/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Marek Olšák */ #include "si_pipe.h" #include "sid.h" #include "radeon/r600_cs.h" /* Set this if you want the 3D engine to wait until CP DMA is done. * It should be set on the last CP DMA packet. */ #define R600_CP_DMA_SYNC (1 << 0) /* R600+ */ /* Set this if the source data was used as a destination in a previous CP DMA * packet. It's for preventing a read-after-write (RAW) hazard between two * CP DMA packets. */ #define SI_CP_DMA_RAW_WAIT (1 << 1) /* SI+ */ #define CIK_CP_DMA_USE_L2 (1 << 2) /* Emit a CP DMA packet to do a copy from one buffer to another. * The size must fit in bits [20:0]. */ static void si_emit_cp_dma_copy_buffer(struct si_context *sctx, uint64_t dst_va, uint64_t src_va, unsigned size, unsigned flags) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; uint32_t sync_flag = flags & R600_CP_DMA_SYNC ? S_411_CP_SYNC(1) : 0; uint32_t wr_confirm = !(flags & R600_CP_DMA_SYNC) ? S_414_DISABLE_WR_CONFIRM(1) : 0; uint32_t raw_wait = flags & SI_CP_DMA_RAW_WAIT ? S_414_RAW_WAIT(1) : 0; uint32_t sel = flags & CIK_CP_DMA_USE_L2 ? S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) | S_411_DSL_SEL(V_411_DST_ADDR_TC_L2) : 0; assert(size); assert((size & ((1<<21)-1)) == size); if (sctx->b.chip_class >= CIK) { radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0)); radeon_emit(cs, sync_flag | sel); /* CP_SYNC [31] */ radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */ radeon_emit(cs, size | wr_confirm | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ } else { radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0)); radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, sync_flag | ((src_va >> 32) & 0xffff)); /* CP_SYNC [31] | SRC_ADDR_HI [15:0] */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ radeon_emit(cs, size | wr_confirm | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ } /* CP DMA is executed in ME, but index buffers are read by PFP. * This ensures that ME (CP DMA) is idle before PFP starts fetching * indices. If we wanted to execute CP DMA in PFP, this packet * should precede it. */ if (sync_flag) { radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); radeon_emit(cs, 0); } } /* Emit a CP DMA packet to clear a buffer. The size must fit in bits [20:0]. */ static void si_emit_cp_dma_clear_buffer(struct si_context *sctx, uint64_t dst_va, unsigned size, uint32_t clear_value, unsigned flags, enum r600_coherency coher) { struct radeon_winsys_cs *cs = sctx->b.gfx.cs; uint32_t sync_flag = flags & R600_CP_DMA_SYNC ? S_411_CP_SYNC(1) : 0; uint32_t wr_confirm = !(flags & R600_CP_DMA_SYNC) ? S_414_DISABLE_WR_CONFIRM(1) : 0; uint32_t raw_wait = flags & SI_CP_DMA_RAW_WAIT ? S_414_RAW_WAIT(1) : 0; uint32_t dst_sel = flags & CIK_CP_DMA_USE_L2 ? S_411_DSL_SEL(V_411_DST_ADDR_TC_L2) : 0; assert(size); assert((size & ((1<<21)-1)) == size); if (sctx->b.chip_class >= CIK) { radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0)); radeon_emit(cs, sync_flag | dst_sel | S_411_SRC_SEL(V_411_DATA)); /* CP_SYNC [31] | SRC_SEL[30:29] */ radeon_emit(cs, clear_value); /* DATA [31:0] */ radeon_emit(cs, 0); radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [15:0] */ radeon_emit(cs, size | wr_confirm | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ } else { radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0)); radeon_emit(cs, clear_value); /* DATA [31:0] */ radeon_emit(cs, sync_flag | S_411_SRC_SEL(V_411_DATA)); /* CP_SYNC [31] | SRC_SEL[30:29] */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ radeon_emit(cs, size | wr_confirm | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ } /* See "copy_buffer" for explanation. */ if (coher == R600_COHERENCY_SHADER && sync_flag) { radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); radeon_emit(cs, 0); } } static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher) { switch (coher) { default: case R600_COHERENCY_NONE: return 0; case R600_COHERENCY_SHADER: return SI_CONTEXT_INV_SMEM_L1 | SI_CONTEXT_INV_VMEM_L1 | (sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0); case R600_COHERENCY_CB_META: return SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_CB_META; } } static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher) { return coher == R600_COHERENCY_SHADER && sctx->b.chip_class >= CIK ? CIK_CP_DMA_USE_L2 : 0; } static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src, unsigned byte_count, uint64_t remaining_size, unsigned *flags) { si_need_cs_space(sctx); /* This must be done after need_cs_space. */ radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)dst, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA); if (src) radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, (struct r600_resource*)src, RADEON_USAGE_READ, RADEON_PRIO_CP_DMA); /* Flush the caches for the first copy only. * Also wait for the previous CP DMA operations. */ if (sctx->b.flags) { si_emit_cache_flush(sctx, NULL); *flags |= SI_CP_DMA_RAW_WAIT; } /* Do the synchronization after the last dma, so that all data * is written to memory. */ if (byte_count == remaining_size) *flags |= R600_CP_DMA_SYNC; } /* Alignment for optimal performance. */ #define CP_DMA_ALIGNMENT 32 /* The max number of bytes to copy per packet. */ #define CP_DMA_MAX_BYTE_COUNT ((1 << 21) - CP_DMA_ALIGNMENT) static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst, uint64_t offset, uint64_t size, unsigned value, enum r600_coherency coher) { struct si_context *sctx = (struct si_context*)ctx; unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher); unsigned flush_flags = get_flush_flags(sctx, coher); if (!size) return; /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(&r600_resource(dst)->valid_buffer_range, offset, offset + size); /* Fallback for unaligned clears. */ if (offset % 4 != 0 || size % 4 != 0) { uint8_t *map = sctx->b.ws->buffer_map(r600_resource(dst)->buf, sctx->b.gfx.cs, PIPE_TRANSFER_WRITE); map += offset; for (uint64_t i = 0; i < size; i++) { unsigned byte_within_dword = (offset + i) % 4; *map++ = (value >> (byte_within_dword * 8)) & 0xff; } return; } uint64_t va = r600_resource(dst)->gpu_address + offset; /* Flush the caches. */ sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags; while (size) { unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT); unsigned dma_flags = tc_l2_flag; si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, &dma_flags); /* Emit the clear packet. */ si_emit_cp_dma_clear_buffer(sctx, va, byte_count, value, dma_flags, coher); size -= byte_count; va += byte_count; } if (tc_l2_flag) r600_resource(dst)->TC_L2_dirty = true; } /** * Realign the CP DMA engine. This must be done after a copy with an unaligned * size. * * \param size Remaining size to the CP DMA alignment. */ static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size) { uint64_t va; unsigned dma_flags = 0; unsigned scratch_size = CP_DMA_ALIGNMENT * 2; assert(size < CP_DMA_ALIGNMENT); /* Use the scratch buffer as the dummy buffer. The 3D engine should be * idle at this point. */ if (!sctx->scratch_buffer || sctx->scratch_buffer->b.b.width0 < scratch_size) { r600_resource_reference(&sctx->scratch_buffer, NULL); sctx->scratch_buffer = si_resource_create_custom(&sctx->screen->b.b, PIPE_USAGE_DEFAULT, scratch_size); if (!sctx->scratch_buffer) return; sctx->emit_scratch_reloc = true; } si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b, &sctx->scratch_buffer->b.b, size, size, &dma_flags); va = sctx->scratch_buffer->gpu_address; si_emit_cp_dma_copy_buffer(sctx, va, va + CP_DMA_ALIGNMENT, size, dma_flags); } void si_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset, unsigned size) { uint64_t main_dst_offset, main_src_offset; unsigned skipped_size = 0; unsigned realign_size = 0; unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER); unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER); if (!size) return; /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset, dst_offset + size); dst_offset += r600_resource(dst)->gpu_address; src_offset += r600_resource(src)->gpu_address; /* The workarounds aren't needed on Fiji and beyond. */ if (sctx->b.family <= CHIP_CARRIZO || sctx->b.family == CHIP_STONEY) { /* If the size is not aligned, we must add a dummy copy at the end * just to align the internal counter. Otherwise, the DMA engine * would slow down by an order of magnitude for following copies. */ if (size % CP_DMA_ALIGNMENT) realign_size = CP_DMA_ALIGNMENT - (size % CP_DMA_ALIGNMENT); /* If the copy begins unaligned, we must start copying from the next * aligned block and the skipped part should be copied after everything * else has been copied. Only the src alignment matters, not dst. */ if (src_offset % CP_DMA_ALIGNMENT) { skipped_size = CP_DMA_ALIGNMENT - (src_offset % CP_DMA_ALIGNMENT); /* The main part will be skipped if the size is too small. */ skipped_size = MIN2(skipped_size, size); size -= skipped_size; } } /* Flush the caches. */ sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags; /* This is the main part doing the copying. Src is always aligned. */ main_dst_offset = dst_offset + skipped_size; main_src_offset = src_offset + skipped_size; while (size) { unsigned dma_flags = tc_l2_flag; unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT); si_cp_dma_prepare(sctx, dst, src, byte_count, size + skipped_size + realign_size, &dma_flags); si_emit_cp_dma_copy_buffer(sctx, main_dst_offset, main_src_offset, byte_count, dma_flags); size -= byte_count; main_src_offset += byte_count; main_dst_offset += byte_count; } /* Copy the part we skipped because src wasn't aligned. */ if (skipped_size) { unsigned dma_flags = tc_l2_flag; si_cp_dma_prepare(sctx, dst, src, skipped_size, skipped_size + realign_size, &dma_flags); si_emit_cp_dma_copy_buffer(sctx, dst_offset, src_offset, skipped_size, dma_flags); } /* Finally, realign the engine if the size wasn't aligned. */ if (realign_size) si_cp_dma_realign_engine(sctx, realign_size); if (tc_l2_flag) r600_resource(dst)->TC_L2_dirty = true; } void si_init_cp_dma_functions(struct si_context *sctx) { sctx->b.clear_buffer = si_clear_buffer; }