/* * Copyright 2015 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_pipe.h" #include "si_compute.h" #include "sid.h" #include "gfx9d.h" #include "sid_tables.h" #include "driver_ddebug/dd_util.h" #include "util/u_dump.h" #include "util/u_log.h" #include "util/u_memory.h" #include "util/u_string.h" #include "ac_debug.h" static void si_dump_bo_list(struct si_context *sctx, const struct radeon_saved_cs *saved, FILE *f); DEBUG_GET_ONCE_OPTION(replace_shaders, "RADEON_REPLACE_SHADERS", NULL) /** * Store a linearized copy of all chunks of \p cs together with the buffer * list in \p saved. */ void si_save_cs(struct radeon_winsys *ws, struct radeon_cmdbuf *cs, struct radeon_saved_cs *saved, bool get_buffer_list) { uint32_t *buf; unsigned i; /* Save the IB chunks. */ saved->num_dw = cs->prev_dw + cs->current.cdw; saved->ib = MALLOC(4 * saved->num_dw); if (!saved->ib) goto oom; buf = saved->ib; for (i = 0; i < cs->num_prev; ++i) { memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4); buf += cs->prev[i].cdw; } memcpy(buf, cs->current.buf, cs->current.cdw * 4); if (!get_buffer_list) return; /* Save the buffer list. */ saved->bo_count = ws->cs_get_buffer_list(cs, NULL); saved->bo_list = CALLOC(saved->bo_count, sizeof(saved->bo_list[0])); if (!saved->bo_list) { FREE(saved->ib); goto oom; } ws->cs_get_buffer_list(cs, saved->bo_list); return; oom: fprintf(stderr, "%s: out of memory\n", __func__); memset(saved, 0, sizeof(*saved)); } void si_clear_saved_cs(struct radeon_saved_cs *saved) { FREE(saved->ib); FREE(saved->bo_list); memset(saved, 0, sizeof(*saved)); } void si_destroy_saved_cs(struct si_saved_cs *scs) { si_clear_saved_cs(&scs->gfx); si_resource_reference(&scs->trace_buf, NULL); free(scs); } static void si_dump_shader(struct si_screen *sscreen, enum pipe_shader_type processor, const struct si_shader *shader, FILE *f) { if (shader->shader_log) fwrite(shader->shader_log, shader->shader_log_size, 1, f); else si_shader_dump(sscreen, shader, NULL, processor, f, false); } struct si_log_chunk_shader { /* The shader destroy code assumes a current context for unlinking of * PM4 packets etc. * * While we should be able to destroy shaders without a context, doing * so would happen only very rarely and be therefore likely to fail * just when you're trying to debug something. Let's just remember the * current context in the chunk. */ struct si_context *ctx; struct si_shader *shader; enum pipe_shader_type processor; /* For keep-alive reference counts */ struct si_shader_selector *sel; struct si_compute *program; }; static void si_log_chunk_shader_destroy(void *data) { struct si_log_chunk_shader *chunk = data; si_shader_selector_reference(chunk->ctx, &chunk->sel, NULL); si_compute_reference(&chunk->program, NULL); FREE(chunk); } static void si_log_chunk_shader_print(void *data, FILE *f) { struct si_log_chunk_shader *chunk = data; struct si_screen *sscreen = chunk->ctx->screen; si_dump_shader(sscreen, chunk->processor, chunk->shader, f); } static struct u_log_chunk_type si_log_chunk_type_shader = { .destroy = si_log_chunk_shader_destroy, .print = si_log_chunk_shader_print, }; static void si_dump_gfx_shader(struct si_context *ctx, const struct si_shader_ctx_state *state, struct u_log_context *log) { struct si_shader *current = state->current; if (!state->cso || !current) return; struct si_log_chunk_shader *chunk = CALLOC_STRUCT(si_log_chunk_shader); chunk->ctx = ctx; chunk->processor = state->cso->info.processor; chunk->shader = current; si_shader_selector_reference(ctx, &chunk->sel, current->selector); u_log_chunk(log, &si_log_chunk_type_shader, chunk); } static void si_dump_compute_shader(struct si_context *ctx, struct u_log_context *log) { const struct si_cs_shader_state *state = &ctx->cs_shader_state; if (!state->program) return; struct si_log_chunk_shader *chunk = CALLOC_STRUCT(si_log_chunk_shader); chunk->ctx = ctx; chunk->processor = PIPE_SHADER_COMPUTE; chunk->shader = &state->program->shader; si_compute_reference(&chunk->program, state->program); u_log_chunk(log, &si_log_chunk_type_shader, chunk); } /** * Shader compiles can be overridden with arbitrary ELF objects by setting * the environment variable RADEON_REPLACE_SHADERS=num1:filename1[;num2:filename2] */ bool si_replace_shader(unsigned num, struct ac_shader_binary *binary) { const char *p = debug_get_option_replace_shaders(); const char *semicolon; char *copy = NULL; FILE *f; long filesize, nread; char *buf = NULL; bool replaced = false; if (!p) return false; while (*p) { unsigned long i; char *endp; i = strtoul(p, &endp, 0); p = endp; if (*p != ':') { fprintf(stderr, "RADEON_REPLACE_SHADERS formatted badly.\n"); exit(1); } ++p; if (i == num) break; p = strchr(p, ';'); if (!p) return false; ++p; } if (!*p) return false; semicolon = strchr(p, ';'); if (semicolon) { p = copy = strndup(p, semicolon - p); if (!copy) { fprintf(stderr, "out of memory\n"); return false; } } fprintf(stderr, "radeonsi: replace shader %u by %s\n", num, p); f = fopen(p, "r"); if (!f) { perror("radeonsi: failed to open file"); goto out_free; } if (fseek(f, 0, SEEK_END) != 0) goto file_error; filesize = ftell(f); if (filesize < 0) goto file_error; if (fseek(f, 0, SEEK_SET) != 0) goto file_error; buf = MALLOC(filesize); if (!buf) { fprintf(stderr, "out of memory\n"); goto out_close; } nread = fread(buf, 1, filesize, f); if (nread != filesize) goto file_error; ac_elf_read(buf, filesize, binary); replaced = true; out_close: fclose(f); out_free: FREE(buf); free(copy); return replaced; file_error: perror("radeonsi: reading shader"); goto out_close; } /* Parsed IBs are difficult to read without colors. Use "less -R file" to * read them, or use "aha -b -f file" to convert them to html. */ #define COLOR_RESET "\033[0m" #define COLOR_RED "\033[31m" #define COLOR_GREEN "\033[1;32m" #define COLOR_YELLOW "\033[1;33m" #define COLOR_CYAN "\033[1;36m" static void si_dump_mmapped_reg(struct si_context *sctx, FILE *f, unsigned offset) { struct radeon_winsys *ws = sctx->ws; uint32_t value; if (ws->read_registers(ws, offset, 1, &value)) ac_dump_reg(f, sctx->chip_class, offset, value, ~0); } static void si_dump_debug_registers(struct si_context *sctx, FILE *f) { if (!sctx->screen->info.has_read_registers_query) return; fprintf(f, "Memory-mapped registers:\n"); si_dump_mmapped_reg(sctx, f, R_008010_GRBM_STATUS); /* No other registers can be read on DRM < 3.1.0. */ if (sctx->screen->info.drm_major < 3 || sctx->screen->info.drm_minor < 1) { fprintf(f, "\n"); return; } si_dump_mmapped_reg(sctx, f, R_008008_GRBM_STATUS2); si_dump_mmapped_reg(sctx, f, R_008014_GRBM_STATUS_SE0); si_dump_mmapped_reg(sctx, f, R_008018_GRBM_STATUS_SE1); si_dump_mmapped_reg(sctx, f, R_008038_GRBM_STATUS_SE2); si_dump_mmapped_reg(sctx, f, R_00803C_GRBM_STATUS_SE3); si_dump_mmapped_reg(sctx, f, R_00D034_SDMA0_STATUS_REG); si_dump_mmapped_reg(sctx, f, R_00D834_SDMA1_STATUS_REG); if (sctx->chip_class <= GFX8) { si_dump_mmapped_reg(sctx, f, R_000E50_SRBM_STATUS); si_dump_mmapped_reg(sctx, f, R_000E4C_SRBM_STATUS2); si_dump_mmapped_reg(sctx, f, R_000E54_SRBM_STATUS3); } si_dump_mmapped_reg(sctx, f, R_008680_CP_STAT); si_dump_mmapped_reg(sctx, f, R_008674_CP_STALLED_STAT1); si_dump_mmapped_reg(sctx, f, R_008678_CP_STALLED_STAT2); si_dump_mmapped_reg(sctx, f, R_008670_CP_STALLED_STAT3); si_dump_mmapped_reg(sctx, f, R_008210_CP_CPC_STATUS); si_dump_mmapped_reg(sctx, f, R_008214_CP_CPC_BUSY_STAT); si_dump_mmapped_reg(sctx, f, R_008218_CP_CPC_STALLED_STAT1); si_dump_mmapped_reg(sctx, f, R_00821C_CP_CPF_STATUS); si_dump_mmapped_reg(sctx, f, R_008220_CP_CPF_BUSY_STAT); si_dump_mmapped_reg(sctx, f, R_008224_CP_CPF_STALLED_STAT1); fprintf(f, "\n"); } struct si_log_chunk_cs { struct si_context *ctx; struct si_saved_cs *cs; bool dump_bo_list; unsigned gfx_begin, gfx_end; unsigned compute_begin, compute_end; }; static void si_log_chunk_type_cs_destroy(void *data) { struct si_log_chunk_cs *chunk = data; si_saved_cs_reference(&chunk->cs, NULL); free(chunk); } static void si_parse_current_ib(FILE *f, struct radeon_cmdbuf *cs, unsigned begin, unsigned end, int *last_trace_id, unsigned trace_id_count, const char *name, enum chip_class chip_class) { unsigned orig_end = end; assert(begin <= end); fprintf(f, "------------------ %s begin (dw = %u) ------------------\n", name, begin); for (unsigned prev_idx = 0; prev_idx < cs->num_prev; ++prev_idx) { struct radeon_cmdbuf_chunk *chunk = &cs->prev[prev_idx]; if (begin < chunk->cdw) { ac_parse_ib_chunk(f, chunk->buf + begin, MIN2(end, chunk->cdw) - begin, last_trace_id, trace_id_count, chip_class, NULL, NULL); } if (end <= chunk->cdw) return; if (begin < chunk->cdw) fprintf(f, "\n---------- Next %s Chunk ----------\n\n", name); begin -= MIN2(begin, chunk->cdw); end -= chunk->cdw; } assert(end <= cs->current.cdw); ac_parse_ib_chunk(f, cs->current.buf + begin, end - begin, last_trace_id, trace_id_count, chip_class, NULL, NULL); fprintf(f, "------------------- %s end (dw = %u) -------------------\n\n", name, orig_end); } static void si_log_chunk_type_cs_print(void *data, FILE *f) { struct si_log_chunk_cs *chunk = data; struct si_context *ctx = chunk->ctx; struct si_saved_cs *scs = chunk->cs; int last_trace_id = -1; int last_compute_trace_id = -1; /* We are expecting that the ddebug pipe has already * waited for the context, so this buffer should be idle. * If the GPU is hung, there is no point in waiting for it. */ uint32_t *map = ctx->ws->buffer_map(scs->trace_buf->buf, NULL, PIPE_TRANSFER_UNSYNCHRONIZED | PIPE_TRANSFER_READ); if (map) { last_trace_id = map[0]; last_compute_trace_id = map[1]; } if (chunk->gfx_end != chunk->gfx_begin) { if (chunk->gfx_begin == 0) { if (ctx->init_config) ac_parse_ib(f, ctx->init_config->pm4, ctx->init_config->ndw, NULL, 0, "IB2: Init config", ctx->chip_class, NULL, NULL); if (ctx->init_config_gs_rings) ac_parse_ib(f, ctx->init_config_gs_rings->pm4, ctx->init_config_gs_rings->ndw, NULL, 0, "IB2: Init GS rings", ctx->chip_class, NULL, NULL); } if (scs->flushed) { ac_parse_ib(f, scs->gfx.ib + chunk->gfx_begin, chunk->gfx_end - chunk->gfx_begin, &last_trace_id, map ? 1 : 0, "IB", ctx->chip_class, NULL, NULL); } else { si_parse_current_ib(f, ctx->gfx_cs, chunk->gfx_begin, chunk->gfx_end, &last_trace_id, map ? 1 : 0, "IB", ctx->chip_class); } } if (chunk->compute_end != chunk->compute_begin) { assert(ctx->prim_discard_compute_cs); if (scs->flushed) { ac_parse_ib(f, scs->compute.ib + chunk->compute_begin, chunk->compute_end - chunk->compute_begin, &last_compute_trace_id, map ? 1 : 0, "Compute IB", ctx->chip_class, NULL, NULL); } else { si_parse_current_ib(f, ctx->prim_discard_compute_cs, chunk->compute_begin, chunk->compute_end, &last_compute_trace_id, map ? 1 : 0, "Compute IB", ctx->chip_class); } } if (chunk->dump_bo_list) { fprintf(f, "Flushing. Time: "); util_dump_ns(f, scs->time_flush); fprintf(f, "\n\n"); si_dump_bo_list(ctx, &scs->gfx, f); } } static const struct u_log_chunk_type si_log_chunk_type_cs = { .destroy = si_log_chunk_type_cs_destroy, .print = si_log_chunk_type_cs_print, }; static void si_log_cs(struct si_context *ctx, struct u_log_context *log, bool dump_bo_list) { assert(ctx->current_saved_cs); struct si_saved_cs *scs = ctx->current_saved_cs; unsigned gfx_cur = ctx->gfx_cs->prev_dw + ctx->gfx_cs->current.cdw; unsigned compute_cur = 0; if (ctx->prim_discard_compute_cs) compute_cur = ctx->prim_discard_compute_cs->prev_dw + ctx->prim_discard_compute_cs->current.cdw; if (!dump_bo_list && gfx_cur == scs->gfx_last_dw && compute_cur == scs->compute_last_dw) return; struct si_log_chunk_cs *chunk = calloc(1, sizeof(*chunk)); chunk->ctx = ctx; si_saved_cs_reference(&chunk->cs, scs); chunk->dump_bo_list = dump_bo_list; chunk->gfx_begin = scs->gfx_last_dw; chunk->gfx_end = gfx_cur; scs->gfx_last_dw = gfx_cur; chunk->compute_begin = scs->compute_last_dw; chunk->compute_end = compute_cur; scs->compute_last_dw = compute_cur; u_log_chunk(log, &si_log_chunk_type_cs, chunk); } void si_auto_log_cs(void *data, struct u_log_context *log) { struct si_context *ctx = (struct si_context *)data; si_log_cs(ctx, log, false); } void si_log_hw_flush(struct si_context *sctx) { if (!sctx->log) return; si_log_cs(sctx, sctx->log, true); if (&sctx->b == sctx->screen->aux_context) { /* The aux context isn't captured by the ddebug wrapper, * so we dump it on a flush-by-flush basis here. */ FILE *f = dd_get_debug_file(false); if (!f) { fprintf(stderr, "radeonsi: error opening aux context dump file.\n"); } else { dd_write_header(f, &sctx->screen->b, 0); fprintf(f, "Aux context dump:\n\n"); u_log_new_page_print(sctx->log, f); fclose(f); } } } static const char *priority_to_string(enum radeon_bo_priority priority) { #define ITEM(x) [RADEON_PRIO_##x] = #x static const char *table[64] = { ITEM(FENCE), ITEM(TRACE), ITEM(SO_FILLED_SIZE), ITEM(QUERY), ITEM(IB1), ITEM(IB2), ITEM(DRAW_INDIRECT), ITEM(INDEX_BUFFER), ITEM(CP_DMA), ITEM(CONST_BUFFER), ITEM(DESCRIPTORS), ITEM(BORDER_COLORS), ITEM(SAMPLER_BUFFER), ITEM(VERTEX_BUFFER), ITEM(SHADER_RW_BUFFER), ITEM(COMPUTE_GLOBAL), ITEM(SAMPLER_TEXTURE), ITEM(SHADER_RW_IMAGE), ITEM(SAMPLER_TEXTURE_MSAA), ITEM(COLOR_BUFFER), ITEM(DEPTH_BUFFER), ITEM(COLOR_BUFFER_MSAA), ITEM(DEPTH_BUFFER_MSAA), ITEM(SEPARATE_META), ITEM(SHADER_BINARY), ITEM(SHADER_RINGS), ITEM(SCRATCH_BUFFER), }; #undef ITEM assert(priority < ARRAY_SIZE(table)); return table[priority]; } static int bo_list_compare_va(const struct radeon_bo_list_item *a, const struct radeon_bo_list_item *b) { return a->vm_address < b->vm_address ? -1 : a->vm_address > b->vm_address ? 1 : 0; } static void si_dump_bo_list(struct si_context *sctx, const struct radeon_saved_cs *saved, FILE *f) { unsigned i,j; if (!saved->bo_list) return; /* Sort the list according to VM adddresses first. */ qsort(saved->bo_list, saved->bo_count, sizeof(saved->bo_list[0]), (void*)bo_list_compare_va); fprintf(f, "Buffer list (in units of pages = 4kB):\n" COLOR_YELLOW " Size VM start page " "VM end page Usage" COLOR_RESET "\n"); for (i = 0; i < saved->bo_count; i++) { /* Note: Buffer sizes are expected to be aligned to 4k by the winsys. */ const unsigned page_size = sctx->screen->info.gart_page_size; uint64_t va = saved->bo_list[i].vm_address; uint64_t size = saved->bo_list[i].bo_size; bool hit = false; /* If there's unused virtual memory between 2 buffers, print it. */ if (i) { uint64_t previous_va_end = saved->bo_list[i-1].vm_address + saved->bo_list[i-1].bo_size; if (va > previous_va_end) { fprintf(f, " %10"PRIu64" -- hole --\n", (va - previous_va_end) / page_size); } } /* Print the buffer. */ fprintf(f, " %10"PRIu64" 0x%013"PRIX64" 0x%013"PRIX64" ", size / page_size, va / page_size, (va + size) / page_size); /* Print the usage. */ for (j = 0; j < 32; j++) { if (!(saved->bo_list[i].priority_usage & (1u << j))) continue; fprintf(f, "%s%s", !hit ? "" : ", ", priority_to_string(j)); hit = true; } fprintf(f, "\n"); } fprintf(f, "\nNote: The holes represent memory not used by the IB.\n" " Other buffers can still be allocated there.\n\n"); } static void si_dump_framebuffer(struct si_context *sctx, struct u_log_context *log) { struct pipe_framebuffer_state *state = &sctx->framebuffer.state; struct si_texture *tex; int i; for (i = 0; i < state->nr_cbufs; i++) { if (!state->cbufs[i]) continue; tex = (struct si_texture*)state->cbufs[i]->texture; u_log_printf(log, COLOR_YELLOW "Color buffer %i:" COLOR_RESET "\n", i); si_print_texture_info(sctx->screen, tex, log); u_log_printf(log, "\n"); } if (state->zsbuf) { tex = (struct si_texture*)state->zsbuf->texture; u_log_printf(log, COLOR_YELLOW "Depth-stencil buffer:" COLOR_RESET "\n"); si_print_texture_info(sctx->screen, tex, log); u_log_printf(log, "\n"); } } typedef unsigned (*slot_remap_func)(unsigned); struct si_log_chunk_desc_list { /** Pointer to memory map of buffer where the list is uploader */ uint32_t *gpu_list; /** Reference of buffer where the list is uploaded, so that gpu_list * is kept live. */ struct si_resource *buf; const char *shader_name; const char *elem_name; slot_remap_func slot_remap; enum chip_class chip_class; unsigned element_dw_size; unsigned num_elements; uint32_t list[0]; }; static void si_log_chunk_desc_list_destroy(void *data) { struct si_log_chunk_desc_list *chunk = data; si_resource_reference(&chunk->buf, NULL); FREE(chunk); } static void si_log_chunk_desc_list_print(void *data, FILE *f) { struct si_log_chunk_desc_list *chunk = data; for (unsigned i = 0; i < chunk->num_elements; i++) { unsigned cpu_dw_offset = i * chunk->element_dw_size; unsigned gpu_dw_offset = chunk->slot_remap(i) * chunk->element_dw_size; const char *list_note = chunk->gpu_list ? "GPU list" : "CPU list"; uint32_t *cpu_list = chunk->list + cpu_dw_offset; uint32_t *gpu_list = chunk->gpu_list ? chunk->gpu_list + gpu_dw_offset : cpu_list; fprintf(f, COLOR_GREEN "%s%s slot %u (%s):" COLOR_RESET "\n", chunk->shader_name, chunk->elem_name, i, list_note); switch (chunk->element_dw_size) { case 4: for (unsigned j = 0; j < 4; j++) ac_dump_reg(f, chunk->chip_class, R_008F00_SQ_BUF_RSRC_WORD0 + j*4, gpu_list[j], 0xffffffff); break; case 8: for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, chunk->chip_class, R_008F10_SQ_IMG_RSRC_WORD0 + j*4, gpu_list[j], 0xffffffff); fprintf(f, COLOR_CYAN " Buffer:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) ac_dump_reg(f, chunk->chip_class, R_008F00_SQ_BUF_RSRC_WORD0 + j*4, gpu_list[4+j], 0xffffffff); break; case 16: for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, chunk->chip_class, R_008F10_SQ_IMG_RSRC_WORD0 + j*4, gpu_list[j], 0xffffffff); fprintf(f, COLOR_CYAN " Buffer:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) ac_dump_reg(f, chunk->chip_class, R_008F00_SQ_BUF_RSRC_WORD0 + j*4, gpu_list[4+j], 0xffffffff); fprintf(f, COLOR_CYAN " FMASK:" COLOR_RESET "\n"); for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, chunk->chip_class, R_008F10_SQ_IMG_RSRC_WORD0 + j*4, gpu_list[8+j], 0xffffffff); fprintf(f, COLOR_CYAN " Sampler state:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) ac_dump_reg(f, chunk->chip_class, R_008F30_SQ_IMG_SAMP_WORD0 + j*4, gpu_list[12+j], 0xffffffff); break; } if (memcmp(gpu_list, cpu_list, chunk->element_dw_size * 4) != 0) { fprintf(f, COLOR_RED "!!!!! This slot was corrupted in GPU memory !!!!!" COLOR_RESET "\n"); } fprintf(f, "\n"); } } static const struct u_log_chunk_type si_log_chunk_type_descriptor_list = { .destroy = si_log_chunk_desc_list_destroy, .print = si_log_chunk_desc_list_print, }; static void si_dump_descriptor_list(struct si_screen *screen, struct si_descriptors *desc, const char *shader_name, const char *elem_name, unsigned element_dw_size, unsigned num_elements, slot_remap_func slot_remap, struct u_log_context *log) { if (!desc->list) return; /* In some cases, the caller doesn't know how many elements are really * uploaded. Reduce num_elements to fit in the range of active slots. */ unsigned active_range_dw_begin = desc->first_active_slot * desc->element_dw_size; unsigned active_range_dw_end = active_range_dw_begin + desc->num_active_slots * desc->element_dw_size; while (num_elements > 0) { int i = slot_remap(num_elements - 1); unsigned dw_begin = i * element_dw_size; unsigned dw_end = dw_begin + element_dw_size; if (dw_begin >= active_range_dw_begin && dw_end <= active_range_dw_end) break; num_elements--; } struct si_log_chunk_desc_list *chunk = CALLOC_VARIANT_LENGTH_STRUCT(si_log_chunk_desc_list, 4 * element_dw_size * num_elements); chunk->shader_name = shader_name; chunk->elem_name = elem_name; chunk->element_dw_size = element_dw_size; chunk->num_elements = num_elements; chunk->slot_remap = slot_remap; chunk->chip_class = screen->info.chip_class; si_resource_reference(&chunk->buf, desc->buffer); chunk->gpu_list = desc->gpu_list; for (unsigned i = 0; i < num_elements; ++i) { memcpy(&chunk->list[i * element_dw_size], &desc->list[slot_remap(i) * element_dw_size], 4 * element_dw_size); } u_log_chunk(log, &si_log_chunk_type_descriptor_list, chunk); } static unsigned si_identity(unsigned slot) { return slot; } static void si_dump_descriptors(struct si_context *sctx, enum pipe_shader_type processor, const struct tgsi_shader_info *info, struct u_log_context *log) { struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_FIRST_SHADER + processor * SI_NUM_SHADER_DESCS]; static const char *shader_name[] = {"VS", "PS", "GS", "TCS", "TES", "CS"}; const char *name = shader_name[processor]; unsigned enabled_constbuf, enabled_shaderbuf, enabled_samplers; unsigned enabled_images; if (info) { enabled_constbuf = info->const_buffers_declared; enabled_shaderbuf = info->shader_buffers_declared; enabled_samplers = info->samplers_declared; enabled_images = info->images_declared; } else { enabled_constbuf = sctx->const_and_shader_buffers[processor].enabled_mask >> SI_NUM_SHADER_BUFFERS; enabled_shaderbuf = sctx->const_and_shader_buffers[processor].enabled_mask & u_bit_consecutive(0, SI_NUM_SHADER_BUFFERS); enabled_shaderbuf = util_bitreverse(enabled_shaderbuf) >> (32 - SI_NUM_SHADER_BUFFERS); enabled_samplers = sctx->samplers[processor].enabled_mask; enabled_images = sctx->images[processor].enabled_mask; } if (processor == PIPE_SHADER_VERTEX && sctx->vb_descriptors_buffer && sctx->vb_descriptors_gpu_list && sctx->vertex_elements) { assert(info); /* only CS may not have an info struct */ struct si_descriptors desc = {}; desc.buffer = sctx->vb_descriptors_buffer; desc.list = sctx->vb_descriptors_gpu_list; desc.gpu_list = sctx->vb_descriptors_gpu_list; desc.element_dw_size = 4; desc.num_active_slots = sctx->vertex_elements->desc_list_byte_size / 16; si_dump_descriptor_list(sctx->screen, &desc, name, " - Vertex buffer", 4, info->num_inputs, si_identity, log); } si_dump_descriptor_list(sctx->screen, &descs[SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS], name, " - Constant buffer", 4, util_last_bit(enabled_constbuf), si_get_constbuf_slot, log); si_dump_descriptor_list(sctx->screen, &descs[SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS], name, " - Shader buffer", 4, util_last_bit(enabled_shaderbuf), si_get_shaderbuf_slot, log); si_dump_descriptor_list(sctx->screen, &descs[SI_SHADER_DESCS_SAMPLERS_AND_IMAGES], name, " - Sampler", 16, util_last_bit(enabled_samplers), si_get_sampler_slot, log); si_dump_descriptor_list(sctx->screen, &descs[SI_SHADER_DESCS_SAMPLERS_AND_IMAGES], name, " - Image", 8, util_last_bit(enabled_images), si_get_image_slot, log); } static void si_dump_gfx_descriptors(struct si_context *sctx, const struct si_shader_ctx_state *state, struct u_log_context *log) { if (!state->cso || !state->current) return; si_dump_descriptors(sctx, state->cso->type, &state->cso->info, log); } static void si_dump_compute_descriptors(struct si_context *sctx, struct u_log_context *log) { if (!sctx->cs_shader_state.program) return; si_dump_descriptors(sctx, PIPE_SHADER_COMPUTE, NULL, log); } struct si_shader_inst { const char *text; /* start of disassembly for this instruction */ unsigned textlen; unsigned size; /* instruction size = 4 or 8 */ uint64_t addr; /* instruction address */ }; /** * Split a disassembly string into instructions and add them to the array * pointed to by \p instructions. * * Labels are considered to be part of the following instruction. */ static void si_add_split_disasm(const char *disasm, uint64_t *addr, unsigned *num, struct si_shader_inst *instructions) { const char *semicolon; while ((semicolon = strchr(disasm, ';'))) { struct si_shader_inst *inst = &instructions[(*num)++]; const char *end = util_strchrnul(semicolon, '\n'); inst->text = disasm; inst->textlen = end - disasm; inst->addr = *addr; /* More than 16 chars after ";" means the instruction is 8 bytes long. */ inst->size = end - semicolon > 16 ? 8 : 4; *addr += inst->size; if (!(*end)) break; disasm = end + 1; } } /* If the shader is being executed, print its asm instructions, and annotate * those that are being executed right now with information about waves that * execute them. This is most useful during a GPU hang. */ static void si_print_annotated_shader(struct si_shader *shader, struct ac_wave_info *waves, unsigned num_waves, FILE *f) { if (!shader || !shader->binary.disasm_string) return; uint64_t start_addr = shader->bo->gpu_address; uint64_t end_addr = start_addr + shader->bo->b.b.width0; unsigned i; /* See if any wave executes the shader. */ for (i = 0; i < num_waves; i++) { if (start_addr <= waves[i].pc && waves[i].pc <= end_addr) break; } if (i == num_waves) return; /* the shader is not being executed */ /* Remember the first found wave. The waves are sorted according to PC. */ waves = &waves[i]; num_waves -= i; /* Get the list of instructions. * Buffer size / 4 is the upper bound of the instruction count. */ unsigned num_inst = 0; uint64_t inst_addr = start_addr; struct si_shader_inst *instructions = calloc(shader->bo->b.b.width0 / 4, sizeof(struct si_shader_inst)); if (shader->prolog) { si_add_split_disasm(shader->prolog->binary.disasm_string, &inst_addr, &num_inst, instructions); } if (shader->previous_stage) { si_add_split_disasm(shader->previous_stage->binary.disasm_string, &inst_addr, &num_inst, instructions); } if (shader->prolog2) { si_add_split_disasm(shader->prolog2->binary.disasm_string, &inst_addr, &num_inst, instructions); } si_add_split_disasm(shader->binary.disasm_string, &inst_addr, &num_inst, instructions); if (shader->epilog) { si_add_split_disasm(shader->epilog->binary.disasm_string, &inst_addr, &num_inst, instructions); } fprintf(f, COLOR_YELLOW "%s - annotated disassembly:" COLOR_RESET "\n", si_get_shader_name(shader, shader->selector->type)); /* Print instructions with annotations. */ for (i = 0; i < num_inst; i++) { struct si_shader_inst *inst = &instructions[i]; fprintf(f, "%.*s [PC=0x%"PRIx64", size=%u]\n", inst->textlen, inst->text, inst->addr, inst->size); /* Print which waves execute the instruction right now. */ while (num_waves && inst->addr == waves->pc) { fprintf(f, " " COLOR_GREEN "^ SE%u SH%u CU%u " "SIMD%u WAVE%u EXEC=%016"PRIx64 " ", waves->se, waves->sh, waves->cu, waves->simd, waves->wave, waves->exec); if (inst->size == 4) { fprintf(f, "INST32=%08X" COLOR_RESET "\n", waves->inst_dw0); } else { fprintf(f, "INST64=%08X %08X" COLOR_RESET "\n", waves->inst_dw0, waves->inst_dw1); } waves->matched = true; waves = &waves[1]; num_waves--; } } fprintf(f, "\n\n"); free(instructions); } static void si_dump_annotated_shaders(struct si_context *sctx, FILE *f) { struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP]; unsigned num_waves = ac_get_wave_info(waves); fprintf(f, COLOR_CYAN "The number of active waves = %u" COLOR_RESET "\n\n", num_waves); si_print_annotated_shader(sctx->vs_shader.current, waves, num_waves, f); si_print_annotated_shader(sctx->tcs_shader.current, waves, num_waves, f); si_print_annotated_shader(sctx->tes_shader.current, waves, num_waves, f); si_print_annotated_shader(sctx->gs_shader.current, waves, num_waves, f); si_print_annotated_shader(sctx->ps_shader.current, waves, num_waves, f); /* Print waves executing shaders that are not currently bound. */ unsigned i; bool found = false; for (i = 0; i < num_waves; i++) { if (waves[i].matched) continue; if (!found) { fprintf(f, COLOR_CYAN "Waves not executing currently-bound shaders:" COLOR_RESET "\n"); found = true; } fprintf(f, " SE%u SH%u CU%u SIMD%u WAVE%u EXEC=%016"PRIx64 " INST=%08X %08X PC=%"PRIx64"\n", waves[i].se, waves[i].sh, waves[i].cu, waves[i].simd, waves[i].wave, waves[i].exec, waves[i].inst_dw0, waves[i].inst_dw1, waves[i].pc); } if (found) fprintf(f, "\n\n"); } static void si_dump_command(const char *title, const char *command, FILE *f) { char line[2000]; FILE *p = popen(command, "r"); if (!p) return; fprintf(f, COLOR_YELLOW "%s: " COLOR_RESET "\n", title); while (fgets(line, sizeof(line), p)) fputs(line, f); fprintf(f, "\n\n"); pclose(p); } static void si_dump_debug_state(struct pipe_context *ctx, FILE *f, unsigned flags) { struct si_context *sctx = (struct si_context*)ctx; if (sctx->log) u_log_flush(sctx->log); if (flags & PIPE_DUMP_DEVICE_STATUS_REGISTERS) { si_dump_debug_registers(sctx, f); si_dump_annotated_shaders(sctx, f); si_dump_command("Active waves (raw data)", "umr -O halt_waves -wa | column -t", f); si_dump_command("Wave information", "umr -O halt_waves,bits -wa", f); } } void si_log_draw_state(struct si_context *sctx, struct u_log_context *log) { struct si_shader_ctx_state *tcs_shader; if (!log) return; tcs_shader = &sctx->tcs_shader; if (sctx->tes_shader.cso && !sctx->tcs_shader.cso) tcs_shader = &sctx->fixed_func_tcs_shader; si_dump_framebuffer(sctx, log); si_dump_gfx_shader(sctx, &sctx->vs_shader, log); si_dump_gfx_shader(sctx, tcs_shader, log); si_dump_gfx_shader(sctx, &sctx->tes_shader, log); si_dump_gfx_shader(sctx, &sctx->gs_shader, log); si_dump_gfx_shader(sctx, &sctx->ps_shader, log); si_dump_descriptor_list(sctx->screen, &sctx->descriptors[SI_DESCS_RW_BUFFERS], "", "RW buffers", 4, sctx->descriptors[SI_DESCS_RW_BUFFERS].num_active_slots, si_identity, log); si_dump_gfx_descriptors(sctx, &sctx->vs_shader, log); si_dump_gfx_descriptors(sctx, tcs_shader, log); si_dump_gfx_descriptors(sctx, &sctx->tes_shader, log); si_dump_gfx_descriptors(sctx, &sctx->gs_shader, log); si_dump_gfx_descriptors(sctx, &sctx->ps_shader, log); } void si_log_compute_state(struct si_context *sctx, struct u_log_context *log) { if (!log) return; si_dump_compute_shader(sctx, log); si_dump_compute_descriptors(sctx, log); } static void si_dump_dma(struct si_context *sctx, struct radeon_saved_cs *saved, FILE *f) { static const char ib_name[] = "sDMA IB"; unsigned i; si_dump_bo_list(sctx, saved, f); fprintf(f, "------------------ %s begin ------------------\n", ib_name); for (i = 0; i < saved->num_dw; ++i) { fprintf(f, " %08x\n", saved->ib[i]); } fprintf(f, "------------------- %s end -------------------\n", ib_name); fprintf(f, "\n"); fprintf(f, "SDMA Dump Done.\n"); } void si_check_vm_faults(struct si_context *sctx, struct radeon_saved_cs *saved, enum ring_type ring) { struct pipe_screen *screen = sctx->b.screen; FILE *f; uint64_t addr; char cmd_line[4096]; if (!ac_vm_fault_occured(sctx->chip_class, &sctx->dmesg_timestamp, &addr)) return; f = dd_get_debug_file(false); if (!f) return; fprintf(f, "VM fault report.\n\n"); if (os_get_command_line(cmd_line, sizeof(cmd_line))) fprintf(f, "Command: %s\n", cmd_line); fprintf(f, "Driver vendor: %s\n", screen->get_vendor(screen)); fprintf(f, "Device vendor: %s\n", screen->get_device_vendor(screen)); fprintf(f, "Device name: %s\n\n", screen->get_name(screen)); fprintf(f, "Failing VM page: 0x%08"PRIx64"\n\n", addr); if (sctx->apitrace_call_number) fprintf(f, "Last apitrace call: %u\n\n", sctx->apitrace_call_number); switch (ring) { case RING_GFX: { struct u_log_context log; u_log_context_init(&log); si_log_draw_state(sctx, &log); si_log_compute_state(sctx, &log); si_log_cs(sctx, &log, true); u_log_new_page_print(&log, f); u_log_context_destroy(&log); break; } case RING_DMA: si_dump_dma(sctx, saved, f); break; default: break; } fclose(f); fprintf(stderr, "Detected a VM fault, exiting...\n"); exit(0); } void si_init_debug_functions(struct si_context *sctx) { sctx->b.dump_debug_state = si_dump_debug_state; /* Set the initial dmesg timestamp for this context, so that * only new messages will be checked for VM faults. */ if (sctx->screen->debug_flags & DBG(CHECK_VM)) ac_vm_fault_occured(sctx->chip_class, &sctx->dmesg_timestamp, NULL); }