/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Marek Olšák */ /* Resource binding slots and sampler states (each described with 8 or * 4 dwords) are stored in lists in memory which is accessed by shaders * using scalar load instructions. * * This file is responsible for managing such lists. It keeps a copy of all * descriptors in CPU memory and re-uploads a whole list if some slots have * been changed. * * This code is also reponsible for updating shader pointers to those lists. * * Note that CP DMA can't be used for updating the lists, because a GPU hang * could leave the list in a mid-IB state and the next IB would get wrong * descriptors and the whole context would be unusable at that point. * (Note: The register shadowing can't be used due to the same reason) * * Also, uploading descriptors to newly allocated memory doesn't require * a KCACHE flush. * * * Possible scenarios for one 16 dword image+sampler slot: * * | Image | w/ FMASK | Buffer | NULL * [ 0: 3] Image[0:3] | Image[0:3] | Null[0:3] | Null[0:3] * [ 4: 7] Image[4:7] | Image[4:7] | Buffer[0:3] | 0 * [ 8:11] Null[0:3] | Fmask[0:3] | Null[0:3] | Null[0:3] * [12:15] Sampler[0:3] | Fmask[4:7] | Sampler[0:3] | Sampler[0:3] * * FMASK implies MSAA, therefore no sampler state. * Sampler states are never unbound except when FMASK is bound. */ #include "radeon/r600_cs.h" #include "si_pipe.h" #include "sid.h" #include "util/u_format.h" #include "util/u_memory.h" #include "util/u_upload_mgr.h" /* NULL image and buffer descriptor for textures (alpha = 1) and images * (alpha = 0). * * For images, all fields must be zero except for the swizzle, which * supports arbitrary combinations of 0s and 1s. The texture type must be * any valid type (e.g. 1D). If the texture type isn't set, the hw hangs. * * For buffers, all fields must be zero. If they are not, the hw hangs. * * This is the only reason why the buffer descriptor must be in words [4:7]. */ static uint32_t null_texture_descriptor[8] = { 0, 0, 0, S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_1) | S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D) /* the rest must contain zeros, which is also used by the buffer * descriptor */ }; static uint32_t null_image_descriptor[8] = { 0, 0, 0, S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D) /* the rest must contain zeros, which is also used by the buffer * descriptor */ }; static void si_init_descriptors(struct si_descriptors *desc, unsigned shader_userdata_index, unsigned element_dw_size, unsigned num_elements, const uint32_t *null_descriptor, unsigned *ce_offset) { int i; assert(num_elements <= sizeof(desc->dirty_mask)*8); desc->list = CALLOC(num_elements, element_dw_size * 4); desc->element_dw_size = element_dw_size; desc->num_elements = num_elements; desc->dirty_mask = num_elements == 32 ? ~0u : (1u << num_elements) - 1; desc->shader_userdata_offset = shader_userdata_index * 4; if (ce_offset) { desc->ce_offset = *ce_offset; /* make sure that ce_offset stays 32 byte aligned */ *ce_offset += align(element_dw_size * num_elements * 4, 32); } /* Initialize the array to NULL descriptors if the element size is 8. */ if (null_descriptor) { assert(element_dw_size % 8 == 0); for (i = 0; i < num_elements * element_dw_size / 8; i++) memcpy(desc->list + i * 8, null_descriptor, 8 * 4); } } static void si_release_descriptors(struct si_descriptors *desc) { r600_resource_reference(&desc->buffer, NULL); FREE(desc->list); } static bool si_ce_upload(struct si_context *sctx, unsigned ce_offset, unsigned size, unsigned *out_offset, struct r600_resource **out_buf) { uint64_t va; u_suballocator_alloc(sctx->ce_suballocator, size, sctx->screen->b.info.tcc_cache_line_size, out_offset, (struct pipe_resource**)out_buf); if (!out_buf) return false; va = (*out_buf)->gpu_address + *out_offset; radeon_emit(sctx->ce_ib, PKT3(PKT3_DUMP_CONST_RAM, 3, 0)); radeon_emit(sctx->ce_ib, ce_offset); radeon_emit(sctx->ce_ib, size / 4); radeon_emit(sctx->ce_ib, va); radeon_emit(sctx->ce_ib, va >> 32); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, *out_buf, RADEON_USAGE_READWRITE, RADEON_PRIO_DESCRIPTORS); sctx->ce_need_synchronization = true; return true; } static void si_ce_reinitialize_descriptors(struct si_context *sctx, struct si_descriptors *desc) { if (desc->buffer) { struct r600_resource *buffer = (struct r600_resource*)desc->buffer; unsigned list_size = desc->num_elements * desc->element_dw_size * 4; uint64_t va = buffer->gpu_address + desc->buffer_offset; struct radeon_winsys_cs *ib = sctx->ce_preamble_ib; if (!ib) ib = sctx->ce_ib; list_size = align(list_size, 32); radeon_emit(ib, PKT3(PKT3_LOAD_CONST_RAM, 3, 0)); radeon_emit(ib, va); radeon_emit(ib, va >> 32); radeon_emit(ib, list_size / 4); radeon_emit(ib, desc->ce_offset); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } desc->ce_ram_dirty = false; } void si_ce_reinitialize_all_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_DESCS; ++i) si_ce_reinitialize_descriptors(sctx, &sctx->descriptors[i]); } void si_ce_enable_loads(struct radeon_winsys_cs *ib) { radeon_emit(ib, PKT3(PKT3_CONTEXT_CONTROL, 1, 0)); radeon_emit(ib, CONTEXT_CONTROL_LOAD_ENABLE(1) | CONTEXT_CONTROL_LOAD_CE_RAM(1)); radeon_emit(ib, CONTEXT_CONTROL_SHADOW_ENABLE(1)); } static bool si_upload_descriptors(struct si_context *sctx, struct si_descriptors *desc, struct r600_atom * atom) { unsigned list_size = desc->num_elements * desc->element_dw_size * 4; if (!desc->dirty_mask) return true; if (sctx->ce_ib) { uint32_t const* list = (uint32_t const*)desc->list; if (desc->ce_ram_dirty) si_ce_reinitialize_descriptors(sctx, desc); while(desc->dirty_mask) { int begin, count; u_bit_scan_consecutive_range(&desc->dirty_mask, &begin, &count); begin *= desc->element_dw_size; count *= desc->element_dw_size; radeon_emit(sctx->ce_ib, PKT3(PKT3_WRITE_CONST_RAM, count, 0)); radeon_emit(sctx->ce_ib, desc->ce_offset + begin * 4); radeon_emit_array(sctx->ce_ib, list + begin, count); } if (!si_ce_upload(sctx, desc->ce_offset, list_size, &desc->buffer_offset, &desc->buffer)) return false; } else { void *ptr; u_upload_alloc(sctx->b.b.const_uploader, 0, list_size, sctx->screen->b.info.tcc_cache_line_size, &desc->buffer_offset, (struct pipe_resource**)&desc->buffer, &ptr); if (!desc->buffer) return false; /* skip the draw call */ util_memcpy_cpu_to_le32(ptr, desc->list, list_size); desc->gpu_list = ptr; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } desc->dirty_mask = 0; if (atom) si_mark_atom_dirty(sctx, atom); return true; } static void si_descriptors_begin_new_cs(struct si_context *sctx, struct si_descriptors *desc) { desc->ce_ram_dirty = true; if (!desc->buffer) return; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } /* SAMPLER VIEWS */ static unsigned si_sampler_descriptors_idx(unsigned shader) { return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS + SI_SHADER_DESCS_SAMPLERS; } static struct si_descriptors * si_sampler_descriptors(struct si_context *sctx, unsigned shader) { return &sctx->descriptors[si_sampler_descriptors_idx(shader)]; } static void si_release_sampler_views(struct si_sampler_views *views) { int i; for (i = 0; i < ARRAY_SIZE(views->views); i++) { pipe_sampler_view_reference(&views->views[i], NULL); } } static void si_sampler_view_add_buffer(struct si_context *sctx, struct pipe_resource *resource, enum radeon_bo_usage usage, bool is_stencil_sampler, bool check_mem) { struct r600_resource *rres; struct r600_texture *rtex; enum radeon_bo_priority priority; if (!resource) return; if (resource->target != PIPE_BUFFER) { struct r600_texture *tex = (struct r600_texture*)resource; if (tex->is_depth && !r600_can_sample_zs(tex, is_stencil_sampler)) resource = &tex->flushed_depth_texture->resource.b.b; } rres = (struct r600_resource*)resource; priority = r600_get_sampler_view_priority(rres); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rres, usage, priority, check_mem); if (resource->target == PIPE_BUFFER) return; /* Now add separate DCC or HTILE. */ rtex = (struct r600_texture*)resource; if (rtex->dcc_separate_buffer) { radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rtex->dcc_separate_buffer, usage, RADEON_PRIO_DCC, check_mem); } if (rtex->htile_buffer && rtex->tc_compatible_htile && !is_stencil_sampler) { radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rtex->htile_buffer, usage, RADEON_PRIO_HTILE, check_mem); } } static void si_sampler_views_begin_new_cs(struct si_context *sctx, struct si_sampler_views *views) { unsigned mask = views->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); struct si_sampler_view *sview = (struct si_sampler_view *)views->views[i]; si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ, sview->is_stencil_sampler, false); } } /* Set buffer descriptor fields that can be changed by reallocations. */ static void si_set_buf_desc_address(struct r600_resource *buf, uint64_t offset, uint32_t *state) { uint64_t va = buf->gpu_address + offset; state[0] = va; state[1] &= C_008F04_BASE_ADDRESS_HI; state[1] |= S_008F04_BASE_ADDRESS_HI(va >> 32); } /* Set texture descriptor fields that can be changed by reallocations. * * \param tex texture * \param base_level_info information of the level of BASE_ADDRESS * \param base_level the level of BASE_ADDRESS * \param first_level pipe_sampler_view.u.tex.first_level * \param block_width util_format_get_blockwidth() * \param is_stencil select between separate Z & Stencil * \param state descriptor to update */ void si_set_mutable_tex_desc_fields(struct r600_texture *tex, const struct radeon_surf_level *base_level_info, unsigned base_level, unsigned first_level, unsigned block_width, bool is_stencil, uint32_t *state) { uint64_t va; unsigned pitch = base_level_info->nblk_x * block_width; if (tex->is_depth && !r600_can_sample_zs(tex, is_stencil)) { tex = tex->flushed_depth_texture; is_stencil = false; } va = tex->resource.gpu_address + base_level_info->offset; state[1] &= C_008F14_BASE_ADDRESS_HI; state[3] &= C_008F1C_TILING_INDEX; state[4] &= C_008F20_PITCH; state[6] &= C_008F28_COMPRESSION_EN; state[0] = va >> 8; state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40); state[3] |= S_008F1C_TILING_INDEX(si_tile_mode_index(tex, base_level, is_stencil)); state[4] |= S_008F20_PITCH(pitch - 1); if (tex->dcc_offset && first_level < tex->surface.num_dcc_levels) { state[6] |= S_008F28_COMPRESSION_EN(1); state[7] = ((!tex->dcc_separate_buffer ? tex->resource.gpu_address : 0) + tex->dcc_offset + base_level_info->dcc_offset) >> 8; } else if (tex->tc_compatible_htile) { state[6] |= S_008F28_COMPRESSION_EN(1); state[7] = tex->htile_buffer->gpu_address >> 8; } } static void si_set_sampler_view(struct si_context *sctx, unsigned shader, unsigned slot, struct pipe_sampler_view *view, bool disallow_early_out) { struct si_sampler_views *views = &sctx->samplers[shader].views; struct si_sampler_view *rview = (struct si_sampler_view*)view; struct si_descriptors *descs = si_sampler_descriptors(sctx, shader); uint32_t *desc = descs->list + slot * 16; if (views->views[slot] == view && !disallow_early_out) return; if (view) { struct r600_texture *rtex = (struct r600_texture *)view->texture; assert(rtex); /* views with texture == NULL aren't supported */ pipe_sampler_view_reference(&views->views[slot], view); memcpy(desc, rview->state, 8*4); if (rtex->resource.b.b.target == PIPE_BUFFER) { rtex->resource.bind_history |= PIPE_BIND_SAMPLER_VIEW; si_set_buf_desc_address(&rtex->resource, view->u.buf.offset, desc + 4); } else { bool is_separate_stencil = rtex->db_compatible && rview->is_stencil_sampler; si_set_mutable_tex_desc_fields(rtex, rview->base_level_info, rview->base_level, rview->base.u.tex.first_level, rview->block_width, is_separate_stencil, desc); } if (rtex->resource.b.b.target != PIPE_BUFFER && rtex->fmask.size) { memcpy(desc + 8, rview->fmask_state, 8*4); } else { /* Disable FMASK and bind sampler state in [12:15]. */ memcpy(desc + 8, null_texture_descriptor, 4*4); if (views->sampler_states[slot]) memcpy(desc + 12, views->sampler_states[slot]->val, 4*4); } views->enabled_mask |= 1u << slot; /* Since this can flush, it must be done after enabled_mask is * updated. */ si_sampler_view_add_buffer(sctx, view->texture, RADEON_USAGE_READ, rview->is_stencil_sampler, true); } else { pipe_sampler_view_reference(&views->views[slot], NULL); memcpy(desc, null_texture_descriptor, 8*4); /* Only clear the lower dwords of FMASK. */ memcpy(desc + 8, null_texture_descriptor, 4*4); /* Re-set the sampler state if we are transitioning from FMASK. */ if (views->sampler_states[slot]) memcpy(desc + 12, views->sampler_states[slot]->val, 4*4); views->enabled_mask &= ~(1u << slot); } descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << si_sampler_descriptors_idx(shader); } static bool is_compressed_colortex(struct r600_texture *rtex) { return rtex->cmask.size || rtex->fmask.size || (rtex->dcc_offset && rtex->dirty_level_mask); } static void si_update_compressed_tex_shader_mask(struct si_context *sctx, unsigned shader) { struct si_textures_info *samplers = &sctx->samplers[shader]; unsigned shader_bit = 1 << shader; if (samplers->depth_texture_mask || samplers->compressed_colortex_mask || sctx->images[shader].compressed_colortex_mask) sctx->compressed_tex_shader_mask |= shader_bit; else sctx->compressed_tex_shader_mask &= ~shader_bit; } static void si_set_sampler_views(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, struct pipe_sampler_view **views) { struct si_context *sctx = (struct si_context *)ctx; struct si_textures_info *samplers = &sctx->samplers[shader]; int i; if (!count || shader >= SI_NUM_SHADERS) return; for (i = 0; i < count; i++) { unsigned slot = start + i; if (!views || !views[i]) { samplers->depth_texture_mask &= ~(1u << slot); samplers->compressed_colortex_mask &= ~(1u << slot); si_set_sampler_view(sctx, shader, slot, NULL, false); continue; } si_set_sampler_view(sctx, shader, slot, views[i], false); if (views[i]->texture && views[i]->texture->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture*)views[i]->texture; struct si_sampler_view *rview = (struct si_sampler_view *)views[i]; if (rtex->db_compatible && (!rtex->tc_compatible_htile || rview->is_stencil_sampler)) { samplers->depth_texture_mask |= 1u << slot; } else { samplers->depth_texture_mask &= ~(1u << slot); } if (is_compressed_colortex(rtex)) { samplers->compressed_colortex_mask |= 1u << slot; } else { samplers->compressed_colortex_mask &= ~(1u << slot); } if (rtex->dcc_offset && p_atomic_read(&rtex->framebuffers_bound)) sctx->need_check_render_feedback = true; } else { samplers->depth_texture_mask &= ~(1u << slot); samplers->compressed_colortex_mask &= ~(1u << slot); } } si_update_compressed_tex_shader_mask(sctx, shader); } static void si_samplers_update_compressed_colortex_mask(struct si_textures_info *samplers) { unsigned mask = samplers->views.enabled_mask; while (mask) { int i = u_bit_scan(&mask); struct pipe_resource *res = samplers->views.views[i]->texture; if (res && res->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture *)res; if (is_compressed_colortex(rtex)) { samplers->compressed_colortex_mask |= 1u << i; } else { samplers->compressed_colortex_mask &= ~(1u << i); } } } } /* IMAGE VIEWS */ static unsigned si_image_descriptors_idx(unsigned shader) { return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS + SI_SHADER_DESCS_IMAGES; } static struct si_descriptors* si_image_descriptors(struct si_context *sctx, unsigned shader) { return &sctx->descriptors[si_image_descriptors_idx(shader)]; } static void si_release_image_views(struct si_images_info *images) { unsigned i; for (i = 0; i < SI_NUM_IMAGES; ++i) { struct pipe_image_view *view = &images->views[i]; pipe_resource_reference(&view->resource, NULL); } } static void si_image_views_begin_new_cs(struct si_context *sctx, struct si_images_info *images) { uint mask = images->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); struct pipe_image_view *view = &images->views[i]; assert(view->resource); si_sampler_view_add_buffer(sctx, view->resource, RADEON_USAGE_READWRITE, false, false); } } static void si_disable_shader_image(struct si_context *ctx, unsigned shader, unsigned slot) { struct si_images_info *images = &ctx->images[shader]; if (images->enabled_mask & (1u << slot)) { struct si_descriptors *descs = si_image_descriptors(ctx, shader); pipe_resource_reference(&images->views[slot].resource, NULL); images->compressed_colortex_mask &= ~(1 << slot); memcpy(descs->list + slot*8, null_image_descriptor, 8*4); images->enabled_mask &= ~(1u << slot); descs->dirty_mask |= 1u << slot; ctx->descriptors_dirty |= 1u << si_image_descriptors_idx(shader); } } static void si_mark_image_range_valid(const struct pipe_image_view *view) { struct r600_resource *res = (struct r600_resource *)view->resource; assert(res && res->b.b.target == PIPE_BUFFER); util_range_add(&res->valid_buffer_range, view->u.buf.offset, view->u.buf.offset + view->u.buf.size); } static void si_set_shader_image(struct si_context *ctx, unsigned shader, unsigned slot, const struct pipe_image_view *view, bool skip_decompress) { struct si_screen *screen = ctx->screen; struct si_images_info *images = &ctx->images[shader]; struct si_descriptors *descs = si_image_descriptors(ctx, shader); struct r600_resource *res; uint32_t *desc = descs->list + slot * 8; if (!view || !view->resource) { si_disable_shader_image(ctx, shader, slot); return; } res = (struct r600_resource *)view->resource; if (&images->views[slot] != view) util_copy_image_view(&images->views[slot], view); if (res->b.b.target == PIPE_BUFFER) { if (view->access & PIPE_IMAGE_ACCESS_WRITE) si_mark_image_range_valid(view); si_make_buffer_descriptor(screen, res, view->format, view->u.buf.offset, view->u.buf.size, descs->list + slot * 8); si_set_buf_desc_address(res, view->u.buf.offset, desc + 4); images->compressed_colortex_mask &= ~(1 << slot); res->bind_history |= PIPE_BIND_SHADER_IMAGE; } else { static const unsigned char swizzle[4] = { 0, 1, 2, 3 }; struct r600_texture *tex = (struct r600_texture *)res; unsigned level = view->u.tex.level; unsigned width, height, depth; bool uses_dcc = tex->dcc_offset && level < tex->surface.num_dcc_levels; assert(!tex->is_depth); assert(tex->fmask.size == 0); if (uses_dcc && !skip_decompress && (view->access & PIPE_IMAGE_ACCESS_WRITE || !vi_dcc_formats_compatible(res->b.b.format, view->format))) { /* If DCC can't be disabled, at least decompress it. * The decompression is relatively cheap if the surface * has been decompressed already. */ if (r600_texture_disable_dcc(&ctx->b, tex)) uses_dcc = false; else ctx->b.decompress_dcc(&ctx->b.b, tex); } if (is_compressed_colortex(tex)) { images->compressed_colortex_mask |= 1 << slot; } else { images->compressed_colortex_mask &= ~(1 << slot); } if (uses_dcc && p_atomic_read(&tex->framebuffers_bound)) ctx->need_check_render_feedback = true; /* Always force the base level to the selected level. * * This is required for 3D textures, where otherwise * selecting a single slice for non-layered bindings * fails. It doesn't hurt the other targets. */ width = u_minify(res->b.b.width0, level); height = u_minify(res->b.b.height0, level); depth = u_minify(res->b.b.depth0, level); si_make_texture_descriptor(screen, tex, false, res->b.b.target, view->format, swizzle, 0, 0, view->u.tex.first_layer, view->u.tex.last_layer, width, height, depth, desc, NULL); si_set_mutable_tex_desc_fields(tex, &tex->surface.level[level], level, level, util_format_get_blockwidth(view->format), false, desc); } images->enabled_mask |= 1u << slot; descs->dirty_mask |= 1u << slot; ctx->descriptors_dirty |= 1u << si_image_descriptors_idx(shader); /* Since this can flush, it must be done after enabled_mask is updated. */ si_sampler_view_add_buffer(ctx, &res->b.b, RADEON_USAGE_READWRITE, false, true); } static void si_set_shader_images(struct pipe_context *pipe, enum pipe_shader_type shader, unsigned start_slot, unsigned count, const struct pipe_image_view *views) { struct si_context *ctx = (struct si_context *)pipe; unsigned i, slot; assert(shader < SI_NUM_SHADERS); if (!count) return; assert(start_slot + count <= SI_NUM_IMAGES); if (views) { for (i = 0, slot = start_slot; i < count; ++i, ++slot) si_set_shader_image(ctx, shader, slot, &views[i], false); } else { for (i = 0, slot = start_slot; i < count; ++i, ++slot) si_set_shader_image(ctx, shader, slot, NULL, false); } si_update_compressed_tex_shader_mask(ctx, shader); } static void si_images_update_compressed_colortex_mask(struct si_images_info *images) { unsigned mask = images->enabled_mask; while (mask) { int i = u_bit_scan(&mask); struct pipe_resource *res = images->views[i].resource; if (res && res->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture *)res; if (is_compressed_colortex(rtex)) { images->compressed_colortex_mask |= 1 << i; } else { images->compressed_colortex_mask &= ~(1 << i); } } } } /* SAMPLER STATES */ static void si_bind_sampler_states(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, void **states) { struct si_context *sctx = (struct si_context *)ctx; struct si_textures_info *samplers = &sctx->samplers[shader]; struct si_descriptors *desc = si_sampler_descriptors(sctx, shader); struct si_sampler_state **sstates = (struct si_sampler_state**)states; int i; if (!count || shader >= SI_NUM_SHADERS) return; for (i = 0; i < count; i++) { unsigned slot = start + i; if (!sstates[i] || sstates[i] == samplers->views.sampler_states[slot]) continue; #ifdef DEBUG assert(sstates[i]->magic == SI_SAMPLER_STATE_MAGIC); #endif samplers->views.sampler_states[slot] = sstates[i]; /* If FMASK is bound, don't overwrite it. * The sampler state will be set after FMASK is unbound. */ if (samplers->views.views[slot] && samplers->views.views[slot]->texture && samplers->views.views[slot]->texture->target != PIPE_BUFFER && ((struct r600_texture*)samplers->views.views[slot]->texture)->fmask.size) continue; memcpy(desc->list + slot * 16 + 12, sstates[i]->val, 4*4); desc->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << si_sampler_descriptors_idx(shader); } } /* BUFFER RESOURCES */ static void si_init_buffer_resources(struct si_buffer_resources *buffers, struct si_descriptors *descs, unsigned num_buffers, unsigned shader_userdata_index, enum radeon_bo_usage shader_usage, enum radeon_bo_priority priority, unsigned *ce_offset) { buffers->shader_usage = shader_usage; buffers->priority = priority; buffers->buffers = CALLOC(num_buffers, sizeof(struct pipe_resource*)); si_init_descriptors(descs, shader_userdata_index, 4, num_buffers, NULL, ce_offset); } static void si_release_buffer_resources(struct si_buffer_resources *buffers, struct si_descriptors *descs) { int i; for (i = 0; i < descs->num_elements; i++) { pipe_resource_reference(&buffers->buffers[i], NULL); } FREE(buffers->buffers); } static void si_buffer_resources_begin_new_cs(struct si_context *sctx, struct si_buffer_resources *buffers) { unsigned mask = buffers->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffers->buffers[i], buffers->shader_usage, buffers->priority); } } static void si_get_buffer_from_descriptors(struct si_buffer_resources *buffers, struct si_descriptors *descs, unsigned idx, struct pipe_resource **buf, unsigned *offset, unsigned *size) { pipe_resource_reference(buf, buffers->buffers[idx]); if (*buf) { struct r600_resource *res = r600_resource(*buf); const uint32_t *desc = descs->list + idx * 4; uint64_t va; *size = desc[2]; assert(G_008F04_STRIDE(desc[1]) == 0); va = ((uint64_t)desc[1] << 32) | desc[0]; assert(va >= res->gpu_address && va + *size <= res->gpu_address + res->bo_size); *offset = va - res->gpu_address; } } /* VERTEX BUFFERS */ static void si_vertex_buffers_begin_new_cs(struct si_context *sctx) { struct si_descriptors *desc = &sctx->vertex_buffers; int count = sctx->vertex_elements ? sctx->vertex_elements->count : 0; int i; for (i = 0; i < count; i++) { int vb = sctx->vertex_elements->elements[i].vertex_buffer_index; if (vb >= ARRAY_SIZE(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer) continue; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)sctx->vertex_buffer[vb].buffer, RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER); } if (!desc->buffer) return; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } bool si_upload_vertex_buffer_descriptors(struct si_context *sctx) { struct si_vertex_element *velems = sctx->vertex_elements; struct si_descriptors *desc = &sctx->vertex_buffers; unsigned i, count = velems->count; unsigned desc_list_byte_size = velems->desc_list_byte_size; uint64_t va; uint32_t *ptr; if (!sctx->vertex_buffers_dirty || !count || !velems) return true; unsigned first_vb_use_mask = velems->first_vb_use_mask; /* Vertex buffer descriptors are the only ones which are uploaded * directly through a staging buffer and don't go through * the fine-grained upload path. */ u_upload_alloc(sctx->b.b.const_uploader, 0, desc_list_byte_size, si_optimal_tcc_alignment(sctx, desc_list_byte_size), &desc->buffer_offset, (struct pipe_resource**)&desc->buffer, (void**)&ptr); if (!desc->buffer) return false; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); assert(count <= SI_MAX_ATTRIBS); for (i = 0; i < count; i++) { struct pipe_vertex_element *ve = &velems->elements[i]; struct pipe_vertex_buffer *vb; struct r600_resource *rbuffer; unsigned offset; unsigned vbo_index = ve->vertex_buffer_index; uint32_t *desc = &ptr[i*4]; vb = &sctx->vertex_buffer[vbo_index]; rbuffer = (struct r600_resource*)vb->buffer; if (!rbuffer) { memset(desc, 0, 16); continue; } offset = vb->buffer_offset + ve->src_offset; va = rbuffer->gpu_address + offset; /* Fill in T# buffer resource description */ desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(vb->stride); if (sctx->b.chip_class <= CIK && vb->stride) { /* Round up by rounding down and adding 1 */ desc[2] = (vb->buffer->width0 - offset - velems->format_size[i]) / vb->stride + 1; } else { desc[2] = vb->buffer->width0 - offset; } desc[3] = velems->rsrc_word3[i]; if (first_vb_use_mask & (1 << i)) { radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)vb->buffer, RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER); } } /* Don't flush the const cache. It would have a very negative effect * on performance (confirmed by testing). New descriptors are always * uploaded to a fresh new buffer, so I don't think flushing the const * cache is needed. */ si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); if (sctx->b.chip_class >= CIK) si_mark_atom_dirty(sctx, &sctx->prefetch_L2); sctx->vertex_buffers_dirty = false; sctx->vertex_buffer_pointer_dirty = true; return true; } /* CONSTANT BUFFERS */ static unsigned si_const_buffer_descriptors_idx(unsigned shader) { return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS + SI_SHADER_DESCS_CONST_BUFFERS; } static struct si_descriptors * si_const_buffer_descriptors(struct si_context *sctx, unsigned shader) { return &sctx->descriptors[si_const_buffer_descriptors_idx(shader)]; } void si_upload_const_buffer(struct si_context *sctx, struct r600_resource **rbuffer, const uint8_t *ptr, unsigned size, uint32_t *const_offset) { void *tmp; u_upload_alloc(sctx->b.b.const_uploader, 0, size, si_optimal_tcc_alignment(sctx, size), const_offset, (struct pipe_resource**)rbuffer, &tmp); if (*rbuffer) util_memcpy_cpu_to_le32(tmp, ptr, size); } static void si_set_constant_buffer(struct si_context *sctx, struct si_buffer_resources *buffers, unsigned descriptors_idx, uint slot, const struct pipe_constant_buffer *input) { struct si_descriptors *descs = &sctx->descriptors[descriptors_idx]; assert(slot < descs->num_elements); pipe_resource_reference(&buffers->buffers[slot], NULL); /* CIK cannot unbind a constant buffer (S_BUFFER_LOAD is buggy * with a NULL buffer). We need to use a dummy buffer instead. */ if (sctx->b.chip_class == CIK && (!input || (!input->buffer && !input->user_buffer))) input = &sctx->null_const_buf; if (input && (input->buffer || input->user_buffer)) { struct pipe_resource *buffer = NULL; uint64_t va; /* Upload the user buffer if needed. */ if (input->user_buffer) { unsigned buffer_offset; si_upload_const_buffer(sctx, (struct r600_resource**)&buffer, input->user_buffer, input->buffer_size, &buffer_offset); if (!buffer) { /* Just unbind on failure. */ si_set_constant_buffer(sctx, buffers, descriptors_idx, slot, NULL); return; } va = r600_resource(buffer)->gpu_address + buffer_offset; } else { pipe_resource_reference(&buffer, input->buffer); va = r600_resource(buffer)->gpu_address + input->buffer_offset; /* Only track usage for non-user buffers. */ r600_resource(buffer)->bind_history |= PIPE_BIND_CONSTANT_BUFFER; } /* Set the descriptor. */ uint32_t *desc = descs->list + slot*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = input->buffer_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); buffers->buffers[slot] = buffer; radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority, true); buffers->enabled_mask |= 1u << slot; } else { /* Clear the descriptor. */ memset(descs->list + slot*4, 0, sizeof(uint32_t) * 4); buffers->enabled_mask &= ~(1u << slot); } descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << descriptors_idx; } void si_set_rw_buffer(struct si_context *sctx, uint slot, const struct pipe_constant_buffer *input) { si_set_constant_buffer(sctx, &sctx->rw_buffers, SI_DESCS_RW_BUFFERS, slot, input); } static void si_pipe_set_constant_buffer(struct pipe_context *ctx, uint shader, uint slot, const struct pipe_constant_buffer *input) { struct si_context *sctx = (struct si_context *)ctx; if (shader >= SI_NUM_SHADERS) return; si_set_constant_buffer(sctx, &sctx->const_buffers[shader], si_const_buffer_descriptors_idx(shader), slot, input); } void si_get_pipe_constant_buffer(struct si_context *sctx, uint shader, uint slot, struct pipe_constant_buffer *cbuf) { cbuf->user_buffer = NULL; si_get_buffer_from_descriptors( &sctx->const_buffers[shader], si_const_buffer_descriptors(sctx, shader), slot, &cbuf->buffer, &cbuf->buffer_offset, &cbuf->buffer_size); } /* SHADER BUFFERS */ static unsigned si_shader_buffer_descriptors_idx(enum pipe_shader_type shader) { return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS + SI_SHADER_DESCS_SHADER_BUFFERS; } static struct si_descriptors * si_shader_buffer_descriptors(struct si_context *sctx, enum pipe_shader_type shader) { return &sctx->descriptors[si_shader_buffer_descriptors_idx(shader)]; } static void si_set_shader_buffers(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start_slot, unsigned count, const struct pipe_shader_buffer *sbuffers) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->shader_buffers[shader]; struct si_descriptors *descs = si_shader_buffer_descriptors(sctx, shader); unsigned i; assert(start_slot + count <= SI_NUM_SHADER_BUFFERS); for (i = 0; i < count; ++i) { const struct pipe_shader_buffer *sbuffer = sbuffers ? &sbuffers[i] : NULL; struct r600_resource *buf; unsigned slot = start_slot + i; uint32_t *desc = descs->list + slot * 4; uint64_t va; if (!sbuffer || !sbuffer->buffer) { pipe_resource_reference(&buffers->buffers[slot], NULL); memset(desc, 0, sizeof(uint32_t) * 4); buffers->enabled_mask &= ~(1u << slot); descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << si_shader_buffer_descriptors_idx(shader); continue; } buf = (struct r600_resource *)sbuffer->buffer; va = buf->gpu_address + sbuffer->buffer_offset; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = sbuffer->buffer_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); pipe_resource_reference(&buffers->buffers[slot], &buf->b.b); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, buf, buffers->shader_usage, buffers->priority, true); buf->bind_history |= PIPE_BIND_SHADER_BUFFER; buffers->enabled_mask |= 1u << slot; descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << si_shader_buffer_descriptors_idx(shader); } } void si_get_shader_buffers(struct si_context *sctx, uint shader, uint start_slot, uint count, struct pipe_shader_buffer *sbuf) { struct si_buffer_resources *buffers = &sctx->shader_buffers[shader]; struct si_descriptors *descs = si_shader_buffer_descriptors(sctx, shader); for (unsigned i = 0; i < count; ++i) { si_get_buffer_from_descriptors( buffers, descs, start_slot + i, &sbuf[i].buffer, &sbuf[i].buffer_offset, &sbuf[i].buffer_size); } } /* RING BUFFERS */ void si_set_ring_buffer(struct pipe_context *ctx, uint slot, struct pipe_resource *buffer, unsigned stride, unsigned num_records, bool add_tid, bool swizzle, unsigned element_size, unsigned index_stride, uint64_t offset) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; /* The stride field in the resource descriptor has 14 bits */ assert(stride < (1 << 14)); assert(slot < descs->num_elements); pipe_resource_reference(&buffers->buffers[slot], NULL); if (buffer) { uint64_t va; va = r600_resource(buffer)->gpu_address + offset; switch (element_size) { default: assert(!"Unsupported ring buffer element size"); case 0: case 2: element_size = 0; break; case 4: element_size = 1; break; case 8: element_size = 2; break; case 16: element_size = 3; break; } switch (index_stride) { default: assert(!"Unsupported ring buffer index stride"); case 0: case 8: index_stride = 0; break; case 16: index_stride = 1; break; case 32: index_stride = 2; break; case 64: index_stride = 3; break; } if (sctx->b.chip_class >= VI && stride) num_records *= stride; /* Set the descriptor. */ uint32_t *desc = descs->list + slot*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride) | S_008F04_SWIZZLE_ENABLE(swizzle); desc[2] = num_records; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(element_size) | S_008F0C_INDEX_STRIDE(index_stride) | S_008F0C_ADD_TID_ENABLE(add_tid); pipe_resource_reference(&buffers->buffers[slot], buffer); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority); buffers->enabled_mask |= 1u << slot; } else { /* Clear the descriptor. */ memset(descs->list + slot*4, 0, sizeof(uint32_t) * 4); buffers->enabled_mask &= ~(1u << slot); } descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS; } /* STREAMOUT BUFFERS */ static void si_set_streamout_targets(struct pipe_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; unsigned old_num_targets = sctx->b.streamout.num_targets; unsigned i, bufidx; /* We are going to unbind the buffers. Mark which caches need to be flushed. */ if (sctx->b.streamout.num_targets && sctx->b.streamout.begin_emitted) { /* Since streamout uses vector writes which go through TC L2 * and most other clients can use TC L2 as well, we don't need * to flush it. * * The only cases which requires flushing it is VGT DMA index * fetching (on <= CIK) and indirect draw data, which are rare * cases. Thus, flag the TC L2 dirtiness in the resource and * handle it at draw call time. */ for (i = 0; i < sctx->b.streamout.num_targets; i++) if (sctx->b.streamout.targets[i]) r600_resource(sctx->b.streamout.targets[i]->b.buffer)->TC_L2_dirty = true; /* Invalidate the scalar cache in case a streamout buffer is * going to be used as a constant buffer. * * Invalidate TC L1, because streamout bypasses it (done by * setting GLC=1 in the store instruction), but it can contain * outdated data of streamout buffers. * * VS_PARTIAL_FLUSH is required if the buffers are going to be * used as an input immediately. */ sctx->b.flags |= SI_CONTEXT_INV_SMEM_L1 | SI_CONTEXT_INV_VMEM_L1 | SI_CONTEXT_VS_PARTIAL_FLUSH; } /* All readers of the streamout targets need to be finished before we can * start writing to the targets. */ if (num_targets) sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH; /* Streamout buffers must be bound in 2 places: * 1) in VGT by setting the VGT_STRMOUT registers * 2) as shader resources */ /* Set the VGT regs. */ r600_set_streamout_targets(ctx, num_targets, targets, offsets); /* Set the shader resources.*/ for (i = 0; i < num_targets; i++) { bufidx = SI_VS_STREAMOUT_BUF0 + i; if (targets[i]) { struct pipe_resource *buffer = targets[i]->buffer; uint64_t va = r600_resource(buffer)->gpu_address; /* Set the descriptor. * * On VI, the format must be non-INVALID, otherwise * the buffer will be considered not bound and store * instructions will be no-ops. */ uint32_t *desc = descs->list + bufidx*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32); desc[2] = 0xffffffff; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); /* Set the resource. */ pipe_resource_reference(&buffers->buffers[bufidx], buffer); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, RADEON_PRIO_SHADER_RW_BUFFER, true); r600_resource(buffer)->bind_history |= PIPE_BIND_STREAM_OUTPUT; buffers->enabled_mask |= 1u << bufidx; } else { /* Clear the descriptor and unset the resource. */ memset(descs->list + bufidx*4, 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->enabled_mask &= ~(1u << bufidx); } descs->dirty_mask |= 1u << bufidx; } for (; i < old_num_targets; i++) { bufidx = SI_VS_STREAMOUT_BUF0 + i; /* Clear the descriptor and unset the resource. */ memset(descs->list + bufidx*4, 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->enabled_mask &= ~(1u << bufidx); descs->dirty_mask |= 1u << bufidx; } sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS; } static void si_desc_reset_buffer_offset(struct pipe_context *ctx, uint32_t *desc, uint64_t old_buf_va, struct pipe_resource *new_buf) { /* Retrieve the buffer offset from the descriptor. */ uint64_t old_desc_va = desc[0] | ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32); assert(old_buf_va <= old_desc_va); uint64_t offset_within_buffer = old_desc_va - old_buf_va; /* Update the descriptor. */ si_set_buf_desc_address(r600_resource(new_buf), offset_within_buffer, desc); } /* INTERNAL CONST BUFFERS */ static void si_set_polygon_stipple(struct pipe_context *ctx, const struct pipe_poly_stipple *state) { struct si_context *sctx = (struct si_context *)ctx; struct pipe_constant_buffer cb = {}; unsigned stipple[32]; int i; for (i = 0; i < 32; i++) stipple[i] = util_bitreverse(state->stipple[i]); cb.user_buffer = stipple; cb.buffer_size = sizeof(stipple); si_set_rw_buffer(sctx, SI_PS_CONST_POLY_STIPPLE, &cb); } /* TEXTURE METADATA ENABLE/DISABLE */ /* CMASK can be enabled (for fast clear) and disabled (for texture export) * while the texture is bound, possibly by a different context. In that case, * call this function to update compressed_colortex_masks. */ void si_update_compressed_colortex_masks(struct si_context *sctx) { for (int i = 0; i < SI_NUM_SHADERS; ++i) { si_samplers_update_compressed_colortex_mask(&sctx->samplers[i]); si_images_update_compressed_colortex_mask(&sctx->images[i]); si_update_compressed_tex_shader_mask(sctx, i); } } /* BUFFER DISCARD/INVALIDATION */ /** Reset descriptors of buffer resources after \p buf has been invalidated. */ static void si_reset_buffer_resources(struct si_context *sctx, struct si_buffer_resources *buffers, unsigned descriptors_idx, struct pipe_resource *buf, uint64_t old_va) { struct si_descriptors *descs = &sctx->descriptors[descriptors_idx]; unsigned mask = buffers->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (buffers->buffers[i] == buf) { si_desc_reset_buffer_offset(&sctx->b.b, descs->list + i*4, old_va, buf); descs->dirty_mask |= 1u << i; sctx->descriptors_dirty |= 1u << descriptors_idx; radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, (struct r600_resource *)buf, buffers->shader_usage, buffers->priority, true); } } } /* Reallocate a buffer a update all resource bindings where the buffer is * bound. * * This is used to avoid CPU-GPU synchronizations, because it makes the buffer * idle by discarding its contents. Apps usually tell us when to do this using * map_buffer flags, for example. */ static void si_invalidate_buffer(struct pipe_context *ctx, struct pipe_resource *buf) { struct si_context *sctx = (struct si_context*)ctx; struct r600_resource *rbuffer = r600_resource(buf); unsigned i, shader; uint64_t old_va = rbuffer->gpu_address; unsigned num_elems = sctx->vertex_elements ? sctx->vertex_elements->count : 0; /* Reallocate the buffer in the same pipe_resource. */ r600_alloc_resource(&sctx->screen->b, rbuffer); /* We changed the buffer, now we need to bind it where the old one * was bound. This consists of 2 things: * 1) Updating the resource descriptor and dirtying it. * 2) Adding a relocation to the CS, so that it's usable. */ /* Vertex buffers. */ if (rbuffer->bind_history & PIPE_BIND_VERTEX_BUFFER) { for (i = 0; i < num_elems; i++) { int vb = sctx->vertex_elements->elements[i].vertex_buffer_index; if (vb >= ARRAY_SIZE(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer) continue; if (sctx->vertex_buffer[vb].buffer == buf) { sctx->vertex_buffers_dirty = true; break; } } } /* Streamout buffers. (other internal buffers can't be invalidated) */ if (rbuffer->bind_history & PIPE_BIND_STREAM_OUTPUT) { for (i = SI_VS_STREAMOUT_BUF0; i <= SI_VS_STREAMOUT_BUF3; i++) { struct si_buffer_resources *buffers = &sctx->rw_buffers; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; if (buffers->buffers[i] != buf) continue; si_desc_reset_buffer_offset(ctx, descs->list + i*4, old_va, buf); descs->dirty_mask |= 1u << i; sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS; radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rbuffer, buffers->shader_usage, RADEON_PRIO_SHADER_RW_BUFFER, true); /* Update the streamout state. */ if (sctx->b.streamout.begin_emitted) r600_emit_streamout_end(&sctx->b); sctx->b.streamout.append_bitmask = sctx->b.streamout.enabled_mask; r600_streamout_buffers_dirty(&sctx->b); } } /* Constant and shader buffers. */ if (rbuffer->bind_history & PIPE_BIND_CONSTANT_BUFFER) { for (shader = 0; shader < SI_NUM_SHADERS; shader++) si_reset_buffer_resources(sctx, &sctx->const_buffers[shader], si_const_buffer_descriptors_idx(shader), buf, old_va); } if (rbuffer->bind_history & PIPE_BIND_SHADER_BUFFER) { for (shader = 0; shader < SI_NUM_SHADERS; shader++) si_reset_buffer_resources(sctx, &sctx->shader_buffers[shader], si_shader_buffer_descriptors_idx(shader), buf, old_va); } if (rbuffer->bind_history & PIPE_BIND_SAMPLER_VIEW) { /* Texture buffers - update bindings. */ for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_sampler_views *views = &sctx->samplers[shader].views; struct si_descriptors *descs = si_sampler_descriptors(sctx, shader); unsigned mask = views->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (views->views[i]->texture == buf) { si_desc_reset_buffer_offset(ctx, descs->list + i * 16 + 4, old_va, buf); descs->dirty_mask |= 1u << i; sctx->descriptors_dirty |= 1u << si_sampler_descriptors_idx(shader); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rbuffer, RADEON_USAGE_READ, RADEON_PRIO_SAMPLER_BUFFER, true); } } } } /* Shader images */ if (rbuffer->bind_history & PIPE_BIND_SHADER_IMAGE) { for (shader = 0; shader < SI_NUM_SHADERS; ++shader) { struct si_images_info *images = &sctx->images[shader]; struct si_descriptors *descs = si_image_descriptors(sctx, shader); unsigned mask = images->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (images->views[i].resource == buf) { if (images->views[i].access & PIPE_IMAGE_ACCESS_WRITE) si_mark_image_range_valid(&images->views[i]); si_desc_reset_buffer_offset( ctx, descs->list + i * 8 + 4, old_va, buf); descs->dirty_mask |= 1u << i; sctx->descriptors_dirty |= 1u << si_image_descriptors_idx(shader); radeon_add_to_buffer_list_check_mem( &sctx->b, &sctx->b.gfx, rbuffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SAMPLER_BUFFER, true); } } } } } /* Update mutable image descriptor fields of all bound textures. */ void si_update_all_texture_descriptors(struct si_context *sctx) { unsigned shader; for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_sampler_views *samplers = &sctx->samplers[shader].views; struct si_images_info *images = &sctx->images[shader]; unsigned mask; /* Images. */ mask = images->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); struct pipe_image_view *view = &images->views[i]; if (!view->resource || view->resource->target == PIPE_BUFFER) continue; si_set_shader_image(sctx, shader, i, view, true); } /* Sampler views. */ mask = samplers->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); struct pipe_sampler_view *view = samplers->views[i]; if (!view || !view->texture || view->texture->target == PIPE_BUFFER) continue; si_set_sampler_view(sctx, shader, i, samplers->views[i], true); } si_update_compressed_tex_shader_mask(sctx, shader); } } /* SHADER USER DATA */ static void si_mark_shader_pointers_dirty(struct si_context *sctx, unsigned shader) { sctx->shader_pointers_dirty |= u_bit_consecutive(SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS, SI_NUM_SHADER_DESCS); if (shader == PIPE_SHADER_VERTEX) sctx->vertex_buffer_pointer_dirty = sctx->vertex_buffers.buffer != NULL; si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); } static void si_shader_userdata_begin_new_cs(struct si_context *sctx) { sctx->shader_pointers_dirty = u_bit_consecutive(0, SI_NUM_DESCS); sctx->vertex_buffer_pointer_dirty = sctx->vertex_buffers.buffer != NULL; si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); } /* Set a base register address for user data constants in the given shader. * This assigns a mapping from PIPE_SHADER_* to SPI_SHADER_USER_DATA_*. */ static void si_set_user_data_base(struct si_context *sctx, unsigned shader, uint32_t new_base) { uint32_t *base = &sctx->shader_userdata.sh_base[shader]; if (*base != new_base) { *base = new_base; if (new_base) si_mark_shader_pointers_dirty(sctx, shader); } } /* This must be called when these shaders are changed from non-NULL to NULL * and vice versa: * - geometry shader * - tessellation control shader * - tessellation evaluation shader */ void si_shader_change_notify(struct si_context *sctx) { /* VS can be bound as VS, ES, or LS. */ if (sctx->tes_shader.cso) si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B530_SPI_SHADER_USER_DATA_LS_0); else if (sctx->gs_shader.cso) si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B330_SPI_SHADER_USER_DATA_ES_0); else si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0); /* TES can be bound as ES, VS, or not bound. */ if (sctx->tes_shader.cso) { if (sctx->gs_shader.cso) si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B330_SPI_SHADER_USER_DATA_ES_0); else si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B130_SPI_SHADER_USER_DATA_VS_0); } else { si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, 0); } } static void si_emit_shader_pointer(struct si_context *sctx, struct si_descriptors *desc, unsigned sh_base) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; uint64_t va; assert(desc->buffer); va = desc->buffer->gpu_address + desc->buffer_offset; radeon_emit(cs, PKT3(PKT3_SET_SH_REG, 2, 0)); radeon_emit(cs, (sh_base + desc->shader_userdata_offset - SI_SH_REG_OFFSET) >> 2); radeon_emit(cs, va); radeon_emit(cs, va >> 32); } void si_emit_graphics_shader_userdata(struct si_context *sctx, struct r600_atom *atom) { unsigned mask; uint32_t *sh_base = sctx->shader_userdata.sh_base; struct si_descriptors *descs; descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; if (sctx->shader_pointers_dirty & (1 << SI_DESCS_RW_BUFFERS)) { si_emit_shader_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0); si_emit_shader_pointer(sctx, descs, R_00B130_SPI_SHADER_USER_DATA_VS_0); si_emit_shader_pointer(sctx, descs, R_00B230_SPI_SHADER_USER_DATA_GS_0); si_emit_shader_pointer(sctx, descs, R_00B330_SPI_SHADER_USER_DATA_ES_0); si_emit_shader_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_HS_0); } mask = sctx->shader_pointers_dirty & u_bit_consecutive(SI_DESCS_FIRST_SHADER, SI_DESCS_FIRST_COMPUTE - SI_DESCS_FIRST_SHADER); while (mask) { unsigned i = u_bit_scan(&mask); unsigned shader = (i - SI_DESCS_FIRST_SHADER) / SI_NUM_SHADER_DESCS; unsigned base = sh_base[shader]; if (base) si_emit_shader_pointer(sctx, descs + i, base); } sctx->shader_pointers_dirty &= ~u_bit_consecutive(SI_DESCS_RW_BUFFERS, SI_DESCS_FIRST_COMPUTE); if (sctx->vertex_buffer_pointer_dirty) { si_emit_shader_pointer(sctx, &sctx->vertex_buffers, sh_base[PIPE_SHADER_VERTEX]); sctx->vertex_buffer_pointer_dirty = false; } } void si_emit_compute_shader_userdata(struct si_context *sctx) { unsigned base = R_00B900_COMPUTE_USER_DATA_0; struct si_descriptors *descs = sctx->descriptors; unsigned compute_mask = u_bit_consecutive(SI_DESCS_FIRST_COMPUTE, SI_NUM_SHADER_DESCS); unsigned mask = sctx->shader_pointers_dirty & compute_mask; while (mask) { unsigned i = u_bit_scan(&mask); si_emit_shader_pointer(sctx, descs + i, base); } sctx->shader_pointers_dirty &= ~compute_mask; } /* INIT/DEINIT/UPLOAD */ void si_init_all_descriptors(struct si_context *sctx) { int i; unsigned ce_offset = 0; for (i = 0; i < SI_NUM_SHADERS; i++) { si_init_buffer_resources(&sctx->const_buffers[i], si_const_buffer_descriptors(sctx, i), SI_NUM_CONST_BUFFERS, SI_SGPR_CONST_BUFFERS, RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER, &ce_offset); si_init_buffer_resources(&sctx->shader_buffers[i], si_shader_buffer_descriptors(sctx, i), SI_NUM_SHADER_BUFFERS, SI_SGPR_SHADER_BUFFERS, RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RW_BUFFER, &ce_offset); si_init_descriptors(si_sampler_descriptors(sctx, i), SI_SGPR_SAMPLERS, 16, SI_NUM_SAMPLERS, null_texture_descriptor, &ce_offset); si_init_descriptors(si_image_descriptors(sctx, i), SI_SGPR_IMAGES, 8, SI_NUM_IMAGES, null_image_descriptor, &ce_offset); } si_init_buffer_resources(&sctx->rw_buffers, &sctx->descriptors[SI_DESCS_RW_BUFFERS], SI_NUM_RW_BUFFERS, SI_SGPR_RW_BUFFERS, RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS, &ce_offset); si_init_descriptors(&sctx->vertex_buffers, SI_SGPR_VERTEX_BUFFERS, 4, SI_NUM_VERTEX_BUFFERS, NULL, NULL); sctx->descriptors_dirty = u_bit_consecutive(0, SI_NUM_DESCS); assert(ce_offset <= 32768); /* Set pipe_context functions. */ sctx->b.b.bind_sampler_states = si_bind_sampler_states; sctx->b.b.set_shader_images = si_set_shader_images; sctx->b.b.set_constant_buffer = si_pipe_set_constant_buffer; sctx->b.b.set_polygon_stipple = si_set_polygon_stipple; sctx->b.b.set_shader_buffers = si_set_shader_buffers; sctx->b.b.set_sampler_views = si_set_sampler_views; sctx->b.b.set_stream_output_targets = si_set_streamout_targets; sctx->b.invalidate_buffer = si_invalidate_buffer; /* Shader user data. */ si_init_atom(sctx, &sctx->shader_userdata.atom, &sctx->atoms.s.shader_userdata, si_emit_graphics_shader_userdata); /* Set default and immutable mappings. */ si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0); si_set_user_data_base(sctx, PIPE_SHADER_TESS_CTRL, R_00B430_SPI_SHADER_USER_DATA_HS_0); si_set_user_data_base(sctx, PIPE_SHADER_GEOMETRY, R_00B230_SPI_SHADER_USER_DATA_GS_0); si_set_user_data_base(sctx, PIPE_SHADER_FRAGMENT, R_00B030_SPI_SHADER_USER_DATA_PS_0); } bool si_upload_graphics_shader_descriptors(struct si_context *sctx) { const unsigned mask = u_bit_consecutive(0, SI_DESCS_FIRST_COMPUTE); unsigned dirty = sctx->descriptors_dirty & mask; /* Assume nothing will go wrong: */ sctx->shader_pointers_dirty |= dirty; while (dirty) { unsigned i = u_bit_scan(&dirty); if (!si_upload_descriptors(sctx, &sctx->descriptors[i], &sctx->shader_userdata.atom)) return false; } sctx->descriptors_dirty &= ~mask; return true; } bool si_upload_compute_shader_descriptors(struct si_context *sctx) { /* Does not update rw_buffers as that is not needed for compute shaders * and the input buffer is using the same SGPR's anyway. */ const unsigned mask = u_bit_consecutive(SI_DESCS_FIRST_COMPUTE, SI_NUM_DESCS - SI_DESCS_FIRST_COMPUTE); unsigned dirty = sctx->descriptors_dirty & mask; /* Assume nothing will go wrong: */ sctx->shader_pointers_dirty |= dirty; while (dirty) { unsigned i = u_bit_scan(&dirty); if (!si_upload_descriptors(sctx, &sctx->descriptors[i], NULL)) return false; } sctx->descriptors_dirty &= ~mask; return true; } void si_release_all_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_release_buffer_resources(&sctx->const_buffers[i], si_const_buffer_descriptors(sctx, i)); si_release_buffer_resources(&sctx->shader_buffers[i], si_shader_buffer_descriptors(sctx, i)); si_release_sampler_views(&sctx->samplers[i].views); si_release_image_views(&sctx->images[i]); } si_release_buffer_resources(&sctx->rw_buffers, &sctx->descriptors[SI_DESCS_RW_BUFFERS]); for (i = 0; i < SI_NUM_DESCS; ++i) si_release_descriptors(&sctx->descriptors[i]); si_release_descriptors(&sctx->vertex_buffers); } void si_all_descriptors_begin_new_cs(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_buffer_resources_begin_new_cs(sctx, &sctx->const_buffers[i]); si_buffer_resources_begin_new_cs(sctx, &sctx->shader_buffers[i]); si_sampler_views_begin_new_cs(sctx, &sctx->samplers[i].views); si_image_views_begin_new_cs(sctx, &sctx->images[i]); } si_buffer_resources_begin_new_cs(sctx, &sctx->rw_buffers); si_vertex_buffers_begin_new_cs(sctx); for (i = 0; i < SI_NUM_DESCS; ++i) si_descriptors_begin_new_cs(sctx, &sctx->descriptors[i]); si_shader_userdata_begin_new_cs(sctx); }