/* * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "si_pipe.h" /* Note: Compute shaders always use SI_COMPUTE_DST_CACHE_POLICY for dst * and L2_STREAM for src. */ static enum si_cache_policy get_cache_policy(struct si_context *sctx, enum si_coherency coher, uint64_t size) { if ((sctx->chip_class >= GFX9 && (coher == SI_COHERENCY_CB_META || coher == SI_COHERENCY_CP)) || (sctx->chip_class >= CIK && coher == SI_COHERENCY_SHADER)) return size <= 256 * 1024 ? L2_LRU : L2_STREAM; return L2_BYPASS; } unsigned si_get_flush_flags(struct si_context *sctx, enum si_coherency coher, enum si_cache_policy cache_policy) { switch (coher) { default: case SI_COHERENCY_NONE: case SI_COHERENCY_CP: return 0; case SI_COHERENCY_SHADER: return SI_CONTEXT_INV_SMEM_L1 | SI_CONTEXT_INV_VMEM_L1 | (cache_policy == L2_BYPASS ? SI_CONTEXT_INV_GLOBAL_L2 : 0); case SI_COHERENCY_CB_META: return SI_CONTEXT_FLUSH_AND_INV_CB; } } static void si_compute_do_clear_or_copy(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_offset, struct pipe_resource *src, unsigned src_offset, unsigned size, const uint32_t *clear_value, unsigned clear_value_size, enum si_coherency coher) { struct pipe_context *ctx = &sctx->b; assert(src_offset % 4 == 0); assert(dst_offset % 4 == 0); assert(size % 4 == 0); assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0); assert(!src || src_offset + size <= src->width0); sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY); si_emit_cache_flush(sctx); /* Save states. */ void *saved_cs = sctx->cs_shader_state.program; struct pipe_shader_buffer saved_sb[2] = {}; si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb); /* The memory accesses are coalesced, meaning that the 1st instruction writes * the 1st contiguous block of data for the whole wave, the 2nd instruction * writes the 2nd contiguous block of data, etc. */ unsigned dwords_per_thread = src ? SI_COMPUTE_COPY_DW_PER_THREAD : SI_COMPUTE_CLEAR_DW_PER_THREAD; unsigned instructions_per_thread = MAX2(1, dwords_per_thread / 4); unsigned dwords_per_instruction = dwords_per_thread / instructions_per_thread; unsigned dwords_per_wave = dwords_per_thread * 64; unsigned num_dwords = size / 4; unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction); struct pipe_grid_info info = {}; info.block[0] = MIN2(64, num_instructions); info.block[1] = 1; info.block[2] = 1; info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave); info.grid[1] = 1; info.grid[2] = 1; struct pipe_shader_buffer sb[2] = {}; sb[0].buffer = dst; sb[0].buffer_offset = dst_offset; sb[0].buffer_size = size; if (src) { sb[1].buffer = src; sb[1].buffer_offset = src_offset; sb[1].buffer_size = size; ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 2, sb); ctx->bind_compute_state(ctx, sctx->cs_copy_buffer); } else { assert(clear_value_size >= 4 && clear_value_size <= 16 && util_is_power_of_two_or_zero(clear_value_size)); for (unsigned i = 0; i < 4; i++) sctx->cs_user_data[i] = clear_value[i % (clear_value_size / 4)]; ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, sb); ctx->bind_compute_state(ctx, sctx->cs_clear_buffer); } ctx->launch_grid(ctx, &info); enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size); sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | (cache_policy == L2_BYPASS ? SI_CONTEXT_WRITEBACK_GLOBAL_L2 : 0); if (cache_policy != L2_BYPASS) r600_resource(dst)->TC_L2_dirty = true; /* Restore states. */ ctx->bind_compute_state(ctx, saved_cs); ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb); } void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst, uint64_t offset, uint64_t size, uint32_t *clear_value, uint32_t clear_value_size, enum si_coherency coher) { if (!size) return; unsigned clear_alignment = MIN2(clear_value_size, 4); assert(clear_value_size != 3 && clear_value_size != 6); /* 12 is allowed. */ assert(offset % clear_alignment == 0); assert(size % clear_alignment == 0); assert(size < (UINT_MAX & ~0xf)); /* TODO: test 64-bit sizes in all codepaths */ /* Reduce a large clear value size if possible. */ if (clear_value_size > 4) { bool clear_dword_duplicated = true; /* See if we can lower large fills to dword fills. */ for (unsigned i = 1; i < clear_value_size / 4; i++) { if (clear_value[0] != clear_value[i]) { clear_dword_duplicated = false; break; } } if (clear_dword_duplicated) clear_value_size = 4; } /* Expand a small clear value size. */ uint32_t tmp_clear_value; if (clear_value_size <= 2) { if (clear_value_size == 1) { tmp_clear_value = *(uint8_t*)clear_value; tmp_clear_value |= (tmp_clear_value << 8) | (tmp_clear_value << 16) | (tmp_clear_value << 24); } else { tmp_clear_value = *(uint16_t*)clear_value; tmp_clear_value |= tmp_clear_value << 16; } clear_value = &tmp_clear_value; clear_value_size = 4; } /* Use transform feedback for 12-byte clears. */ /* TODO: Use compute. */ if (clear_value_size == 12) { union pipe_color_union streamout_clear_value; memcpy(&streamout_clear_value, clear_value, clear_value_size); si_blitter_begin(sctx, SI_DISABLE_RENDER_COND); util_blitter_clear_buffer(sctx->blitter, dst, offset, size, clear_value_size / 4, &streamout_clear_value); si_blitter_end(sctx); return; } uint64_t aligned_size = size & ~3ull; if (aligned_size >= 4) { /* Before GFX9, CP DMA was very slow when clearing GTT, so never * use CP DMA clears on those chips, because we can't be certain * about buffer placements. */ if (clear_value_size > 4 || (clear_value_size == 4 && offset % 4 == 0 && (size > 32*1024 || sctx->chip_class <= VI))) { si_compute_do_clear_or_copy(sctx, dst, offset, NULL, 0, aligned_size, clear_value, clear_value_size, coher); } else { assert(clear_value_size == 4); si_cp_dma_clear_buffer(sctx, dst, offset, aligned_size, *clear_value, coher, get_cache_policy(sctx, coher, size)); } offset += aligned_size; size -= aligned_size; } /* Handle non-dword alignment. */ if (size) { assert(dst); assert(dst->target == PIPE_BUFFER); assert(size < 4); pipe_buffer_write(&sctx->b, dst, offset, size, clear_value); } } static void si_pipe_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst, unsigned offset, unsigned size, const void *clear_value, int clear_value_size) { enum si_coherency coher; if (dst->flags & SI_RESOURCE_FLAG_SO_FILLED_SIZE) coher = SI_COHERENCY_CP; else coher = SI_COHERENCY_SHADER; si_clear_buffer((struct si_context*)ctx, dst, offset, size, (uint32_t*)clear_value, clear_value_size, coher); } void si_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset, unsigned size) { if (!size) return; enum si_coherency coher = SI_COHERENCY_SHADER; enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size); /* Only use compute for VRAM copies on dGPUs. */ if (sctx->screen->info.has_dedicated_vram && r600_resource(dst)->domains & RADEON_DOMAIN_VRAM && r600_resource(src)->domains & RADEON_DOMAIN_VRAM && size > 32 * 1024 && dst_offset % 4 == 0 && src_offset % 4 == 0 && size % 4 == 0) { si_compute_do_clear_or_copy(sctx, dst, dst_offset, src, src_offset, size, NULL, 0, coher); } else { si_cp_dma_copy_buffer(sctx, dst, src, dst_offset, src_offset, size, 0, coher, cache_policy); } } void si_init_compute_blit_functions(struct si_context *sctx) { sctx->b.clear_buffer = si_pipe_clear_buffer; }