/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Marek Olšák */ /* Resource binding slots and sampler states (each described with 8 or * 4 dwords) are stored in lists in memory which is accessed by shaders * using scalar load instructions. * * This file is responsible for managing such lists. It keeps a copy of all * descriptors in CPU memory and re-uploads a whole list if some slots have * been changed. * * This code is also reponsible for updating shader pointers to those lists. * * Note that CP DMA can't be used for updating the lists, because a GPU hang * could leave the list in a mid-IB state and the next IB would get wrong * descriptors and the whole context would be unusable at that point. * (Note: The register shadowing can't be used due to the same reason) * * Also, uploading descriptors to newly allocated memory doesn't require * a KCACHE flush. * * * Possible scenarios for one 16 dword image+sampler slot: * * | Image | w/ FMASK | Buffer | NULL * [ 0: 3] Image[0:3] | Image[0:3] | Null[0:3] | Null[0:3] * [ 4: 7] Image[4:7] | Image[4:7] | Buffer[0:3] | 0 * [ 8:11] Null[0:3] | Fmask[0:3] | Null[0:3] | Null[0:3] * [12:15] Sampler[0:3] | Fmask[4:7] | Sampler[0:3] | Sampler[0:3] * * FMASK implies MSAA, therefore no sampler state. * Sampler states are never unbound except when FMASK is bound. */ #include "radeon/r600_cs.h" #include "si_pipe.h" #include "sid.h" #include "gfx9d.h" #include "util/hash_table.h" #include "util/u_format.h" #include "util/u_memory.h" #include "util/u_upload_mgr.h" /* NULL image and buffer descriptor for textures (alpha = 1) and images * (alpha = 0). * * For images, all fields must be zero except for the swizzle, which * supports arbitrary combinations of 0s and 1s. The texture type must be * any valid type (e.g. 1D). If the texture type isn't set, the hw hangs. * * For buffers, all fields must be zero. If they are not, the hw hangs. * * This is the only reason why the buffer descriptor must be in words [4:7]. */ static uint32_t null_texture_descriptor[8] = { 0, 0, 0, S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_1) | S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D) /* the rest must contain zeros, which is also used by the buffer * descriptor */ }; static uint32_t null_image_descriptor[8] = { 0, 0, 0, S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D) /* the rest must contain zeros, which is also used by the buffer * descriptor */ }; static void si_init_descriptor_list(uint32_t *desc_list, unsigned element_dw_size, unsigned num_elements, const uint32_t *null_descriptor) { int i; /* Initialize the array to NULL descriptors if the element size is 8. */ if (null_descriptor) { assert(element_dw_size % 8 == 0); for (i = 0; i < num_elements * element_dw_size / 8; i++) memcpy(desc_list + i * 8, null_descriptor, 8 * 4); } } static void si_init_descriptors(struct si_context *sctx, struct si_descriptors *desc, unsigned shader_userdata_index, unsigned element_dw_size, unsigned num_elements, unsigned first_ce_slot, unsigned num_ce_slots, unsigned *ce_offset) { assert(num_elements <= sizeof(desc->dirty_mask)*8); desc->list = CALLOC(num_elements, element_dw_size * 4); desc->element_dw_size = element_dw_size; desc->num_elements = num_elements; desc->first_ce_slot = sctx->ce_ib ? first_ce_slot : 0; desc->num_ce_slots = sctx->ce_ib ? num_ce_slots : 0; desc->dirty_mask = u_bit_consecutive64(0, num_elements); desc->shader_userdata_offset = shader_userdata_index * 4; if (desc->num_ce_slots) { desc->uses_ce = true; desc->ce_offset = *ce_offset; *ce_offset += element_dw_size * desc->num_ce_slots * 4; } } static void si_release_descriptors(struct si_descriptors *desc) { r600_resource_reference(&desc->buffer, NULL); FREE(desc->list); } static bool si_ce_upload(struct si_context *sctx, unsigned ce_offset, unsigned size, unsigned *out_offset, struct r600_resource **out_buf) { uint64_t va; u_suballocator_alloc(sctx->ce_suballocator, size, si_optimal_tcc_alignment(sctx, size), out_offset, (struct pipe_resource**)out_buf); if (!out_buf) return false; va = (*out_buf)->gpu_address + *out_offset; radeon_emit(sctx->ce_ib, PKT3(PKT3_DUMP_CONST_RAM, 3, 0)); radeon_emit(sctx->ce_ib, ce_offset); radeon_emit(sctx->ce_ib, size / 4); radeon_emit(sctx->ce_ib, va); radeon_emit(sctx->ce_ib, va >> 32); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, *out_buf, RADEON_USAGE_READWRITE, RADEON_PRIO_DESCRIPTORS); sctx->ce_need_synchronization = true; return true; } void si_ce_save_all_descriptors_at_ib_end(struct si_context* sctx) { bool success = si_ce_upload(sctx, 0, sctx->total_ce_ram_allocated, &sctx->ce_ram_saved_offset, &sctx->ce_ram_saved_buffer); (void)success; assert(success); } void si_ce_restore_all_descriptors_at_ib_start(struct si_context *sctx) { if (!sctx->ce_ram_saved_buffer) return; struct radeon_winsys_cs *ib = sctx->ce_preamble_ib; if (!ib) ib = sctx->ce_ib; uint64_t va = sctx->ce_ram_saved_buffer->gpu_address + sctx->ce_ram_saved_offset; radeon_emit(ib, PKT3(PKT3_LOAD_CONST_RAM, 3, 0)); radeon_emit(ib, va); radeon_emit(ib, va >> 32); radeon_emit(ib, sctx->total_ce_ram_allocated / 4); radeon_emit(ib, 0); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, sctx->ce_ram_saved_buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } void si_ce_enable_loads(struct radeon_winsys_cs *ib) { radeon_emit(ib, PKT3(PKT3_CONTEXT_CONTROL, 1, 0)); radeon_emit(ib, CONTEXT_CONTROL_LOAD_ENABLE(1) | CONTEXT_CONTROL_LOAD_CE_RAM(1)); radeon_emit(ib, CONTEXT_CONTROL_SHADOW_ENABLE(1)); } static bool si_upload_descriptors(struct si_context *sctx, struct si_descriptors *desc, struct r600_atom * atom) { unsigned slot_size = desc->element_dw_size * 4; unsigned first_slot_offset = desc->first_active_slot * slot_size; unsigned upload_size = desc->num_active_slots * slot_size; /* Skip the upload if no shader is using the descriptors. dirty_mask * will stay dirty and the descriptors will be uploaded when there is * a shader using them. */ if (!upload_size) return true; if (desc->uses_ce) { const uint32_t *list = desc->list + desc->first_ce_slot * desc->element_dw_size; uint64_t mask = (desc->dirty_mask >> desc->first_ce_slot) & u_bit_consecutive64(0, desc->num_ce_slots); while (mask) { int begin, count; u_bit_scan_consecutive_range64(&mask, &begin, &count); begin *= desc->element_dw_size; count *= desc->element_dw_size; radeon_emit(sctx->ce_ib, PKT3(PKT3_WRITE_CONST_RAM, count, 0)); radeon_emit(sctx->ce_ib, desc->ce_offset + begin * 4); radeon_emit_array(sctx->ce_ib, list + begin, count); } if (!si_ce_upload(sctx, desc->ce_offset + (first_slot_offset - desc->first_ce_slot * slot_size), upload_size, (unsigned*)&desc->buffer_offset, &desc->buffer)) return false; } else { uint32_t *ptr; u_upload_alloc(sctx->b.b.const_uploader, 0, upload_size, si_optimal_tcc_alignment(sctx, upload_size), (unsigned*)&desc->buffer_offset, (struct pipe_resource**)&desc->buffer, (void**)&ptr); if (!desc->buffer) return false; /* skip the draw call */ util_memcpy_cpu_to_le32(ptr, (char*)desc->list + first_slot_offset, upload_size); desc->gpu_list = ptr - first_slot_offset / 4; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } /* The shader pointer should point to slot 0. */ desc->buffer_offset -= first_slot_offset; desc->dirty_mask = 0; if (atom) si_mark_atom_dirty(sctx, atom); return true; } static void si_descriptors_begin_new_cs(struct si_context *sctx, struct si_descriptors *desc) { if (!desc->buffer) return; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } /* SAMPLER VIEWS */ static unsigned si_sampler_and_image_descriptors_idx(unsigned shader) { return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS + SI_SHADER_DESCS_SAMPLERS_AND_IMAGES; } static struct si_descriptors * si_sampler_and_image_descriptors(struct si_context *sctx, unsigned shader) { return &sctx->descriptors[si_sampler_and_image_descriptors_idx(shader)]; } static void si_release_sampler_views(struct si_sampler_views *views) { int i; for (i = 0; i < ARRAY_SIZE(views->views); i++) { pipe_sampler_view_reference(&views->views[i], NULL); } } static void si_sampler_view_add_buffer(struct si_context *sctx, struct pipe_resource *resource, enum radeon_bo_usage usage, bool is_stencil_sampler, bool check_mem) { struct r600_resource *rres; struct r600_texture *rtex; enum radeon_bo_priority priority; if (!resource) return; if (resource->target != PIPE_BUFFER) { struct r600_texture *tex = (struct r600_texture*)resource; if (tex->is_depth && !r600_can_sample_zs(tex, is_stencil_sampler)) resource = &tex->flushed_depth_texture->resource.b.b; } rres = (struct r600_resource*)resource; priority = r600_get_sampler_view_priority(rres); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rres, usage, priority, check_mem); if (resource->target == PIPE_BUFFER) return; /* Now add separate DCC or HTILE. */ rtex = (struct r600_texture*)resource; if (rtex->dcc_separate_buffer) { radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rtex->dcc_separate_buffer, usage, RADEON_PRIO_DCC, check_mem); } } static void si_sampler_views_begin_new_cs(struct si_context *sctx, struct si_sampler_views *views) { unsigned mask = views->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); struct si_sampler_view *sview = (struct si_sampler_view *)views->views[i]; si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ, sview->is_stencil_sampler, false); } } /* Set buffer descriptor fields that can be changed by reallocations. */ static void si_set_buf_desc_address(struct r600_resource *buf, uint64_t offset, uint32_t *state) { uint64_t va = buf->gpu_address + offset; state[0] = va; state[1] &= C_008F04_BASE_ADDRESS_HI; state[1] |= S_008F04_BASE_ADDRESS_HI(va >> 32); } /* Set texture descriptor fields that can be changed by reallocations. * * \param tex texture * \param base_level_info information of the level of BASE_ADDRESS * \param base_level the level of BASE_ADDRESS * \param first_level pipe_sampler_view.u.tex.first_level * \param block_width util_format_get_blockwidth() * \param is_stencil select between separate Z & Stencil * \param state descriptor to update */ void si_set_mutable_tex_desc_fields(struct si_screen *sscreen, struct r600_texture *tex, const struct legacy_surf_level *base_level_info, unsigned base_level, unsigned first_level, unsigned block_width, bool is_stencil, uint32_t *state) { uint64_t va, meta_va = 0; if (tex->is_depth && !r600_can_sample_zs(tex, is_stencil)) { tex = tex->flushed_depth_texture; is_stencil = false; } va = tex->resource.gpu_address; if (sscreen->b.chip_class >= GFX9) { /* Only stencil_offset needs to be added here. */ if (is_stencil) va += tex->surface.u.gfx9.stencil_offset; else va += tex->surface.u.gfx9.surf_offset; } else { va += base_level_info->offset; } state[0] = va >> 8; state[1] &= C_008F14_BASE_ADDRESS_HI; state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40); if (sscreen->b.chip_class >= VI) { state[6] &= C_008F28_COMPRESSION_EN; state[7] = 0; if (vi_dcc_enabled(tex, first_level)) { meta_va = (!tex->dcc_separate_buffer ? tex->resource.gpu_address : 0) + tex->dcc_offset; if (sscreen->b.chip_class <= VI) meta_va += base_level_info->dcc_offset; } else if (tex->tc_compatible_htile) { meta_va = tex->resource.gpu_address + tex->htile_offset; } if (meta_va) { state[6] |= S_008F28_COMPRESSION_EN(1); state[7] = meta_va >> 8; } } if (sscreen->b.chip_class >= GFX9) { state[3] &= C_008F1C_SW_MODE; state[4] &= C_008F20_PITCH_GFX9; if (is_stencil) { state[3] |= S_008F1C_SW_MODE(tex->surface.u.gfx9.stencil.swizzle_mode); state[4] |= S_008F20_PITCH_GFX9(tex->surface.u.gfx9.stencil.epitch); } else { state[3] |= S_008F1C_SW_MODE(tex->surface.u.gfx9.surf.swizzle_mode); state[4] |= S_008F20_PITCH_GFX9(tex->surface.u.gfx9.surf.epitch); } state[5] &= C_008F24_META_DATA_ADDRESS & C_008F24_META_PIPE_ALIGNED & C_008F24_META_RB_ALIGNED; if (meta_va) { struct gfx9_surf_meta_flags meta; if (tex->dcc_offset) meta = tex->surface.u.gfx9.dcc; else meta = tex->surface.u.gfx9.htile; state[5] |= S_008F24_META_DATA_ADDRESS(meta_va >> 40) | S_008F24_META_PIPE_ALIGNED(meta.pipe_aligned) | S_008F24_META_RB_ALIGNED(meta.rb_aligned); } } else { /* SI-CI-VI */ unsigned pitch = base_level_info->nblk_x * block_width; unsigned index = si_tile_mode_index(tex, base_level, is_stencil); state[3] &= C_008F1C_TILING_INDEX; state[3] |= S_008F1C_TILING_INDEX(index); state[4] &= C_008F20_PITCH_GFX6; state[4] |= S_008F20_PITCH_GFX6(pitch - 1); } } static void si_set_sampler_view_desc(struct si_context *sctx, struct si_sampler_view *sview, struct si_sampler_state *sstate, uint32_t *desc) { struct pipe_sampler_view *view = &sview->base; struct r600_texture *rtex = (struct r600_texture *)view->texture; bool is_buffer = rtex->resource.b.b.target == PIPE_BUFFER; if (unlikely(!is_buffer && sview->dcc_incompatible)) { if (vi_dcc_enabled(rtex, view->u.tex.first_level)) if (!r600_texture_disable_dcc(&sctx->b, rtex)) sctx->b.decompress_dcc(&sctx->b.b, rtex); sview->dcc_incompatible = false; } assert(rtex); /* views with texture == NULL aren't supported */ memcpy(desc, sview->state, 8*4); if (is_buffer) { si_set_buf_desc_address(&rtex->resource, sview->base.u.buf.offset, desc + 4); } else { bool is_separate_stencil = rtex->db_compatible && sview->is_stencil_sampler; si_set_mutable_tex_desc_fields(sctx->screen, rtex, sview->base_level_info, sview->base_level, sview->base.u.tex.first_level, sview->block_width, is_separate_stencil, desc); } if (!is_buffer && rtex->fmask.size) { memcpy(desc + 8, sview->fmask_state, 8*4); } else { /* Disable FMASK and bind sampler state in [12:15]. */ memcpy(desc + 8, null_texture_descriptor, 4*4); if (sstate) memcpy(desc + 12, sstate->val, 4*4); } } static void si_set_sampler_view(struct si_context *sctx, unsigned shader, unsigned slot, struct pipe_sampler_view *view, bool disallow_early_out) { struct si_sampler_views *views = &sctx->samplers[shader].views; struct si_sampler_view *rview = (struct si_sampler_view*)view; struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader); unsigned desc_slot = si_get_sampler_slot(slot); uint32_t *desc = descs->list + desc_slot * 16; if (views->views[slot] == view && !disallow_early_out) return; if (view) { struct r600_texture *rtex = (struct r600_texture *)view->texture; si_set_sampler_view_desc(sctx, rview, views->sampler_states[slot], desc); if (rtex->resource.b.b.target == PIPE_BUFFER) rtex->resource.bind_history |= PIPE_BIND_SAMPLER_VIEW; pipe_sampler_view_reference(&views->views[slot], view); views->enabled_mask |= 1u << slot; /* Since this can flush, it must be done after enabled_mask is * updated. */ si_sampler_view_add_buffer(sctx, view->texture, RADEON_USAGE_READ, rview->is_stencil_sampler, true); } else { pipe_sampler_view_reference(&views->views[slot], NULL); memcpy(desc, null_texture_descriptor, 8*4); /* Only clear the lower dwords of FMASK. */ memcpy(desc + 8, null_texture_descriptor, 4*4); /* Re-set the sampler state if we are transitioning from FMASK. */ if (views->sampler_states[slot]) memcpy(desc + 12, views->sampler_states[slot]->val, 4*4); views->enabled_mask &= ~(1u << slot); } descs->dirty_mask |= 1ull << desc_slot; sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); } static bool color_needs_decompression(struct r600_texture *rtex) { return rtex->fmask.size || (rtex->dirty_level_mask && (rtex->cmask.size || rtex->dcc_offset)); } static bool depth_needs_decompression(struct r600_texture *rtex) { /* If the depth/stencil texture is TC-compatible, no decompression * will be done. The decompression function will only flush DB caches * to make it coherent with shaders. That's necessary because the driver * doesn't flush DB caches in any other case. */ return rtex->db_compatible; } static void si_update_shader_needs_decompress_mask(struct si_context *sctx, unsigned shader) { struct si_textures_info *samplers = &sctx->samplers[shader]; unsigned shader_bit = 1 << shader; if (samplers->needs_depth_decompress_mask || samplers->needs_color_decompress_mask || sctx->images[shader].needs_color_decompress_mask) sctx->shader_needs_decompress_mask |= shader_bit; else sctx->shader_needs_decompress_mask &= ~shader_bit; } static void si_set_sampler_views(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, struct pipe_sampler_view **views) { struct si_context *sctx = (struct si_context *)ctx; struct si_textures_info *samplers = &sctx->samplers[shader]; int i; if (!count || shader >= SI_NUM_SHADERS) return; for (i = 0; i < count; i++) { unsigned slot = start + i; if (!views || !views[i]) { samplers->needs_depth_decompress_mask &= ~(1u << slot); samplers->needs_color_decompress_mask &= ~(1u << slot); si_set_sampler_view(sctx, shader, slot, NULL, false); continue; } si_set_sampler_view(sctx, shader, slot, views[i], false); if (views[i]->texture && views[i]->texture->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture*)views[i]->texture; if (depth_needs_decompression(rtex)) { samplers->needs_depth_decompress_mask |= 1u << slot; } else { samplers->needs_depth_decompress_mask &= ~(1u << slot); } if (color_needs_decompression(rtex)) { samplers->needs_color_decompress_mask |= 1u << slot; } else { samplers->needs_color_decompress_mask &= ~(1u << slot); } if (rtex->dcc_offset && p_atomic_read(&rtex->framebuffers_bound)) sctx->need_check_render_feedback = true; } else { samplers->needs_depth_decompress_mask &= ~(1u << slot); samplers->needs_color_decompress_mask &= ~(1u << slot); } } si_update_shader_needs_decompress_mask(sctx, shader); } static void si_samplers_update_needs_color_decompress_mask(struct si_textures_info *samplers) { unsigned mask = samplers->views.enabled_mask; while (mask) { int i = u_bit_scan(&mask); struct pipe_resource *res = samplers->views.views[i]->texture; if (res && res->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture *)res; if (color_needs_decompression(rtex)) { samplers->needs_color_decompress_mask |= 1u << i; } else { samplers->needs_color_decompress_mask &= ~(1u << i); } } } } /* IMAGE VIEWS */ static void si_release_image_views(struct si_images_info *images) { unsigned i; for (i = 0; i < SI_NUM_IMAGES; ++i) { struct pipe_image_view *view = &images->views[i]; pipe_resource_reference(&view->resource, NULL); } } static void si_image_views_begin_new_cs(struct si_context *sctx, struct si_images_info *images) { uint mask = images->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); struct pipe_image_view *view = &images->views[i]; assert(view->resource); si_sampler_view_add_buffer(sctx, view->resource, RADEON_USAGE_READWRITE, false, false); } } static void si_disable_shader_image(struct si_context *ctx, unsigned shader, unsigned slot) { struct si_images_info *images = &ctx->images[shader]; if (images->enabled_mask & (1u << slot)) { struct si_descriptors *descs = si_sampler_and_image_descriptors(ctx, shader); unsigned desc_slot = si_get_image_slot(slot); pipe_resource_reference(&images->views[slot].resource, NULL); images->needs_color_decompress_mask &= ~(1 << slot); memcpy(descs->list + desc_slot*8, null_image_descriptor, 8*4); images->enabled_mask &= ~(1u << slot); /* two 8-byte images share one 16-byte slot */ descs->dirty_mask |= 1u << (desc_slot / 2); ctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); } } static void si_mark_image_range_valid(const struct pipe_image_view *view) { struct r600_resource *res = (struct r600_resource *)view->resource; assert(res && res->b.b.target == PIPE_BUFFER); util_range_add(&res->valid_buffer_range, view->u.buf.offset, view->u.buf.offset + view->u.buf.size); } static void si_set_shader_image_desc(struct si_context *ctx, const struct pipe_image_view *view, bool skip_decompress, uint32_t *desc) { struct si_screen *screen = ctx->screen; struct r600_resource *res; res = (struct r600_resource *)view->resource; if (res->b.b.target == PIPE_BUFFER) { if (view->access & PIPE_IMAGE_ACCESS_WRITE) si_mark_image_range_valid(view); si_make_buffer_descriptor(screen, res, view->format, view->u.buf.offset, view->u.buf.size, desc); si_set_buf_desc_address(res, view->u.buf.offset, desc + 4); } else { static const unsigned char swizzle[4] = { 0, 1, 2, 3 }; struct r600_texture *tex = (struct r600_texture *)res; unsigned level = view->u.tex.level; unsigned width, height, depth, hw_level; bool uses_dcc = vi_dcc_enabled(tex, level); assert(!tex->is_depth); assert(tex->fmask.size == 0); if (uses_dcc && !skip_decompress && (view->access & PIPE_IMAGE_ACCESS_WRITE || !vi_dcc_formats_compatible(res->b.b.format, view->format))) { /* If DCC can't be disabled, at least decompress it. * The decompression is relatively cheap if the surface * has been decompressed already. */ if (!r600_texture_disable_dcc(&ctx->b, tex)) ctx->b.decompress_dcc(&ctx->b.b, tex); } if (ctx->b.chip_class >= GFX9) { /* Always set the base address. The swizzle modes don't * allow setting mipmap level offsets as the base. */ width = res->b.b.width0; height = res->b.b.height0; depth = res->b.b.depth0; hw_level = level; } else { /* Always force the base level to the selected level. * * This is required for 3D textures, where otherwise * selecting a single slice for non-layered bindings * fails. It doesn't hurt the other targets. */ width = u_minify(res->b.b.width0, level); height = u_minify(res->b.b.height0, level); depth = u_minify(res->b.b.depth0, level); hw_level = 0; } si_make_texture_descriptor(screen, tex, false, res->b.b.target, view->format, swizzle, hw_level, hw_level, view->u.tex.first_layer, view->u.tex.last_layer, width, height, depth, desc, NULL); si_set_mutable_tex_desc_fields(screen, tex, &tex->surface.u.legacy.level[level], level, level, util_format_get_blockwidth(view->format), false, desc); } } static void si_set_shader_image(struct si_context *ctx, unsigned shader, unsigned slot, const struct pipe_image_view *view, bool skip_decompress) { struct si_images_info *images = &ctx->images[shader]; struct si_descriptors *descs = si_sampler_and_image_descriptors(ctx, shader); struct r600_resource *res; unsigned desc_slot = si_get_image_slot(slot); uint32_t *desc = descs->list + desc_slot * 8; if (!view || !view->resource) { si_disable_shader_image(ctx, shader, slot); return; } res = (struct r600_resource *)view->resource; if (&images->views[slot] != view) util_copy_image_view(&images->views[slot], view); si_set_shader_image_desc(ctx, view, skip_decompress, desc); if (res->b.b.target == PIPE_BUFFER) { images->needs_color_decompress_mask &= ~(1 << slot); res->bind_history |= PIPE_BIND_SHADER_IMAGE; } else { struct r600_texture *tex = (struct r600_texture *)res; unsigned level = view->u.tex.level; if (color_needs_decompression(tex)) { images->needs_color_decompress_mask |= 1 << slot; } else { images->needs_color_decompress_mask &= ~(1 << slot); } if (vi_dcc_enabled(tex, level) && p_atomic_read(&tex->framebuffers_bound)) ctx->need_check_render_feedback = true; } images->enabled_mask |= 1u << slot; /* two 8-byte images share one 16-byte slot */ descs->dirty_mask |= 1u << (desc_slot / 2); ctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); /* Since this can flush, it must be done after enabled_mask is updated. */ si_sampler_view_add_buffer(ctx, &res->b.b, (view->access & PIPE_IMAGE_ACCESS_WRITE) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ, false, true); } static void si_set_shader_images(struct pipe_context *pipe, enum pipe_shader_type shader, unsigned start_slot, unsigned count, const struct pipe_image_view *views) { struct si_context *ctx = (struct si_context *)pipe; unsigned i, slot; assert(shader < SI_NUM_SHADERS); if (!count) return; assert(start_slot + count <= SI_NUM_IMAGES); if (views) { for (i = 0, slot = start_slot; i < count; ++i, ++slot) si_set_shader_image(ctx, shader, slot, &views[i], false); } else { for (i = 0, slot = start_slot; i < count; ++i, ++slot) si_set_shader_image(ctx, shader, slot, NULL, false); } si_update_shader_needs_decompress_mask(ctx, shader); } static void si_images_update_needs_color_decompress_mask(struct si_images_info *images) { unsigned mask = images->enabled_mask; while (mask) { int i = u_bit_scan(&mask); struct pipe_resource *res = images->views[i].resource; if (res && res->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture *)res; if (color_needs_decompression(rtex)) { images->needs_color_decompress_mask |= 1 << i; } else { images->needs_color_decompress_mask &= ~(1 << i); } } } } /* SAMPLER STATES */ static void si_bind_sampler_states(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, void **states) { struct si_context *sctx = (struct si_context *)ctx; struct si_textures_info *samplers = &sctx->samplers[shader]; struct si_descriptors *desc = si_sampler_and_image_descriptors(sctx, shader); struct si_sampler_state **sstates = (struct si_sampler_state**)states; int i; if (!count || shader >= SI_NUM_SHADERS) return; for (i = 0; i < count; i++) { unsigned slot = start + i; unsigned desc_slot = si_get_sampler_slot(slot); if (!sstates[i] || sstates[i] == samplers->views.sampler_states[slot]) continue; #ifdef DEBUG assert(sstates[i]->magic == SI_SAMPLER_STATE_MAGIC); #endif samplers->views.sampler_states[slot] = sstates[i]; /* If FMASK is bound, don't overwrite it. * The sampler state will be set after FMASK is unbound. */ if (samplers->views.views[slot] && samplers->views.views[slot]->texture && samplers->views.views[slot]->texture->target != PIPE_BUFFER && ((struct r600_texture*)samplers->views.views[slot]->texture)->fmask.size) continue; memcpy(desc->list + desc_slot * 16 + 12, sstates[i]->val, 4*4); desc->dirty_mask |= 1ull << desc_slot; sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); } } /* BUFFER RESOURCES */ static void si_init_buffer_resources(struct si_context *sctx, struct si_buffer_resources *buffers, struct si_descriptors *descs, unsigned num_buffers, unsigned first_ce_slot, unsigned num_ce_slots, unsigned shader_userdata_index, enum radeon_bo_usage shader_usage, enum radeon_bo_usage shader_usage_constbuf, enum radeon_bo_priority priority, enum radeon_bo_priority priority_constbuf, unsigned *ce_offset) { buffers->shader_usage = shader_usage; buffers->shader_usage_constbuf = shader_usage_constbuf; buffers->priority = priority; buffers->priority_constbuf = priority_constbuf; buffers->buffers = CALLOC(num_buffers, sizeof(struct pipe_resource*)); si_init_descriptors(sctx, descs, shader_userdata_index, 4, num_buffers, first_ce_slot, num_ce_slots, ce_offset); } static void si_release_buffer_resources(struct si_buffer_resources *buffers, struct si_descriptors *descs) { int i; for (i = 0; i < descs->num_elements; i++) { pipe_resource_reference(&buffers->buffers[i], NULL); } FREE(buffers->buffers); } static void si_buffer_resources_begin_new_cs(struct si_context *sctx, struct si_buffer_resources *buffers) { unsigned mask = buffers->enabled_mask; /* Add buffers to the CS. */ while (mask) { int i = u_bit_scan(&mask); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, r600_resource(buffers->buffers[i]), i < SI_NUM_SHADER_BUFFERS ? buffers->shader_usage : buffers->shader_usage_constbuf, i < SI_NUM_SHADER_BUFFERS ? buffers->priority : buffers->priority_constbuf); } } static void si_get_buffer_from_descriptors(struct si_buffer_resources *buffers, struct si_descriptors *descs, unsigned idx, struct pipe_resource **buf, unsigned *offset, unsigned *size) { pipe_resource_reference(buf, buffers->buffers[idx]); if (*buf) { struct r600_resource *res = r600_resource(*buf); const uint32_t *desc = descs->list + idx * 4; uint64_t va; *size = desc[2]; assert(G_008F04_STRIDE(desc[1]) == 0); va = ((uint64_t)desc[1] << 32) | desc[0]; assert(va >= res->gpu_address && va + *size <= res->gpu_address + res->bo_size); *offset = va - res->gpu_address; } } /* VERTEX BUFFERS */ static void si_vertex_buffers_begin_new_cs(struct si_context *sctx) { struct si_descriptors *desc = &sctx->vertex_buffers; int count = sctx->vertex_elements ? sctx->vertex_elements->count : 0; int i; for (i = 0; i < count; i++) { int vb = sctx->vertex_elements->vertex_buffer_index[i]; if (vb >= ARRAY_SIZE(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer.resource) continue; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)sctx->vertex_buffer[vb].buffer.resource, RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER); } if (!desc->buffer) return; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); } bool si_upload_vertex_buffer_descriptors(struct si_context *sctx) { struct si_vertex_elements *velems = sctx->vertex_elements; struct si_descriptors *desc = &sctx->vertex_buffers; unsigned i, count; unsigned desc_list_byte_size; unsigned first_vb_use_mask; uint64_t va; uint32_t *ptr; if (!sctx->vertex_buffers_dirty || !velems) return true; count = velems->count; if (!count) return true; desc_list_byte_size = velems->desc_list_byte_size; first_vb_use_mask = velems->first_vb_use_mask; /* Vertex buffer descriptors are the only ones which are uploaded * directly through a staging buffer and don't go through * the fine-grained upload path. */ u_upload_alloc(sctx->b.b.const_uploader, 0, desc_list_byte_size, si_optimal_tcc_alignment(sctx, desc_list_byte_size), (unsigned*)&desc->buffer_offset, (struct pipe_resource**)&desc->buffer, (void**)&ptr); if (!desc->buffer) return false; radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer, RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS); assert(count <= SI_MAX_ATTRIBS); for (i = 0; i < count; i++) { struct pipe_vertex_buffer *vb; struct r600_resource *rbuffer; unsigned offset; unsigned vbo_index = velems->vertex_buffer_index[i]; uint32_t *desc = &ptr[i*4]; vb = &sctx->vertex_buffer[vbo_index]; rbuffer = (struct r600_resource*)vb->buffer.resource; if (!rbuffer) { memset(desc, 0, 16); continue; } offset = vb->buffer_offset + velems->src_offset[i]; va = rbuffer->gpu_address + offset; /* Fill in T# buffer resource description */ desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(vb->stride); if (sctx->b.chip_class != VI && vb->stride) { /* Round up by rounding down and adding 1 */ desc[2] = (vb->buffer.resource->width0 - offset - velems->format_size[i]) / vb->stride + 1; } else { desc[2] = vb->buffer.resource->width0 - offset; } desc[3] = velems->rsrc_word3[i]; if (first_vb_use_mask & (1 << i)) { radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)vb->buffer.resource, RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER); } } /* Don't flush the const cache. It would have a very negative effect * on performance (confirmed by testing). New descriptors are always * uploaded to a fresh new buffer, so I don't think flushing the const * cache is needed. */ si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); if (sctx->b.chip_class >= CIK) si_mark_atom_dirty(sctx, &sctx->prefetch_L2); sctx->vertex_buffers_dirty = false; sctx->vertex_buffer_pointer_dirty = true; return true; } /* CONSTANT BUFFERS */ static unsigned si_const_and_shader_buffer_descriptors_idx(unsigned shader) { return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS + SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS; } static struct si_descriptors * si_const_and_shader_buffer_descriptors(struct si_context *sctx, unsigned shader) { return &sctx->descriptors[si_const_and_shader_buffer_descriptors_idx(shader)]; } void si_upload_const_buffer(struct si_context *sctx, struct r600_resource **rbuffer, const uint8_t *ptr, unsigned size, uint32_t *const_offset) { void *tmp; u_upload_alloc(sctx->b.b.const_uploader, 0, size, si_optimal_tcc_alignment(sctx, size), const_offset, (struct pipe_resource**)rbuffer, &tmp); if (*rbuffer) util_memcpy_cpu_to_le32(tmp, ptr, size); } static void si_set_constant_buffer(struct si_context *sctx, struct si_buffer_resources *buffers, unsigned descriptors_idx, uint slot, const struct pipe_constant_buffer *input) { struct si_descriptors *descs = &sctx->descriptors[descriptors_idx]; assert(slot < descs->num_elements); pipe_resource_reference(&buffers->buffers[slot], NULL); /* CIK cannot unbind a constant buffer (S_BUFFER_LOAD is buggy * with a NULL buffer). We need to use a dummy buffer instead. */ if (sctx->b.chip_class == CIK && (!input || (!input->buffer && !input->user_buffer))) input = &sctx->null_const_buf; if (input && (input->buffer || input->user_buffer)) { struct pipe_resource *buffer = NULL; uint64_t va; /* Upload the user buffer if needed. */ if (input->user_buffer) { unsigned buffer_offset; si_upload_const_buffer(sctx, (struct r600_resource**)&buffer, input->user_buffer, input->buffer_size, &buffer_offset); if (!buffer) { /* Just unbind on failure. */ si_set_constant_buffer(sctx, buffers, descriptors_idx, slot, NULL); return; } va = r600_resource(buffer)->gpu_address + buffer_offset; } else { pipe_resource_reference(&buffer, input->buffer); va = r600_resource(buffer)->gpu_address + input->buffer_offset; /* Only track usage for non-user buffers. */ r600_resource(buffer)->bind_history |= PIPE_BIND_CONSTANT_BUFFER; } /* Set the descriptor. */ uint32_t *desc = descs->list + slot*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = input->buffer_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); buffers->buffers[slot] = buffer; radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage_constbuf, buffers->priority_constbuf, true); buffers->enabled_mask |= 1u << slot; } else { /* Clear the descriptor. */ memset(descs->list + slot*4, 0, sizeof(uint32_t) * 4); buffers->enabled_mask &= ~(1u << slot); } descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << descriptors_idx; } void si_set_rw_buffer(struct si_context *sctx, uint slot, const struct pipe_constant_buffer *input) { si_set_constant_buffer(sctx, &sctx->rw_buffers, SI_DESCS_RW_BUFFERS, slot, input); } static void si_pipe_set_constant_buffer(struct pipe_context *ctx, enum pipe_shader_type shader, uint slot, const struct pipe_constant_buffer *input) { struct si_context *sctx = (struct si_context *)ctx; if (shader >= SI_NUM_SHADERS) return; slot = si_get_constbuf_slot(slot); si_set_constant_buffer(sctx, &sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors_idx(shader), slot, input); } void si_get_pipe_constant_buffer(struct si_context *sctx, uint shader, uint slot, struct pipe_constant_buffer *cbuf) { cbuf->user_buffer = NULL; si_get_buffer_from_descriptors( &sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors(sctx, shader), si_get_constbuf_slot(slot), &cbuf->buffer, &cbuf->buffer_offset, &cbuf->buffer_size); } /* SHADER BUFFERS */ static void si_set_shader_buffers(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start_slot, unsigned count, const struct pipe_shader_buffer *sbuffers) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->const_and_shader_buffers[shader]; struct si_descriptors *descs = si_const_and_shader_buffer_descriptors(sctx, shader); unsigned i; assert(start_slot + count <= SI_NUM_SHADER_BUFFERS); for (i = 0; i < count; ++i) { const struct pipe_shader_buffer *sbuffer = sbuffers ? &sbuffers[i] : NULL; struct r600_resource *buf; unsigned slot = si_get_shaderbuf_slot(start_slot + i); uint32_t *desc = descs->list + slot * 4; uint64_t va; if (!sbuffer || !sbuffer->buffer) { pipe_resource_reference(&buffers->buffers[slot], NULL); memset(desc, 0, sizeof(uint32_t) * 4); buffers->enabled_mask &= ~(1u << slot); descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << si_const_and_shader_buffer_descriptors_idx(shader); continue; } buf = (struct r600_resource *)sbuffer->buffer; va = buf->gpu_address + sbuffer->buffer_offset; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0); desc[2] = sbuffer->buffer_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); pipe_resource_reference(&buffers->buffers[slot], &buf->b.b); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, buf, buffers->shader_usage, buffers->priority, true); buf->bind_history |= PIPE_BIND_SHADER_BUFFER; buffers->enabled_mask |= 1u << slot; descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << si_const_and_shader_buffer_descriptors_idx(shader); util_range_add(&buf->valid_buffer_range, sbuffer->buffer_offset, sbuffer->buffer_offset + sbuffer->buffer_size); } } void si_get_shader_buffers(struct si_context *sctx, enum pipe_shader_type shader, uint start_slot, uint count, struct pipe_shader_buffer *sbuf) { struct si_buffer_resources *buffers = &sctx->const_and_shader_buffers[shader]; struct si_descriptors *descs = si_const_and_shader_buffer_descriptors(sctx, shader); for (unsigned i = 0; i < count; ++i) { si_get_buffer_from_descriptors( buffers, descs, si_get_shaderbuf_slot(start_slot + i), &sbuf[i].buffer, &sbuf[i].buffer_offset, &sbuf[i].buffer_size); } } /* RING BUFFERS */ void si_set_ring_buffer(struct pipe_context *ctx, uint slot, struct pipe_resource *buffer, unsigned stride, unsigned num_records, bool add_tid, bool swizzle, unsigned element_size, unsigned index_stride, uint64_t offset) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; /* The stride field in the resource descriptor has 14 bits */ assert(stride < (1 << 14)); assert(slot < descs->num_elements); pipe_resource_reference(&buffers->buffers[slot], NULL); if (buffer) { uint64_t va; va = r600_resource(buffer)->gpu_address + offset; switch (element_size) { default: assert(!"Unsupported ring buffer element size"); case 0: case 2: element_size = 0; break; case 4: element_size = 1; break; case 8: element_size = 2; break; case 16: element_size = 3; break; } switch (index_stride) { default: assert(!"Unsupported ring buffer index stride"); case 0: case 8: index_stride = 0; break; case 16: index_stride = 1; break; case 32: index_stride = 2; break; case 64: index_stride = 3; break; } if (sctx->b.chip_class >= VI && stride) num_records *= stride; /* Set the descriptor. */ uint32_t *desc = descs->list + slot*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride) | S_008F04_SWIZZLE_ENABLE(swizzle); desc[2] = num_records; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_INDEX_STRIDE(index_stride) | S_008F0C_ADD_TID_ENABLE(add_tid); if (sctx->b.chip_class >= GFX9) assert(!swizzle || element_size == 1); /* always 4 bytes on GFX9 */ else desc[3] |= S_008F0C_ELEMENT_SIZE(element_size); pipe_resource_reference(&buffers->buffers[slot], buffer); radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, buffers->priority); buffers->enabled_mask |= 1u << slot; } else { /* Clear the descriptor. */ memset(descs->list + slot*4, 0, sizeof(uint32_t) * 4); buffers->enabled_mask &= ~(1u << slot); } descs->dirty_mask |= 1u << slot; sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS; } /* STREAMOUT BUFFERS */ static void si_set_streamout_targets(struct pipe_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { struct si_context *sctx = (struct si_context *)ctx; struct si_buffer_resources *buffers = &sctx->rw_buffers; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; unsigned old_num_targets = sctx->b.streamout.num_targets; unsigned i, bufidx; /* We are going to unbind the buffers. Mark which caches need to be flushed. */ if (sctx->b.streamout.num_targets && sctx->b.streamout.begin_emitted) { /* Since streamout uses vector writes which go through TC L2 * and most other clients can use TC L2 as well, we don't need * to flush it. * * The only cases which requires flushing it is VGT DMA index * fetching (on <= CIK) and indirect draw data, which are rare * cases. Thus, flag the TC L2 dirtiness in the resource and * handle it at draw call time. */ for (i = 0; i < sctx->b.streamout.num_targets; i++) if (sctx->b.streamout.targets[i]) r600_resource(sctx->b.streamout.targets[i]->b.buffer)->TC_L2_dirty = true; /* Invalidate the scalar cache in case a streamout buffer is * going to be used as a constant buffer. * * Invalidate TC L1, because streamout bypasses it (done by * setting GLC=1 in the store instruction), but it can contain * outdated data of streamout buffers. * * VS_PARTIAL_FLUSH is required if the buffers are going to be * used as an input immediately. */ sctx->b.flags |= SI_CONTEXT_INV_SMEM_L1 | SI_CONTEXT_INV_VMEM_L1 | SI_CONTEXT_VS_PARTIAL_FLUSH; } /* All readers of the streamout targets need to be finished before we can * start writing to the targets. */ if (num_targets) sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH; /* Streamout buffers must be bound in 2 places: * 1) in VGT by setting the VGT_STRMOUT registers * 2) as shader resources */ /* Set the VGT regs. */ r600_set_streamout_targets(ctx, num_targets, targets, offsets); /* Set the shader resources.*/ for (i = 0; i < num_targets; i++) { bufidx = SI_VS_STREAMOUT_BUF0 + i; if (targets[i]) { struct pipe_resource *buffer = targets[i]->buffer; uint64_t va = r600_resource(buffer)->gpu_address; /* Set the descriptor. * * On VI, the format must be non-INVALID, otherwise * the buffer will be considered not bound and store * instructions will be no-ops. */ uint32_t *desc = descs->list + bufidx*4; desc[0] = va; desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32); desc[2] = 0xffffffff; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); /* Set the resource. */ pipe_resource_reference(&buffers->buffers[bufidx], buffer); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, (struct r600_resource*)buffer, buffers->shader_usage, RADEON_PRIO_SHADER_RW_BUFFER, true); r600_resource(buffer)->bind_history |= PIPE_BIND_STREAM_OUTPUT; buffers->enabled_mask |= 1u << bufidx; } else { /* Clear the descriptor and unset the resource. */ memset(descs->list + bufidx*4, 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->enabled_mask &= ~(1u << bufidx); } descs->dirty_mask |= 1u << bufidx; } for (; i < old_num_targets; i++) { bufidx = SI_VS_STREAMOUT_BUF0 + i; /* Clear the descriptor and unset the resource. */ memset(descs->list + bufidx*4, 0, sizeof(uint32_t) * 4); pipe_resource_reference(&buffers->buffers[bufidx], NULL); buffers->enabled_mask &= ~(1u << bufidx); descs->dirty_mask |= 1u << bufidx; } sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS; } static void si_desc_reset_buffer_offset(struct pipe_context *ctx, uint32_t *desc, uint64_t old_buf_va, struct pipe_resource *new_buf) { /* Retrieve the buffer offset from the descriptor. */ uint64_t old_desc_va = desc[0] | ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32); assert(old_buf_va <= old_desc_va); uint64_t offset_within_buffer = old_desc_va - old_buf_va; /* Update the descriptor. */ si_set_buf_desc_address(r600_resource(new_buf), offset_within_buffer, desc); } /* INTERNAL CONST BUFFERS */ static void si_set_polygon_stipple(struct pipe_context *ctx, const struct pipe_poly_stipple *state) { struct si_context *sctx = (struct si_context *)ctx; struct pipe_constant_buffer cb = {}; unsigned stipple[32]; int i; for (i = 0; i < 32; i++) stipple[i] = util_bitreverse(state->stipple[i]); cb.user_buffer = stipple; cb.buffer_size = sizeof(stipple); si_set_rw_buffer(sctx, SI_PS_CONST_POLY_STIPPLE, &cb); } /* TEXTURE METADATA ENABLE/DISABLE */ static void si_resident_handles_update_needs_color_decompress(struct si_context *sctx) { util_dynarray_clear(&sctx->resident_tex_needs_color_decompress); util_dynarray_clear(&sctx->resident_img_needs_color_decompress); util_dynarray_foreach(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct pipe_resource *res = (*tex_handle)->view->texture; struct r600_texture *rtex; if (!res || res->target == PIPE_BUFFER) continue; rtex = (struct r600_texture *)res; if (!color_needs_decompression(rtex)) continue; util_dynarray_append(&sctx->resident_tex_needs_color_decompress, struct si_texture_handle *, *tex_handle); } util_dynarray_foreach(&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct pipe_image_view *view = &(*img_handle)->view; struct pipe_resource *res = view->resource; struct r600_texture *rtex; if (!res || res->target == PIPE_BUFFER) continue; rtex = (struct r600_texture *)res; if (!color_needs_decompression(rtex)) continue; util_dynarray_append(&sctx->resident_img_needs_color_decompress, struct si_image_handle *, *img_handle); } } /* CMASK can be enabled (for fast clear) and disabled (for texture export) * while the texture is bound, possibly by a different context. In that case, * call this function to update needs_*_decompress_masks. */ void si_update_needs_color_decompress_masks(struct si_context *sctx) { for (int i = 0; i < SI_NUM_SHADERS; ++i) { si_samplers_update_needs_color_decompress_mask(&sctx->samplers[i]); si_images_update_needs_color_decompress_mask(&sctx->images[i]); si_update_shader_needs_decompress_mask(sctx, i); } si_resident_handles_update_needs_color_decompress(sctx); } /* BUFFER DISCARD/INVALIDATION */ /** Reset descriptors of buffer resources after \p buf has been invalidated. */ static void si_reset_buffer_resources(struct si_context *sctx, struct si_buffer_resources *buffers, unsigned descriptors_idx, unsigned slot_mask, struct pipe_resource *buf, uint64_t old_va, enum radeon_bo_usage usage, enum radeon_bo_priority priority) { struct si_descriptors *descs = &sctx->descriptors[descriptors_idx]; unsigned mask = buffers->enabled_mask & slot_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (buffers->buffers[i] == buf) { si_desc_reset_buffer_offset(&sctx->b.b, descs->list + i*4, old_va, buf); descs->dirty_mask |= 1u << i; sctx->descriptors_dirty |= 1u << descriptors_idx; radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, (struct r600_resource *)buf, usage, priority, true); } } } static void si_rebind_buffer(struct pipe_context *ctx, struct pipe_resource *buf, uint64_t old_va) { struct si_context *sctx = (struct si_context*)ctx; struct r600_resource *rbuffer = r600_resource(buf); unsigned i, shader; unsigned num_elems = sctx->vertex_elements ? sctx->vertex_elements->count : 0; /* We changed the buffer, now we need to bind it where the old one * was bound. This consists of 2 things: * 1) Updating the resource descriptor and dirtying it. * 2) Adding a relocation to the CS, so that it's usable. */ /* Vertex buffers. */ if (rbuffer->bind_history & PIPE_BIND_VERTEX_BUFFER) { for (i = 0; i < num_elems; i++) { int vb = sctx->vertex_elements->vertex_buffer_index[i]; if (vb >= ARRAY_SIZE(sctx->vertex_buffer)) continue; if (!sctx->vertex_buffer[vb].buffer.resource) continue; if (sctx->vertex_buffer[vb].buffer.resource == buf) { sctx->vertex_buffers_dirty = true; break; } } } /* Streamout buffers. (other internal buffers can't be invalidated) */ if (rbuffer->bind_history & PIPE_BIND_STREAM_OUTPUT) { for (i = SI_VS_STREAMOUT_BUF0; i <= SI_VS_STREAMOUT_BUF3; i++) { struct si_buffer_resources *buffers = &sctx->rw_buffers; struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; if (buffers->buffers[i] != buf) continue; si_desc_reset_buffer_offset(ctx, descs->list + i*4, old_va, buf); descs->dirty_mask |= 1u << i; sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS; radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rbuffer, buffers->shader_usage, RADEON_PRIO_SHADER_RW_BUFFER, true); /* Update the streamout state. */ if (sctx->b.streamout.begin_emitted) r600_emit_streamout_end(&sctx->b); sctx->b.streamout.append_bitmask = sctx->b.streamout.enabled_mask; r600_streamout_buffers_dirty(&sctx->b); } } /* Constant and shader buffers. */ if (rbuffer->bind_history & PIPE_BIND_CONSTANT_BUFFER) { for (shader = 0; shader < SI_NUM_SHADERS; shader++) si_reset_buffer_resources(sctx, &sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors_idx(shader), u_bit_consecutive(SI_NUM_SHADER_BUFFERS, SI_NUM_CONST_BUFFERS), buf, old_va, sctx->const_and_shader_buffers[shader].shader_usage_constbuf, sctx->const_and_shader_buffers[shader].priority_constbuf); } if (rbuffer->bind_history & PIPE_BIND_SHADER_BUFFER) { for (shader = 0; shader < SI_NUM_SHADERS; shader++) si_reset_buffer_resources(sctx, &sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors_idx(shader), u_bit_consecutive(0, SI_NUM_SHADER_BUFFERS), buf, old_va, sctx->const_and_shader_buffers[shader].shader_usage, sctx->const_and_shader_buffers[shader].priority); } if (rbuffer->bind_history & PIPE_BIND_SAMPLER_VIEW) { /* Texture buffers - update bindings. */ for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_sampler_views *views = &sctx->samplers[shader].views; struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader); unsigned mask = views->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (views->views[i]->texture == buf) { unsigned desc_slot = si_get_sampler_slot(i); si_desc_reset_buffer_offset(ctx, descs->list + desc_slot * 16 + 4, old_va, buf); descs->dirty_mask |= 1ull << desc_slot; sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, rbuffer, RADEON_USAGE_READ, RADEON_PRIO_SAMPLER_BUFFER, true); } } } } /* Shader images */ if (rbuffer->bind_history & PIPE_BIND_SHADER_IMAGE) { for (shader = 0; shader < SI_NUM_SHADERS; ++shader) { struct si_images_info *images = &sctx->images[shader]; struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader); unsigned mask = images->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (images->views[i].resource == buf) { unsigned desc_slot = si_get_image_slot(i); if (images->views[i].access & PIPE_IMAGE_ACCESS_WRITE) si_mark_image_range_valid(&images->views[i]); si_desc_reset_buffer_offset( ctx, descs->list + desc_slot * 8 + 4, old_va, buf); /* two 8-byte images share one 16-byte slot */ descs->dirty_mask |= 1u << (desc_slot / 2); sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader); radeon_add_to_buffer_list_check_mem( &sctx->b, &sctx->b.gfx, rbuffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SAMPLER_BUFFER, true); } } } } /* Bindless texture handles */ if (rbuffer->texture_handle_allocated) { util_dynarray_foreach(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct pipe_sampler_view *view = (*tex_handle)->view; struct si_bindless_descriptor *desc = (*tex_handle)->desc; if (view->texture == buf) { si_set_buf_desc_address(rbuffer, view->u.buf.offset, &desc->desc_list[4]); desc->dirty = true; sctx->bindless_descriptors_dirty = true; radeon_add_to_buffer_list_check_mem( &sctx->b, &sctx->b.gfx, rbuffer, RADEON_USAGE_READ, RADEON_PRIO_SAMPLER_BUFFER, true); } } } /* Bindless image handles */ if (rbuffer->image_handle_allocated) { util_dynarray_foreach(&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct pipe_image_view *view = &(*img_handle)->view; struct si_bindless_descriptor *desc = (*img_handle)->desc; if (view->resource == buf) { if (view->access & PIPE_IMAGE_ACCESS_WRITE) si_mark_image_range_valid(view); si_set_buf_desc_address(rbuffer, view->u.buf.offset, &desc->desc_list[4]); desc->dirty = true; sctx->bindless_descriptors_dirty = true; radeon_add_to_buffer_list_check_mem( &sctx->b, &sctx->b.gfx, rbuffer, RADEON_USAGE_READWRITE, RADEON_PRIO_SAMPLER_BUFFER, true); } } } } /* Reallocate a buffer a update all resource bindings where the buffer is * bound. * * This is used to avoid CPU-GPU synchronizations, because it makes the buffer * idle by discarding its contents. Apps usually tell us when to do this using * map_buffer flags, for example. */ static void si_invalidate_buffer(struct pipe_context *ctx, struct pipe_resource *buf) { struct si_context *sctx = (struct si_context*)ctx; struct r600_resource *rbuffer = r600_resource(buf); uint64_t old_va = rbuffer->gpu_address; /* Reallocate the buffer in the same pipe_resource. */ r600_alloc_resource(&sctx->screen->b, rbuffer); si_rebind_buffer(ctx, buf, old_va); } static void si_upload_bindless_descriptor(struct si_context *sctx, struct si_bindless_descriptor *desc) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; uint64_t va = desc->buffer->gpu_address + desc->offset; unsigned num_dwords = sizeof(desc->desc_list) / 4; radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + num_dwords, 0)); radeon_emit(cs, S_370_DST_SEL(V_370_TC_L2) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_ME)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit_array(cs, desc->desc_list, num_dwords); } static void si_upload_bindless_descriptors(struct si_context *sctx) { if (!sctx->bindless_descriptors_dirty) return; /* Wait for graphics/compute to be idle before updating the resident * descriptors directly in memory, in case the GPU is using them. */ sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH; si_emit_cache_flush(sctx); util_dynarray_foreach(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct si_bindless_descriptor *desc = (*tex_handle)->desc; if (!desc->dirty) continue; si_upload_bindless_descriptor(sctx, desc); desc->dirty = false; } util_dynarray_foreach(&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct si_bindless_descriptor *desc = (*img_handle)->desc; if (!desc->dirty) continue; si_upload_bindless_descriptor(sctx, desc); desc->dirty = false; } /* Invalidate L1 because it doesn't know that L2 changed. */ sctx->b.flags |= SI_CONTEXT_INV_SMEM_L1; si_emit_cache_flush(sctx); sctx->bindless_descriptors_dirty = false; } /* Update mutable image descriptor fields of all resident textures. */ static void si_update_all_resident_texture_descriptors(struct si_context *sctx) { util_dynarray_foreach(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct si_bindless_descriptor *desc = (*tex_handle)->desc; struct si_sampler_view *sview = (struct si_sampler_view *)(*tex_handle)->view; uint32_t desc_list[16]; if (sview->base.texture->target == PIPE_BUFFER) continue; memcpy(desc_list, desc->desc_list, sizeof(desc_list)); si_set_sampler_view_desc(sctx, sview, &(*tex_handle)->sstate, &desc->desc_list[0]); if (memcmp(desc_list, desc->desc_list, sizeof(desc_list))) { desc->dirty = true; sctx->bindless_descriptors_dirty = true; } } util_dynarray_foreach(&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct si_bindless_descriptor *desc = (*img_handle)->desc; struct pipe_image_view *view = &(*img_handle)->view; uint32_t desc_list[16]; if (view->resource->target == PIPE_BUFFER) continue; memcpy(desc_list, desc->desc_list, sizeof(desc_list)); si_set_shader_image_desc(sctx, view, true, &desc->desc_list[0]); if (memcmp(desc_list, desc->desc_list, sizeof(desc_list))) { desc->dirty = true; sctx->bindless_descriptors_dirty = true; } } si_upload_bindless_descriptors(sctx); } /* Update mutable image descriptor fields of all bound textures. */ void si_update_all_texture_descriptors(struct si_context *sctx) { unsigned shader; for (shader = 0; shader < SI_NUM_SHADERS; shader++) { struct si_sampler_views *samplers = &sctx->samplers[shader].views; struct si_images_info *images = &sctx->images[shader]; unsigned mask; /* Images. */ mask = images->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); struct pipe_image_view *view = &images->views[i]; if (!view->resource || view->resource->target == PIPE_BUFFER) continue; si_set_shader_image(sctx, shader, i, view, true); } /* Sampler views. */ mask = samplers->enabled_mask; while (mask) { unsigned i = u_bit_scan(&mask); struct pipe_sampler_view *view = samplers->views[i]; if (!view || !view->texture || view->texture->target == PIPE_BUFFER) continue; si_set_sampler_view(sctx, shader, i, samplers->views[i], true); } si_update_shader_needs_decompress_mask(sctx, shader); } si_update_all_resident_texture_descriptors(sctx); } /* SHADER USER DATA */ static void si_mark_shader_pointers_dirty(struct si_context *sctx, unsigned shader) { sctx->shader_pointers_dirty |= u_bit_consecutive(SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS, SI_NUM_SHADER_DESCS); if (shader == PIPE_SHADER_VERTEX) sctx->vertex_buffer_pointer_dirty = sctx->vertex_buffers.buffer != NULL; si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); } static void si_shader_userdata_begin_new_cs(struct si_context *sctx) { sctx->shader_pointers_dirty = u_bit_consecutive(0, SI_NUM_DESCS); sctx->vertex_buffer_pointer_dirty = sctx->vertex_buffers.buffer != NULL; si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom); } /* Set a base register address for user data constants in the given shader. * This assigns a mapping from PIPE_SHADER_* to SPI_SHADER_USER_DATA_*. */ static void si_set_user_data_base(struct si_context *sctx, unsigned shader, uint32_t new_base) { uint32_t *base = &sctx->shader_userdata.sh_base[shader]; if (*base != new_base) { *base = new_base; if (new_base) { si_mark_shader_pointers_dirty(sctx, shader); if (shader == PIPE_SHADER_VERTEX) sctx->last_vs_state = ~0; } } } /* This must be called when these shaders are changed from non-NULL to NULL * and vice versa: * - geometry shader * - tessellation control shader * - tessellation evaluation shader */ void si_shader_change_notify(struct si_context *sctx) { /* VS can be bound as VS, ES, or LS. */ if (sctx->tes_shader.cso) { if (sctx->b.chip_class >= GFX9) { si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B430_SPI_SHADER_USER_DATA_LS_0); } else { si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B530_SPI_SHADER_USER_DATA_LS_0); } } else if (sctx->gs_shader.cso) { si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B330_SPI_SHADER_USER_DATA_ES_0); } else { si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0); } /* TES can be bound as ES, VS, or not bound. */ if (sctx->tes_shader.cso) { if (sctx->gs_shader.cso) si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B330_SPI_SHADER_USER_DATA_ES_0); else si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B130_SPI_SHADER_USER_DATA_VS_0); } else { si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, 0); } } static void si_emit_shader_pointer(struct si_context *sctx, struct si_descriptors *desc, unsigned sh_base) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; uint64_t va; if (!desc->buffer) return; /* the pointer is not used by current shaders */ va = desc->buffer->gpu_address + desc->buffer_offset; radeon_emit(cs, PKT3(PKT3_SET_SH_REG, 2, 0)); radeon_emit(cs, (sh_base + desc->shader_userdata_offset - SI_SH_REG_OFFSET) >> 2); radeon_emit(cs, va); radeon_emit(cs, va >> 32); } void si_emit_graphics_shader_userdata(struct si_context *sctx, struct r600_atom *atom) { unsigned mask; uint32_t *sh_base = sctx->shader_userdata.sh_base; struct si_descriptors *descs; descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS]; if (sctx->shader_pointers_dirty & (1 << SI_DESCS_RW_BUFFERS)) { si_emit_shader_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0); si_emit_shader_pointer(sctx, descs, R_00B130_SPI_SHADER_USER_DATA_VS_0); if (sctx->b.chip_class >= GFX9) { /* GFX9 merged LS-HS and ES-GS. * Set RW_BUFFERS in the special registers, so that * it's preloaded into s[0:1] instead of s[8:9]. */ si_emit_shader_pointer(sctx, descs, R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS); si_emit_shader_pointer(sctx, descs, R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS); } else { si_emit_shader_pointer(sctx, descs, R_00B230_SPI_SHADER_USER_DATA_GS_0); si_emit_shader_pointer(sctx, descs, R_00B330_SPI_SHADER_USER_DATA_ES_0); si_emit_shader_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_HS_0); si_emit_shader_pointer(sctx, descs, R_00B530_SPI_SHADER_USER_DATA_LS_0); } } mask = sctx->shader_pointers_dirty & u_bit_consecutive(SI_DESCS_FIRST_SHADER, SI_DESCS_FIRST_COMPUTE - SI_DESCS_FIRST_SHADER); while (mask) { unsigned i = u_bit_scan(&mask); unsigned shader = (i - SI_DESCS_FIRST_SHADER) / SI_NUM_SHADER_DESCS; unsigned base = sh_base[shader]; if (base) si_emit_shader_pointer(sctx, descs + i, base); } sctx->shader_pointers_dirty &= ~u_bit_consecutive(SI_DESCS_RW_BUFFERS, SI_DESCS_FIRST_COMPUTE); if (sctx->vertex_buffer_pointer_dirty) { si_emit_shader_pointer(sctx, &sctx->vertex_buffers, sh_base[PIPE_SHADER_VERTEX]); sctx->vertex_buffer_pointer_dirty = false; } } void si_emit_compute_shader_userdata(struct si_context *sctx) { unsigned base = R_00B900_COMPUTE_USER_DATA_0; struct si_descriptors *descs = sctx->descriptors; unsigned compute_mask = u_bit_consecutive(SI_DESCS_FIRST_COMPUTE, SI_NUM_SHADER_DESCS); unsigned mask = sctx->shader_pointers_dirty & compute_mask; while (mask) { unsigned i = u_bit_scan(&mask); si_emit_shader_pointer(sctx, descs + i, base); } sctx->shader_pointers_dirty &= ~compute_mask; } /* BINDLESS */ struct si_bindless_descriptor_slab { struct pb_slab base; struct r600_resource *buffer; struct si_bindless_descriptor *entries; }; bool si_bindless_descriptor_can_reclaim_slab(void *priv, struct pb_slab_entry *entry) { /* Do not allow to reclaim any bindless descriptors for now because the * GPU might be using them. This should be improved later on. */ return false; } struct pb_slab *si_bindless_descriptor_slab_alloc(void *priv, unsigned heap, unsigned entry_size, unsigned group_index) { struct si_context *sctx = priv; struct si_screen *sscreen = sctx->screen; struct si_bindless_descriptor_slab *slab; slab = CALLOC_STRUCT(si_bindless_descriptor_slab); if (!slab) return NULL; /* Create a buffer in VRAM for 1024 bindless descriptors. */ slab->buffer = (struct r600_resource *) pipe_buffer_create(&sscreen->b.b, 0, PIPE_USAGE_DEFAULT, 64 * 1024); if (!slab->buffer) goto fail; slab->base.num_entries = slab->buffer->bo_size / entry_size; slab->base.num_free = slab->base.num_entries; slab->entries = CALLOC(slab->base.num_entries, sizeof(*slab->entries)); if (!slab->entries) goto fail_buffer; LIST_INITHEAD(&slab->base.free); for (unsigned i = 0; i < slab->base.num_entries; ++i) { struct si_bindless_descriptor *desc = &slab->entries[i]; desc->entry.slab = &slab->base; desc->entry.group_index = group_index; desc->buffer = slab->buffer; desc->offset = i * entry_size; LIST_ADDTAIL(&desc->entry.head, &slab->base.free); } /* Add the descriptor to the per-context list. */ util_dynarray_append(&sctx->bindless_descriptors, struct r600_resource *, slab->buffer); return &slab->base; fail_buffer: r600_resource_reference(&slab->buffer, NULL); fail: FREE(slab); return NULL; } void si_bindless_descriptor_slab_free(void *priv, struct pb_slab *pslab) { struct si_context *sctx = priv; struct si_bindless_descriptor_slab *slab = (struct si_bindless_descriptor_slab *)pslab; /* Remove the descriptor from the per-context list. */ util_dynarray_delete_unordered(&sctx->bindless_descriptors, struct r600_resource *, slab->buffer); r600_resource_reference(&slab->buffer, NULL); FREE(slab->entries); FREE(slab); } static struct si_bindless_descriptor * si_create_bindless_descriptor(struct si_context *sctx, uint32_t *desc_list, unsigned size) { struct si_screen *sscreen = sctx->screen; struct si_bindless_descriptor *desc; struct pb_slab_entry *entry; void *ptr; /* Sub-allocate the bindless descriptor from a slab to avoid dealing * with a ton of buffers and for reducing the winsys overhead. */ entry = pb_slab_alloc(&sctx->bindless_descriptor_slabs, 64, 0); if (!entry) return NULL; desc = NULL; desc = container_of(entry, desc, entry); /* Upload the descriptor directly in VRAM. Because the slabs are * currently never reclaimed, we don't need to synchronize the * operation. */ ptr = sscreen->b.ws->buffer_map(desc->buffer->buf, NULL, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED); util_memcpy_cpu_to_le32(ptr + desc->offset, desc_list, size); /* Keep track of the initial descriptor especially for buffers * invalidation because we might need to know the previous address. */ memcpy(desc->desc_list, desc_list, sizeof(desc->desc_list)); return desc; } static void si_invalidate_bindless_buf_desc(struct si_context *sctx, struct si_bindless_descriptor *desc, struct pipe_resource *resource, uint64_t offset) { struct r600_resource *buf = r600_resource(resource); uint32_t *desc_list = desc->desc_list + 4; uint64_t old_desc_va; assert(resource->target == PIPE_BUFFER); /* Retrieve the old buffer addr from the descriptor. */ old_desc_va = desc_list[0]; old_desc_va |= ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc_list[1]) << 32); if (old_desc_va != buf->gpu_address + offset) { /* The buffer has been invalidated when the handle wasn't * resident, update the descriptor and the dirty flag. */ si_set_buf_desc_address(buf, offset, &desc_list[0]); desc->dirty = true; sctx->bindless_descriptors_dirty = true; } } static uint64_t si_create_texture_handle(struct pipe_context *ctx, struct pipe_sampler_view *view, const struct pipe_sampler_state *state) { struct si_sampler_view *sview = (struct si_sampler_view *)view; struct si_context *sctx = (struct si_context *)ctx; struct si_texture_handle *tex_handle; struct si_sampler_state *sstate; uint32_t desc_list[16]; uint64_t handle; tex_handle = CALLOC_STRUCT(si_texture_handle); if (!tex_handle) return 0; memset(desc_list, 0, sizeof(desc_list)); si_init_descriptor_list(&desc_list[0], 16, 1, null_texture_descriptor); sstate = ctx->create_sampler_state(ctx, state); if (!sstate) { FREE(tex_handle); return 0; } si_set_sampler_view_desc(sctx, sview, sstate, &desc_list[0]); memcpy(&tex_handle->sstate, sstate, sizeof(*sstate)); ctx->delete_sampler_state(ctx, sstate); tex_handle->desc = si_create_bindless_descriptor(sctx, desc_list, sizeof(desc_list)); if (!tex_handle->desc) { FREE(tex_handle); return 0; } handle = tex_handle->desc->buffer->gpu_address + tex_handle->desc->offset; if (!_mesa_hash_table_insert(sctx->tex_handles, (void *)handle, tex_handle)) { pb_slab_free(&sctx->bindless_descriptor_slabs, &tex_handle->desc->entry); FREE(tex_handle); return 0; } pipe_sampler_view_reference(&tex_handle->view, view); r600_resource(sview->base.texture)->texture_handle_allocated = true; return handle; } static void si_delete_texture_handle(struct pipe_context *ctx, uint64_t handle) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture_handle *tex_handle; struct hash_entry *entry; entry = _mesa_hash_table_search(sctx->tex_handles, (void *)handle); if (!entry) return; tex_handle = (struct si_texture_handle *)entry->data; pipe_sampler_view_reference(&tex_handle->view, NULL); _mesa_hash_table_remove(sctx->tex_handles, entry); pb_slab_free(&sctx->bindless_descriptor_slabs, &tex_handle->desc->entry); FREE(tex_handle); } static void si_make_texture_handle_resident(struct pipe_context *ctx, uint64_t handle, bool resident) { struct si_context *sctx = (struct si_context *)ctx; struct si_texture_handle *tex_handle; struct si_sampler_view *sview; struct hash_entry *entry; entry = _mesa_hash_table_search(sctx->tex_handles, (void *)handle); if (!entry) return; tex_handle = (struct si_texture_handle *)entry->data; sview = (struct si_sampler_view *)tex_handle->view; if (resident) { if (sview->base.texture->target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture *)sview->base.texture; if (depth_needs_decompression(rtex)) { util_dynarray_append( &sctx->resident_tex_needs_depth_decompress, struct si_texture_handle *, tex_handle); } if (color_needs_decompression(rtex)) { util_dynarray_append( &sctx->resident_tex_needs_color_decompress, struct si_texture_handle *, tex_handle); } if (rtex->dcc_offset && p_atomic_read(&rtex->framebuffers_bound)) sctx->need_check_render_feedback = true; } else { si_invalidate_bindless_buf_desc(sctx, tex_handle->desc, sview->base.texture, sview->base.u.buf.offset); } /* Add the texture handle to the per-context list. */ util_dynarray_append(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle); /* Add the buffers to the current CS in case si_begin_new_cs() * is not going to be called. */ radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, tex_handle->desc->buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_DESCRIPTORS); si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ, sview->is_stencil_sampler, false); } else { /* Remove the texture handle from the per-context list. */ util_dynarray_delete_unordered(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle); if (sview->base.texture->target != PIPE_BUFFER) { util_dynarray_delete_unordered( &sctx->resident_tex_needs_depth_decompress, struct si_texture_handle *, tex_handle); util_dynarray_delete_unordered( &sctx->resident_tex_needs_color_decompress, struct si_texture_handle *, tex_handle); } } } static uint64_t si_create_image_handle(struct pipe_context *ctx, const struct pipe_image_view *view) { struct si_context *sctx = (struct si_context *)ctx; struct si_image_handle *img_handle; uint32_t desc_list[16]; uint64_t handle; if (!view || !view->resource) return 0; img_handle = CALLOC_STRUCT(si_image_handle); if (!img_handle) return 0; memset(desc_list, 0, sizeof(desc_list)); si_init_descriptor_list(&desc_list[0], 8, 1, null_image_descriptor); si_set_shader_image_desc(sctx, view, false, &desc_list[0]); img_handle->desc = si_create_bindless_descriptor(sctx, desc_list, sizeof(desc_list)); if (!img_handle->desc) { FREE(img_handle); return 0; } handle = img_handle->desc->buffer->gpu_address + img_handle->desc->offset; if (!_mesa_hash_table_insert(sctx->img_handles, (void *)handle, img_handle)) { pb_slab_free(&sctx->bindless_descriptor_slabs, &img_handle->desc->entry); FREE(img_handle); return 0; } util_copy_image_view(&img_handle->view, view); r600_resource(view->resource)->image_handle_allocated = true; return handle; } static void si_delete_image_handle(struct pipe_context *ctx, uint64_t handle) { struct si_context *sctx = (struct si_context *)ctx; struct si_image_handle *img_handle; struct hash_entry *entry; entry = _mesa_hash_table_search(sctx->img_handles, (void *)handle); if (!entry) return; img_handle = (struct si_image_handle *)entry->data; util_copy_image_view(&img_handle->view, NULL); _mesa_hash_table_remove(sctx->img_handles, entry); pb_slab_free(&sctx->bindless_descriptor_slabs, &img_handle->desc->entry); FREE(img_handle); } static void si_make_image_handle_resident(struct pipe_context *ctx, uint64_t handle, unsigned access, bool resident) { struct si_context *sctx = (struct si_context *)ctx; struct si_image_handle *img_handle; struct pipe_image_view *view; struct r600_resource *res; struct hash_entry *entry; entry = _mesa_hash_table_search(sctx->img_handles, (void *)handle); if (!entry) return; img_handle = (struct si_image_handle *)entry->data; view = &img_handle->view; res = (struct r600_resource *)view->resource; if (resident) { if (res->b.b.target != PIPE_BUFFER) { struct r600_texture *rtex = (struct r600_texture *)res; unsigned level = view->u.tex.level; if (color_needs_decompression(rtex)) { util_dynarray_append( &sctx->resident_img_needs_color_decompress, struct si_image_handle *, img_handle); } if (vi_dcc_enabled(rtex, level) && p_atomic_read(&rtex->framebuffers_bound)) sctx->need_check_render_feedback = true; } else { si_invalidate_bindless_buf_desc(sctx, img_handle->desc, view->resource, view->u.buf.offset); } /* Add the image handle to the per-context list. */ util_dynarray_append(&sctx->resident_img_handles, struct si_image_handle *, img_handle); /* Add the buffers to the current CS in case si_begin_new_cs() * is not going to be called. */ radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, img_handle->desc->buffer, RADEON_USAGE_READWRITE, RADEON_PRIO_DESCRIPTORS); si_sampler_view_add_buffer(sctx, view->resource, (access & PIPE_IMAGE_ACCESS_WRITE) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ, false, false); } else { /* Remove the image handle from the per-context list. */ util_dynarray_delete_unordered(&sctx->resident_img_handles, struct si_image_handle *, img_handle); if (res->b.b.target != PIPE_BUFFER) { util_dynarray_delete_unordered( &sctx->resident_img_needs_color_decompress, struct si_image_handle *, img_handle); } } } void si_all_resident_buffers_begin_new_cs(struct si_context *sctx) { unsigned num_resident_tex_handles, num_resident_img_handles; num_resident_tex_handles = sctx->resident_tex_handles.size / sizeof(struct si_texture_handle *); num_resident_img_handles = sctx->resident_img_handles.size / sizeof(struct si_image_handle *); /* Skip adding the bindless descriptors when no handles are resident. */ if (!num_resident_tex_handles && !num_resident_img_handles) return; /* Add all bindless descriptors. */ util_dynarray_foreach(&sctx->bindless_descriptors, struct r600_resource *, desc) { radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, *desc, RADEON_USAGE_READWRITE, RADEON_PRIO_DESCRIPTORS); } /* Add all resident texture handles. */ util_dynarray_foreach(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) { struct si_sampler_view *sview = (struct si_sampler_view *)(*tex_handle)->view; si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ, sview->is_stencil_sampler, false); } /* Add all resident image handles. */ util_dynarray_foreach(&sctx->resident_img_handles, struct si_image_handle *, img_handle) { struct pipe_image_view *view = &(*img_handle)->view; si_sampler_view_add_buffer(sctx, view->resource, RADEON_USAGE_READWRITE, false, false); } sctx->b.num_resident_handles += num_resident_tex_handles + num_resident_img_handles; } /* INIT/DEINIT/UPLOAD */ /* GFX9 has only 4KB of CE, while previous chips had 32KB. In order * to make CE RAM as useful as possible, this defines limits * for the number slots that can be in CE RAM on GFX9. If a shader * is using more, descriptors will be uploaded to memory directly and * CE won't be used. * * These numbers are based on shader-db. */ static unsigned gfx9_max_ce_samplers[SI_NUM_SHADERS] = { [PIPE_SHADER_VERTEX] = 0, [PIPE_SHADER_TESS_CTRL] = 0, [PIPE_SHADER_TESS_EVAL] = 1, [PIPE_SHADER_GEOMETRY] = 0, [PIPE_SHADER_FRAGMENT] = 24, [PIPE_SHADER_COMPUTE] = 16, }; static unsigned gfx9_max_ce_images[SI_NUM_SHADERS] = { /* these must be even due to slot alignment */ [PIPE_SHADER_VERTEX] = 0, [PIPE_SHADER_TESS_CTRL] = 0, [PIPE_SHADER_TESS_EVAL] = 0, [PIPE_SHADER_GEOMETRY] = 0, [PIPE_SHADER_FRAGMENT] = 2, [PIPE_SHADER_COMPUTE] = 8, }; static unsigned gfx9_max_ce_const_buffers[SI_NUM_SHADERS] = { [PIPE_SHADER_VERTEX] = 9, [PIPE_SHADER_TESS_CTRL] = 3, [PIPE_SHADER_TESS_EVAL] = 5, [PIPE_SHADER_GEOMETRY] = 0, [PIPE_SHADER_FRAGMENT] = 8, [PIPE_SHADER_COMPUTE] = 6, }; static unsigned gfx9_max_ce_shader_buffers[SI_NUM_SHADERS] = { [PIPE_SHADER_VERTEX] = 0, [PIPE_SHADER_TESS_CTRL] = 0, [PIPE_SHADER_TESS_EVAL] = 0, [PIPE_SHADER_GEOMETRY] = 0, [PIPE_SHADER_FRAGMENT] = 12, [PIPE_SHADER_COMPUTE] = 13, }; void si_init_all_descriptors(struct si_context *sctx) { int i; unsigned ce_offset = 0; STATIC_ASSERT(GFX9_SGPR_TCS_CONST_AND_SHADER_BUFFERS % 2 == 0); STATIC_ASSERT(GFX9_SGPR_GS_CONST_AND_SHADER_BUFFERS % 2 == 0); for (i = 0; i < SI_NUM_SHADERS; i++) { bool gfx9_tcs = false; bool gfx9_gs = false; unsigned num_sampler_slots = SI_NUM_IMAGES / 2 + SI_NUM_SAMPLERS; unsigned num_buffer_slots = SI_NUM_SHADER_BUFFERS + SI_NUM_CONST_BUFFERS; unsigned first_sampler_ce_slot = 0; unsigned num_sampler_ce_slots = num_sampler_slots; unsigned first_buffer_ce_slot = 0; unsigned num_buffer_ce_slots = num_buffer_slots; /* Adjust CE slot ranges based on GFX9 CE RAM limits. */ if (sctx->b.chip_class >= GFX9) { gfx9_tcs = i == PIPE_SHADER_TESS_CTRL; gfx9_gs = i == PIPE_SHADER_GEOMETRY; first_sampler_ce_slot = si_get_image_slot(gfx9_max_ce_images[i] - 1) / 2; num_sampler_ce_slots = gfx9_max_ce_images[i] / 2 + gfx9_max_ce_samplers[i]; first_buffer_ce_slot = si_get_shaderbuf_slot(gfx9_max_ce_shader_buffers[i] - 1); num_buffer_ce_slots = gfx9_max_ce_shader_buffers[i] + gfx9_max_ce_const_buffers[i]; } si_init_buffer_resources(sctx, &sctx->const_and_shader_buffers[i], si_const_and_shader_buffer_descriptors(sctx, i), num_buffer_slots, first_buffer_ce_slot, num_buffer_ce_slots, gfx9_tcs ? GFX9_SGPR_TCS_CONST_AND_SHADER_BUFFERS : gfx9_gs ? GFX9_SGPR_GS_CONST_AND_SHADER_BUFFERS : SI_SGPR_CONST_AND_SHADER_BUFFERS, RADEON_USAGE_READWRITE, RADEON_USAGE_READ, RADEON_PRIO_SHADER_RW_BUFFER, RADEON_PRIO_CONST_BUFFER, &ce_offset); struct si_descriptors *desc = si_sampler_and_image_descriptors(sctx, i); si_init_descriptors(sctx, desc, gfx9_tcs ? GFX9_SGPR_TCS_SAMPLERS_AND_IMAGES : gfx9_gs ? GFX9_SGPR_GS_SAMPLERS_AND_IMAGES : SI_SGPR_SAMPLERS_AND_IMAGES, 16, num_sampler_slots, first_sampler_ce_slot, num_sampler_ce_slots, &ce_offset); int j; for (j = 0; j < SI_NUM_IMAGES; j++) memcpy(desc->list + j * 8, null_image_descriptor, 8 * 4); for (; j < SI_NUM_IMAGES + SI_NUM_SAMPLERS * 2; j++) memcpy(desc->list + j * 8, null_texture_descriptor, 8 * 4); } si_init_buffer_resources(sctx, &sctx->rw_buffers, &sctx->descriptors[SI_DESCS_RW_BUFFERS], SI_NUM_RW_BUFFERS, 0, SI_NUM_RW_BUFFERS, SI_SGPR_RW_BUFFERS, /* The second set of usage/priority is used by * const buffers in RW buffer slots. */ RADEON_USAGE_READWRITE, RADEON_USAGE_READ, RADEON_PRIO_SHADER_RINGS, RADEON_PRIO_CONST_BUFFER, &ce_offset); sctx->descriptors[SI_DESCS_RW_BUFFERS].num_active_slots = SI_NUM_RW_BUFFERS; si_init_descriptors(sctx, &sctx->vertex_buffers, SI_SGPR_VERTEX_BUFFERS, 4, SI_NUM_VERTEX_BUFFERS, 0, 0, NULL); sctx->descriptors_dirty = u_bit_consecutive(0, SI_NUM_DESCS); sctx->total_ce_ram_allocated = ce_offset; if (sctx->b.chip_class >= GFX9) assert(ce_offset <= 4096); else assert(ce_offset <= 32768); /* Set pipe_context functions. */ sctx->b.b.bind_sampler_states = si_bind_sampler_states; sctx->b.b.set_shader_images = si_set_shader_images; sctx->b.b.set_constant_buffer = si_pipe_set_constant_buffer; sctx->b.b.set_polygon_stipple = si_set_polygon_stipple; sctx->b.b.set_shader_buffers = si_set_shader_buffers; sctx->b.b.set_sampler_views = si_set_sampler_views; sctx->b.b.set_stream_output_targets = si_set_streamout_targets; sctx->b.b.create_texture_handle = si_create_texture_handle; sctx->b.b.delete_texture_handle = si_delete_texture_handle; sctx->b.b.make_texture_handle_resident = si_make_texture_handle_resident; sctx->b.b.create_image_handle = si_create_image_handle; sctx->b.b.delete_image_handle = si_delete_image_handle; sctx->b.b.make_image_handle_resident = si_make_image_handle_resident; sctx->b.invalidate_buffer = si_invalidate_buffer; sctx->b.rebind_buffer = si_rebind_buffer; /* Shader user data. */ si_init_atom(sctx, &sctx->shader_userdata.atom, &sctx->atoms.s.shader_userdata, si_emit_graphics_shader_userdata); /* Set default and immutable mappings. */ si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0); if (sctx->b.chip_class >= GFX9) { si_set_user_data_base(sctx, PIPE_SHADER_TESS_CTRL, R_00B430_SPI_SHADER_USER_DATA_LS_0); si_set_user_data_base(sctx, PIPE_SHADER_GEOMETRY, R_00B330_SPI_SHADER_USER_DATA_ES_0); } else { si_set_user_data_base(sctx, PIPE_SHADER_TESS_CTRL, R_00B430_SPI_SHADER_USER_DATA_HS_0); si_set_user_data_base(sctx, PIPE_SHADER_GEOMETRY, R_00B230_SPI_SHADER_USER_DATA_GS_0); } si_set_user_data_base(sctx, PIPE_SHADER_FRAGMENT, R_00B030_SPI_SHADER_USER_DATA_PS_0); } bool si_upload_graphics_shader_descriptors(struct si_context *sctx) { const unsigned mask = u_bit_consecutive(0, SI_DESCS_FIRST_COMPUTE); unsigned dirty = sctx->descriptors_dirty & mask; /* Assume nothing will go wrong: */ sctx->shader_pointers_dirty |= dirty; while (dirty) { unsigned i = u_bit_scan(&dirty); if (!si_upload_descriptors(sctx, &sctx->descriptors[i], &sctx->shader_userdata.atom)) return false; } sctx->descriptors_dirty &= ~mask; si_upload_bindless_descriptors(sctx); return true; } bool si_upload_compute_shader_descriptors(struct si_context *sctx) { /* Does not update rw_buffers as that is not needed for compute shaders * and the input buffer is using the same SGPR's anyway. */ const unsigned mask = u_bit_consecutive(SI_DESCS_FIRST_COMPUTE, SI_NUM_DESCS - SI_DESCS_FIRST_COMPUTE); unsigned dirty = sctx->descriptors_dirty & mask; /* Assume nothing will go wrong: */ sctx->shader_pointers_dirty |= dirty; while (dirty) { unsigned i = u_bit_scan(&dirty); if (!si_upload_descriptors(sctx, &sctx->descriptors[i], NULL)) return false; } sctx->descriptors_dirty &= ~mask; si_upload_bindless_descriptors(sctx); return true; } void si_release_all_descriptors(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_release_buffer_resources(&sctx->const_and_shader_buffers[i], si_const_and_shader_buffer_descriptors(sctx, i)); si_release_sampler_views(&sctx->samplers[i].views); si_release_image_views(&sctx->images[i]); } si_release_buffer_resources(&sctx->rw_buffers, &sctx->descriptors[SI_DESCS_RW_BUFFERS]); for (i = 0; i < SI_NUM_VERTEX_BUFFERS; i++) pipe_vertex_buffer_unreference(&sctx->vertex_buffer[i]); for (i = 0; i < SI_NUM_DESCS; ++i) si_release_descriptors(&sctx->descriptors[i]); si_release_descriptors(&sctx->vertex_buffers); } void si_all_descriptors_begin_new_cs(struct si_context *sctx) { int i; for (i = 0; i < SI_NUM_SHADERS; i++) { si_buffer_resources_begin_new_cs(sctx, &sctx->const_and_shader_buffers[i]); si_sampler_views_begin_new_cs(sctx, &sctx->samplers[i].views); si_image_views_begin_new_cs(sctx, &sctx->images[i]); } si_buffer_resources_begin_new_cs(sctx, &sctx->rw_buffers); si_vertex_buffers_begin_new_cs(sctx); for (i = 0; i < SI_NUM_DESCS; ++i) si_descriptors_begin_new_cs(sctx, &sctx->descriptors[i]); si_shader_userdata_begin_new_cs(sctx); } void si_set_active_descriptors(struct si_context *sctx, unsigned desc_idx, uint64_t new_active_mask) { struct si_descriptors *desc = &sctx->descriptors[desc_idx]; /* Ignore no-op updates and updates that disable all slots. */ if (!new_active_mask || new_active_mask == u_bit_consecutive64(desc->first_active_slot, desc->num_active_slots)) return; int first, count; u_bit_scan_consecutive_range64(&new_active_mask, &first, &count); assert(new_active_mask == 0); /* Upload/dump descriptors if slots are being enabled. */ if (first < desc->first_active_slot || first + count > desc->first_active_slot + desc->num_active_slots) sctx->descriptors_dirty |= 1u << desc_idx; /* Enable or disable CE for this descriptor array. */ bool used_ce = desc->uses_ce; desc->uses_ce = desc->first_ce_slot <= first && desc->first_ce_slot + desc->num_ce_slots >= first + count; if (desc->uses_ce != used_ce) { /* Upload or dump descriptors if we're disabling or enabling CE, * respectively. */ sctx->descriptors_dirty |= 1u << desc_idx; /* If we're enabling CE, re-upload all descriptors to CE RAM. * When CE was disabled, uploads to CE RAM stopped. */ if (desc->uses_ce) { desc->dirty_mask |= u_bit_consecutive64(desc->first_ce_slot, desc->num_ce_slots); } } desc->first_active_slot = first; desc->num_active_slots = count; } void si_set_active_descriptors_for_shader(struct si_context *sctx, struct si_shader_selector *sel) { if (!sel) return; si_set_active_descriptors(sctx, si_const_and_shader_buffer_descriptors_idx(sel->type), sel->active_const_and_shader_buffers); si_set_active_descriptors(sctx, si_sampler_and_image_descriptors_idx(sel->type), sel->active_samplers_and_images); }