/* * Copyright 2013 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_pipe.h" #include "sid.h" /* Set this if you want the ME to wait until CP DMA is done. * It should be set on the last CP DMA packet. */ #define CP_DMA_SYNC (1 << 0) /* Set this if the source data was used as a destination in a previous CP DMA * packet. It's for preventing a read-after-write (RAW) hazard between two * CP DMA packets. */ #define CP_DMA_RAW_WAIT (1 << 1) #define CP_DMA_DST_IS_GDS (1 << 2) #define CP_DMA_CLEAR (1 << 3) #define CP_DMA_PFP_SYNC_ME (1 << 4) #define CP_DMA_SRC_IS_GDS (1 << 5) /* The max number of bytes that can be copied per packet. */ static inline unsigned cp_dma_max_byte_count(struct si_context *sctx) { unsigned max = sctx->chip_class >= GFX9 ? S_414_BYTE_COUNT_GFX9(~0u) : S_414_BYTE_COUNT_GFX6(~0u); /* make it aligned for optimal performance */ return max & ~(SI_CPDMA_ALIGNMENT - 1); } /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit * clear value. */ static void si_emit_cp_dma(struct si_context *sctx, struct radeon_cmdbuf *cs, uint64_t dst_va, uint64_t src_va, unsigned size, unsigned flags, enum si_cache_policy cache_policy) { uint32_t header = 0, command = 0; assert(size <= cp_dma_max_byte_count(sctx)); assert(sctx->chip_class != GFX6 || cache_policy == L2_BYPASS); if (sctx->chip_class >= GFX9) command |= S_414_BYTE_COUNT_GFX9(size); else command |= S_414_BYTE_COUNT_GFX6(size); /* Sync flags. */ if (flags & CP_DMA_SYNC) header |= S_411_CP_SYNC(1); else { if (sctx->chip_class >= GFX9) command |= S_414_DISABLE_WR_CONFIRM_GFX9(1); else command |= S_414_DISABLE_WR_CONFIRM_GFX6(1); } if (flags & CP_DMA_RAW_WAIT) command |= S_414_RAW_WAIT(1); /* Src and dst flags. */ if (sctx->chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) && src_va == dst_va) { header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */ } else if (flags & CP_DMA_DST_IS_GDS) { header |= S_411_DST_SEL(V_411_GDS); /* GDS increments the address, not CP. */ command |= S_414_DAS(V_414_REGISTER) | S_414_DAIC(V_414_NO_INCREMENT); } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) { header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2) | S_500_DST_CACHE_POLICY(cache_policy == L2_STREAM); } if (flags & CP_DMA_CLEAR) { header |= S_411_SRC_SEL(V_411_DATA); } else if (flags & CP_DMA_SRC_IS_GDS) { header |= S_411_SRC_SEL(V_411_GDS); /* Both of these are required for GDS. It does increment the address. */ command |= S_414_SAS(V_414_REGISTER) | S_414_SAIC(V_414_NO_INCREMENT); } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) { header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) | S_500_SRC_CACHE_POLICY(cache_policy == L2_STREAM); } if (sctx->chip_class >= GFX7) { radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0)); radeon_emit(cs, header); radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */ radeon_emit(cs, command); } else { header |= S_411_SRC_ADDR_HI(src_va >> 32); radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0)); radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ radeon_emit(cs, command); } /* CP DMA is executed in ME, but index buffers are read by PFP. * This ensures that ME (CP DMA) is idle before PFP starts fetching * indices. If we wanted to execute CP DMA in PFP, this packet * should precede it. */ if (sctx->has_graphics && flags & CP_DMA_PFP_SYNC_ME) { radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); radeon_emit(cs, 0); } } void si_cp_dma_wait_for_idle(struct si_context *sctx) { /* Issue a dummy DMA that copies zero bytes. * * The DMA engine will see that there's no work to do and skip this * DMA request, however, the CP will see the sync flag and still wait * for all DMAs to complete. */ si_emit_cp_dma(sctx, sctx->gfx_cs, 0, 0, 0, CP_DMA_SYNC, L2_BYPASS); } static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src, unsigned byte_count, uint64_t remaining_size, unsigned user_flags, enum si_coherency coher, bool *is_first, unsigned *packet_flags) { /* Fast exit for a CPDMA prefetch. */ if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) { *is_first = false; return; } if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) { /* Count memory usage in so that need_cs_space can take it into account. */ if (dst) si_context_add_resource_size(sctx, dst); if (src) si_context_add_resource_size(sctx, src); } if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE)) si_need_gfx_cs_space(sctx); /* This must be done after need_cs_space. */ if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) { if (dst) radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(dst), RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA); if (src) radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(src), RADEON_USAGE_READ, RADEON_PRIO_CP_DMA); } /* Flush the caches for the first copy only. * Also wait for the previous CP DMA operations. */ if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->flags) sctx->emit_cache_flush(sctx); if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first && !(*packet_flags & CP_DMA_CLEAR)) *packet_flags |= CP_DMA_RAW_WAIT; *is_first = false; /* Do the synchronization after the last dma, so that all data * is written to memory. */ if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) && byte_count == remaining_size) { *packet_flags |= CP_DMA_SYNC; if (coher == SI_COHERENCY_SHADER) *packet_flags |= CP_DMA_PFP_SYNC_ME; } } void si_cp_dma_clear_buffer(struct si_context *sctx, struct radeon_cmdbuf *cs, struct pipe_resource *dst, uint64_t offset, uint64_t size, unsigned value, unsigned user_flags, enum si_coherency coher, enum si_cache_policy cache_policy) { struct si_resource *sdst = si_resource(dst); uint64_t va = (sdst ? sdst->gpu_address : 0) + offset; bool is_first = true; assert(size && size % 4 == 0); /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ if (sdst) util_range_add(&sdst->valid_buffer_range, offset, offset + size); /* Flush the caches. */ if (sdst && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) { sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, coher, cache_policy); } while (size) { unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx)); unsigned dma_flags = CP_DMA_CLEAR | (sdst ? 0 : CP_DMA_DST_IS_GDS); si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, user_flags, coher, &is_first, &dma_flags); /* Emit the clear packet. */ si_emit_cp_dma(sctx, cs, va, value, byte_count, dma_flags, cache_policy); size -= byte_count; va += byte_count; } if (sdst && cache_policy != L2_BYPASS) sdst->TC_L2_dirty = true; /* If it's not a framebuffer fast clear... */ if (coher == SI_COHERENCY_SHADER) { sctx->num_cp_dma_calls++; si_prim_discard_signal_next_compute_ib_start(sctx); } } /** * Realign the CP DMA engine. This must be done after a copy with an unaligned * size. * * \param size Remaining size to the CP DMA alignment. */ static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size, unsigned user_flags, enum si_coherency coher, enum si_cache_policy cache_policy, bool *is_first) { uint64_t va; unsigned dma_flags = 0; unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2; assert(size < SI_CPDMA_ALIGNMENT); /* Use the scratch buffer as the dummy buffer. The 3D engine should be * idle at this point. */ if (!sctx->scratch_buffer || sctx->scratch_buffer->b.b.width0 < scratch_size) { si_resource_reference(&sctx->scratch_buffer, NULL); sctx->scratch_buffer = si_aligned_buffer_create(&sctx->screen->b, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, scratch_size, 256); if (!sctx->scratch_buffer) return; si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state); } si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b, &sctx->scratch_buffer->b.b, size, size, user_flags, coher, is_first, &dma_flags); va = sctx->scratch_buffer->gpu_address; si_emit_cp_dma(sctx, sctx->gfx_cs, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags, cache_policy); } /** * Do memcpy between buffers using CP DMA. * If src or dst is NULL, it means read or write GDS, respectively. * * \param user_flags bitmask of SI_CPDMA_* */ void si_cp_dma_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset, unsigned size, unsigned user_flags, enum si_coherency coher, enum si_cache_policy cache_policy) { uint64_t main_dst_offset, main_src_offset; unsigned skipped_size = 0; unsigned realign_size = 0; unsigned gds_flags = (dst ? 0 : CP_DMA_DST_IS_GDS) | (src ? 0 : CP_DMA_SRC_IS_GDS); bool is_first = true; assert(size); if (dst) { /* Skip this for the L2 prefetch. */ if (dst != src || dst_offset != src_offset) { /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(&si_resource(dst)->valid_buffer_range, dst_offset, dst_offset + size); } dst_offset += si_resource(dst)->gpu_address; } if (src) src_offset += si_resource(src)->gpu_address; /* The workarounds aren't needed on Fiji and beyond. */ if (sctx->family <= CHIP_CARRIZO || sctx->family == CHIP_STONEY) { /* If the size is not aligned, we must add a dummy copy at the end * just to align the internal counter. Otherwise, the DMA engine * would slow down by an order of magnitude for following copies. */ if (size % SI_CPDMA_ALIGNMENT) realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT); /* If the copy begins unaligned, we must start copying from the next * aligned block and the skipped part should be copied after everything * else has been copied. Only the src alignment matters, not dst. * * GDS doesn't need the source address to be aligned. */ if (src && src_offset % SI_CPDMA_ALIGNMENT) { skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT); /* The main part will be skipped if the size is too small. */ skipped_size = MIN2(skipped_size, size); size -= skipped_size; } } /* Flush the caches. */ if ((dst || src) && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) { sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, coher, cache_policy); } /* This is the main part doing the copying. Src is always aligned. */ main_dst_offset = dst_offset + skipped_size; main_src_offset = src_offset + skipped_size; while (size) { unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx)); unsigned dma_flags = gds_flags; si_cp_dma_prepare(sctx, dst, src, byte_count, size + skipped_size + realign_size, user_flags, coher, &is_first, &dma_flags); si_emit_cp_dma(sctx, sctx->gfx_cs, main_dst_offset, main_src_offset, byte_count, dma_flags, cache_policy); size -= byte_count; main_src_offset += byte_count; main_dst_offset += byte_count; } /* Copy the part we skipped because src wasn't aligned. */ if (skipped_size) { unsigned dma_flags = gds_flags; si_cp_dma_prepare(sctx, dst, src, skipped_size, skipped_size + realign_size, user_flags, coher, &is_first, &dma_flags); si_emit_cp_dma(sctx, sctx->gfx_cs, dst_offset, src_offset, skipped_size, dma_flags, cache_policy); } /* Finally, realign the engine if the size wasn't aligned. */ if (realign_size) { si_cp_dma_realign_engine(sctx, realign_size, user_flags, coher, cache_policy, &is_first); } if (dst && cache_policy != L2_BYPASS) si_resource(dst)->TC_L2_dirty = true; /* If it's not a prefetch or GDS copy... */ if (dst && src && (dst != src || dst_offset != src_offset)) { sctx->num_cp_dma_calls++; si_prim_discard_signal_next_compute_ib_start(sctx); } } void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf, uint64_t offset, unsigned size) { assert(sctx->chip_class >= GFX7); si_cp_dma_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL, SI_COHERENCY_SHADER, L2_LRU); } static void cik_prefetch_shader_async(struct si_context *sctx, struct si_pm4_state *state) { struct pipe_resource *bo = &state->bo[0]->b.b; assert(state->nbo == 1); cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0); } static void cik_prefetch_VBO_descriptors(struct si_context *sctx) { if (!sctx->vertex_elements || !sctx->vertex_elements->desc_list_byte_size) return; cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b, sctx->vb_descriptors_offset, sctx->vertex_elements->desc_list_byte_size); } /** * Prefetch shaders and VBO descriptors. * * \param vertex_stage_only Whether only the the API VS and VBO descriptors * should be prefetched. */ void cik_emit_prefetch_L2(struct si_context *sctx, bool vertex_stage_only) { unsigned mask = sctx->prefetch_L2_mask; assert(mask); /* Prefetch shaders and VBO descriptors to TC L2. */ if (sctx->chip_class >= GFX9) { /* Choose the right spot for the VBO prefetch. */ if (sctx->queued.named.hs) { if (mask & SI_PREFETCH_HS) cik_prefetch_shader_async(sctx, sctx->queued.named.hs); if (mask & SI_PREFETCH_VBO_DESCRIPTORS) cik_prefetch_VBO_descriptors(sctx); if (vertex_stage_only) { sctx->prefetch_L2_mask &= ~(SI_PREFETCH_HS | SI_PREFETCH_VBO_DESCRIPTORS); return; } if (mask & SI_PREFETCH_GS) cik_prefetch_shader_async(sctx, sctx->queued.named.gs); if (mask & SI_PREFETCH_VS) cik_prefetch_shader_async(sctx, sctx->queued.named.vs); } else if (sctx->queued.named.gs) { if (mask & SI_PREFETCH_GS) cik_prefetch_shader_async(sctx, sctx->queued.named.gs); if (mask & SI_PREFETCH_VBO_DESCRIPTORS) cik_prefetch_VBO_descriptors(sctx); if (vertex_stage_only) { sctx->prefetch_L2_mask &= ~(SI_PREFETCH_GS | SI_PREFETCH_VBO_DESCRIPTORS); return; } if (mask & SI_PREFETCH_VS) cik_prefetch_shader_async(sctx, sctx->queued.named.vs); } else { if (mask & SI_PREFETCH_VS) cik_prefetch_shader_async(sctx, sctx->queued.named.vs); if (mask & SI_PREFETCH_VBO_DESCRIPTORS) cik_prefetch_VBO_descriptors(sctx); if (vertex_stage_only) { sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS); return; } } } else { /* GFX6-GFX8 */ /* Choose the right spot for the VBO prefetch. */ if (sctx->tes_shader.cso) { if (mask & SI_PREFETCH_LS) cik_prefetch_shader_async(sctx, sctx->queued.named.ls); if (mask & SI_PREFETCH_VBO_DESCRIPTORS) cik_prefetch_VBO_descriptors(sctx); if (vertex_stage_only) { sctx->prefetch_L2_mask &= ~(SI_PREFETCH_LS | SI_PREFETCH_VBO_DESCRIPTORS); return; } if (mask & SI_PREFETCH_HS) cik_prefetch_shader_async(sctx, sctx->queued.named.hs); if (mask & SI_PREFETCH_ES) cik_prefetch_shader_async(sctx, sctx->queued.named.es); if (mask & SI_PREFETCH_GS) cik_prefetch_shader_async(sctx, sctx->queued.named.gs); if (mask & SI_PREFETCH_VS) cik_prefetch_shader_async(sctx, sctx->queued.named.vs); } else if (sctx->gs_shader.cso) { if (mask & SI_PREFETCH_ES) cik_prefetch_shader_async(sctx, sctx->queued.named.es); if (mask & SI_PREFETCH_VBO_DESCRIPTORS) cik_prefetch_VBO_descriptors(sctx); if (vertex_stage_only) { sctx->prefetch_L2_mask &= ~(SI_PREFETCH_ES | SI_PREFETCH_VBO_DESCRIPTORS); return; } if (mask & SI_PREFETCH_GS) cik_prefetch_shader_async(sctx, sctx->queued.named.gs); if (mask & SI_PREFETCH_VS) cik_prefetch_shader_async(sctx, sctx->queued.named.vs); } else { if (mask & SI_PREFETCH_VS) cik_prefetch_shader_async(sctx, sctx->queued.named.vs); if (mask & SI_PREFETCH_VBO_DESCRIPTORS) cik_prefetch_VBO_descriptors(sctx); if (vertex_stage_only) { sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS); return; } } } if (mask & SI_PREFETCH_PS) cik_prefetch_shader_async(sctx, sctx->queued.named.ps); sctx->prefetch_L2_mask = 0; } void si_test_gds(struct si_context *sctx) { struct pipe_context *ctx = &sctx->b; struct pipe_resource *src, *dst; unsigned r[4] = {}; unsigned offset = debug_get_num_option("OFFSET", 16); src = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16); dst = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16); si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 0, 4, 0xabcdef01, 0, SI_COHERENCY_SHADER, L2_BYPASS); si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 4, 4, 0x23456789, 0, SI_COHERENCY_SHADER, L2_BYPASS); si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 8, 4, 0x87654321, 0, SI_COHERENCY_SHADER, L2_BYPASS); si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 12, 4, 0xfedcba98, 0, SI_COHERENCY_SHADER, L2_BYPASS); si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, 0, 16, 0xdeadbeef, 0, SI_COHERENCY_SHADER, L2_BYPASS); si_cp_dma_copy_buffer(sctx, NULL, src, offset, 0, 16, 0, SI_COHERENCY_NONE, L2_BYPASS); si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS); pipe_buffer_read(ctx, dst, 0, sizeof(r), r); printf("GDS copy = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3], r[0] == 0xabcdef01 && r[1] == 0x23456789 && r[2] == 0x87654321 && r[3] == 0xfedcba98 ? "pass" : "fail"); si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, NULL, offset, 16, 0xc1ea4146, 0, SI_COHERENCY_NONE, L2_BYPASS); si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS); pipe_buffer_read(ctx, dst, 0, sizeof(r), r); printf("GDS clear = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3], r[0] == 0xc1ea4146 && r[1] == 0xc1ea4146 && r[2] == 0xc1ea4146 && r[3] == 0xc1ea4146 ? "pass" : "fail"); pipe_resource_reference(&src, NULL); pipe_resource_reference(&dst, NULL); exit(0); } void si_cp_write_data(struct si_context *sctx, struct si_resource *buf, unsigned offset, unsigned size, unsigned dst_sel, unsigned engine, const void *data) { struct radeon_cmdbuf *cs = sctx->gfx_cs; assert(offset % 4 == 0); assert(size % 4 == 0); if (sctx->chip_class == GFX6 && dst_sel == V_370_MEM) dst_sel = V_370_MEM_GRBM; radeon_add_to_buffer_list(sctx, cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA); uint64_t va = buf->gpu_address + offset; radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + size/4, 0)); radeon_emit(cs, S_370_DST_SEL(dst_sel) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(engine)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit_array(cs, (const uint32_t*)data, size/4); } void si_cp_copy_data(struct si_context *sctx, struct radeon_cmdbuf *cs, unsigned dst_sel, struct si_resource *dst, unsigned dst_offset, unsigned src_sel, struct si_resource *src, unsigned src_offset) { /* cs can point to the compute IB, which has the buffer list in gfx_cs. */ if (dst) { radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dst, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA); } if (src) { radeon_add_to_buffer_list(sctx, sctx->gfx_cs, src, RADEON_USAGE_READ, RADEON_PRIO_CP_DMA); } uint64_t dst_va = (dst ? dst->gpu_address : 0ull) + dst_offset; uint64_t src_va = (src ? src->gpu_address : 0ull) + src_offset; radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); radeon_emit(cs, COPY_DATA_SRC_SEL(src_sel) | COPY_DATA_DST_SEL(dst_sel) | COPY_DATA_WR_CONFIRM); radeon_emit(cs, src_va); radeon_emit(cs, src_va >> 32); radeon_emit(cs, dst_va); radeon_emit(cs, dst_va >> 32); }