; } /* Flush the caches again in case the 3D engine has been prefetching * the resource. */ sctx->b.flags |= flush_flags; if (tc_l2_flag) r600_resource(dst)->TC_L2_dirty = true; } void si_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset, unsigned size, bool is_framebuffer) { unsigned flush_flags, tc_l2_flag; if (!size) return; /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset, dst_offset + size); dst_offset += r600_resource(dst)->gpu_address; src_offset += r600_resource(src)->gpu_address; /* Flush the caches where the resource is bound. */ if (is_framebuffer) { flush_flags = SI_CONTEXT_FLUSH_AND_INV_FRAMEBUFFER; tc_l2_flag = 0; } else { flush_flags = SI_CONTEXT_INV_TC_L1 | (sctx->b.chip_class == SI ? SI_CONTEXT_INV_TC_L2 : 0) | SI_CONTEXT_INV_KCACHE; tc_l2_flag = sctx->b.chip_class == SI ? 0 : CIK_CP_DMA_USE_L2; } sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | flush_flags; while (size) { unsigned sync_flags = tc_l2_flag; unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT); si_need_cs_space(sctx, 7 + (sctx->b.flags ? sctx->cache_flush.num_dw : 0), FALSE); /* Flush the caches for the first copy only. Also wait for old CP DMA packets to complete. */ if (sctx->b.flags) { si_emit_cache_flush(&sctx->b, NULL); sync_flags |= SI_CP_DMA_RAW_WAIT; } /* Do the synchronization after the last copy, so that all data is written to memory. */ if (size == byte_count) { sync_flags |= R600_CP_DMA_SYNC; } /* This must be done after r600_need_cs_space. */ r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)src, RADEON_USAGE_READ, RADEON_PRIO_MIN); r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)dst, RADEON_USAGE_WRITE, RADEON_PRIO_MIN); si_emit_cp_dma_copy_buffer(sctx, dst_offset, src_offset, byte_count, sync_flags); size -= byte_count; src_offset += byte_count; dst_offset += byte_count; } /* Flush the caches again in case the 3D engine has been prefetching * the resource. */ sctx->b.flags |= flush_flags; if (tc_l2_flag) r600_resource(dst)->TC_L2_dirty = true; } /* INIT/DEINIT */ void si_init_all_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_init_buffer_resources(sctx, &sctx->const_buffers[i], SI_NUM_CONST_BUFFERS, i, SI_SGPR_CONST, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BUFFER_RO); si_init_buffer_resources(sctx, &sctx->rw_buffers[i], i == PIPE_SHADER_VERTEX ? SI_NUM_RW_BUFFERS : SI_NUM_RING_BUFFERS, i, SI_SGPR_RW_BUFFERS, RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RESOURCE_RW); si_init_sampler_views(sctx, &sctx->samplers[i].views, i); si_init_descriptors(sctx, &sctx->samplers[i].states.desc, si_get_shader_user_data_base(i) + SI_SGPR_SAMPLER * 4, 4, SI_NUM_SAMPLER_STATES, si_emit_sampler_states); sctx->atoms.s.const_buffers[i] = &sctx->const_buffers[i].desc.atom; sctx->atoms.s.rw_buffers[i] = &sctx->rw_buffers[i].desc.atom; sctx->atoms.s.sampler_views[i] = &sctx->samplers[i].views.desc.atom; sctx->atoms.s.sampler_states[i] = &sctx->samplers[i].states.desc.atom; } si_init_descriptors(sctx, &sctx->vertex_buffers, si_get_shader_user_data_base(PIPE_SHADER_VERTEX) + SI_SGPR_VERTEX_BUFFER*4, 4, SI_NUM_VERTEX_BUFFERS, si_emit_shader_pointer); sctx->atoms.s.vertex_buffers = &sctx->vertex_buffers.atom; /* Set pipe_context functions. */ sctx->b.b.set_constant_buffer = si_set_constant_buffer; sctx->b.b.set_sampler_views = si_set_sampler_views; sctx->b.b.set_stream_output_targets = si_set_streamout_targets; sctx->b.clear_buffer = si_clear_buffer; sctx->b.invalidate_buffer = si_invalidate_buffer; } void si_release_all_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_release_buffer_resources(&sctx->const_buffers[i]); si_release_buffer_resources(&sctx->rw_buffers[i]); si_release_sampler_views(&sctx->samplers[i].views); si_release_descriptors(&sctx->samplers[i].states.desc); } si_release_descriptors(&sctx->vertex_buffers); } void si_all_descriptors_begin_new_cs(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_buffer_resources_begin_new_cs(sctx, &sctx->const_buffers[i]); si_buffer_resources_begin_new_cs(sctx, &sctx->rw_buffers[i]); si_sampler_views_begin_new_cs(sctx, &sctx->samplers[i].views); si_sampler_states_begin_new_cs(sctx, &sctx->samplers[i].states); } si_vertex_buffers_begin_new_cs(sctx); }