/* * Copyright 2013 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "radeonsi/si_pipe.h" #include "util/u_memory.h" #include "util/u_transfer.h" #include "util/u_upload_mgr.h" #include #include bool si_rings_is_buffer_referenced(struct si_context *sctx, struct pb_buffer *buf, enum radeon_bo_usage usage) { if (sctx->ws->cs_is_buffer_referenced(sctx->gfx_cs, buf, usage)) { return true; } if (radeon_emitted(sctx->sdma_cs, 0) && sctx->ws->cs_is_buffer_referenced(sctx->sdma_cs, buf, usage)) { return true; } return false; } void *si_buffer_map_sync_with_rings(struct si_context *sctx, struct si_resource *resource, unsigned usage) { enum radeon_bo_usage rusage = RADEON_USAGE_READWRITE; bool busy = false; assert(!(resource->flags & RADEON_FLAG_SPARSE)); if (usage & PIPE_TRANSFER_UNSYNCHRONIZED) { return sctx->ws->buffer_map(resource->buf, NULL, usage); } if (!(usage & PIPE_TRANSFER_WRITE)) { /* have to wait for the last write */ rusage = RADEON_USAGE_WRITE; } if (radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size) && sctx->ws->cs_is_buffer_referenced(sctx->gfx_cs, resource->buf, rusage)) { if (usage & PIPE_TRANSFER_DONTBLOCK) { si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); return NULL; } else { si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); busy = true; } } if (radeon_emitted(sctx->sdma_cs, 0) && sctx->ws->cs_is_buffer_referenced(sctx->sdma_cs, resource->buf, rusage)) { if (usage & PIPE_TRANSFER_DONTBLOCK) { si_flush_dma_cs(sctx, PIPE_FLUSH_ASYNC, NULL); return NULL; } else { si_flush_dma_cs(sctx, 0, NULL); busy = true; } } if (busy || !sctx->ws->buffer_wait(resource->buf, 0, rusage)) { if (usage & PIPE_TRANSFER_DONTBLOCK) { return NULL; } else { /* We will be wait for the GPU. Wait for any offloaded * CS flush to complete to avoid busy-waiting in the winsys. */ sctx->ws->cs_sync_flush(sctx->gfx_cs); if (sctx->sdma_cs) sctx->ws->cs_sync_flush(sctx->sdma_cs); } } /* Setting the CS to NULL will prevent doing checks we have done already. */ return sctx->ws->buffer_map(resource->buf, NULL, usage); } void si_init_resource_fields(struct si_screen *sscreen, struct si_resource *res, uint64_t size, unsigned alignment) { struct si_texture *tex = (struct si_texture *)res; res->bo_size = size; res->bo_alignment = alignment; res->flags = 0; res->texture_handle_allocated = false; res->image_handle_allocated = false; switch (res->b.b.usage) { case PIPE_USAGE_STREAM: res->flags = RADEON_FLAG_GTT_WC; /* fall through */ case PIPE_USAGE_STAGING: /* Transfers are likely to occur more often with these * resources. */ res->domains = RADEON_DOMAIN_GTT; break; case PIPE_USAGE_DYNAMIC: /* Older kernels didn't always flush the HDP cache before * CS execution */ if (!sscreen->info.kernel_flushes_hdp_before_ib) { res->domains = RADEON_DOMAIN_GTT; res->flags |= RADEON_FLAG_GTT_WC; break; } /* fall through */ case PIPE_USAGE_DEFAULT: case PIPE_USAGE_IMMUTABLE: default: /* Not listing GTT here improves performance in some * apps. */ res->domains = RADEON_DOMAIN_VRAM; res->flags |= RADEON_FLAG_GTT_WC; break; } if (res->b.b.target == PIPE_BUFFER && res->b.b.flags & PIPE_RESOURCE_FLAG_MAP_PERSISTENT) { /* Use GTT for all persistent mappings with older * kernels, because they didn't always flush the HDP * cache before CS execution. * * Write-combined CPU mappings are fine, the kernel * ensures all CPU writes finish before the GPU * executes a command stream. * * radeon doesn't have good BO move throttling, so put all * persistent buffers into GTT to prevent VRAM CPU page faults. */ if (!sscreen->info.kernel_flushes_hdp_before_ib || !sscreen->info.is_amdgpu) res->domains = RADEON_DOMAIN_GTT; } /* Tiled textures are unmappable. Always put them in VRAM. */ if ((res->b.b.target != PIPE_BUFFER && !tex->surface.is_linear) || res->b.b.flags & SI_RESOURCE_FLAG_UNMAPPABLE) { res->domains = RADEON_DOMAIN_VRAM; res->flags |= RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_GTT_WC; } /* Displayable and shareable surfaces are not suballocated. */ if (res->b.b.bind & (PIPE_BIND_SHARED | PIPE_BIND_SCANOUT)) res->flags |= RADEON_FLAG_NO_SUBALLOC; /* shareable */ else res->flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING; if (sscreen->debug_flags & DBG(NO_WC)) res->flags &= ~RADEON_FLAG_GTT_WC; if (res->b.b.flags & SI_RESOURCE_FLAG_READ_ONLY) res->flags |= RADEON_FLAG_READ_ONLY; if (res->b.b.flags & SI_RESOURCE_FLAG_32BIT) res->flags |= RADEON_FLAG_32BIT; /* Set expected VRAM and GART usage for the buffer. */ res->vram_usage = 0; res->gart_usage = 0; res->max_forced_staging_uploads = 0; res->b.max_forced_staging_uploads = 0; if (res->domains & RADEON_DOMAIN_VRAM) { res->vram_usage = size; res->max_forced_staging_uploads = res->b.max_forced_staging_uploads = sscreen->info.has_dedicated_vram && size >= sscreen->info.vram_vis_size / 4 ? 1 : 0; } else if (res->domains & RADEON_DOMAIN_GTT) { res->gart_usage = size; } } bool si_alloc_resource(struct si_screen *sscreen, struct si_resource *res) { struct pb_buffer *old_buf, *new_buf; /* Allocate a new resource. */ new_buf = sscreen->ws->buffer_create(sscreen->ws, res->bo_size, res->bo_alignment, res->domains, res->flags); if (!new_buf) { return false; } /* Replace the pointer such that if res->buf wasn't NULL, it won't be * NULL. This should prevent crashes with multiple contexts using * the same buffer where one of the contexts invalidates it while * the others are using it. */ old_buf = res->buf; res->buf = new_buf; /* should be atomic */ res->gpu_address = sscreen->ws->buffer_get_virtual_address(res->buf); if (res->flags & RADEON_FLAG_32BIT) { uint64_t start = res->gpu_address; uint64_t last = start + res->bo_size - 1; (void)start; (void)last; assert((start >> 32) == sscreen->info.address32_hi); assert((last >> 32) == sscreen->info.address32_hi); } pb_reference(&old_buf, NULL); util_range_set_empty(&res->valid_buffer_range); res->TC_L2_dirty = false; /* Print debug information. */ if (sscreen->debug_flags & DBG(VM) && res->b.b.target == PIPE_BUFFER) { fprintf(stderr, "VM start=0x%" PRIX64 " end=0x%" PRIX64 " | Buffer %" PRIu64 " bytes\n", res->gpu_address, res->gpu_address + res->buf->size, res->buf->size); } if (res->b.b.flags & SI_RESOURCE_FLAG_CLEAR) si_screen_clear_buffer(sscreen, &res->b.b, 0, res->bo_size, 0); return true; } static void si_buffer_destroy(struct pipe_screen *screen, struct pipe_resource *buf) { struct si_resource *buffer = si_resource(buf); threaded_resource_deinit(buf); util_range_destroy(&buffer->valid_buffer_range); pb_reference(&buffer->buf, NULL); FREE(buffer); } /* Reallocate the buffer a update all resource bindings where the buffer is * bound. * * This is used to avoid CPU-GPU synchronizations, because it makes the buffer * idle by discarding its contents. */ static bool si_invalidate_buffer(struct si_context *sctx, struct si_resource *buf) { /* Shared buffers can't be reallocated. */ if (buf->b.is_shared) return false; /* Sparse buffers can't be reallocated. */ if (buf->flags & RADEON_FLAG_SPARSE) return false; /* In AMD_pinned_memory, the user pointer association only gets * broken when the buffer is explicitly re-allocated. */ if (buf->b.is_user_ptr) return false; /* Check if mapping this buffer would cause waiting for the GPU. */ if (si_rings_is_buffer_referenced(sctx, buf->buf, RADEON_USAGE_READWRITE) || !sctx->ws->buffer_wait(buf->buf, 0, RADEON_USAGE_READWRITE)) { /* Reallocate the buffer in the same pipe_resource. */ si_alloc_resource(sctx->screen, buf); si_rebind_buffer(sctx, &buf->b.b); } else { util_range_set_empty(&buf->valid_buffer_range); } return true; } /* Replace the storage of dst with src. */ void si_replace_buffer_storage(struct pipe_context *ctx, struct pipe_resource *dst, struct pipe_resource *src) { struct si_context *sctx = (struct si_context *)ctx; struct si_resource *sdst = si_resource(dst); struct si_resource *ssrc = si_resource(src); pb_reference(&sdst->buf, ssrc->buf); sdst->gpu_address = ssrc->gpu_address; sdst->b.b.bind = ssrc->b.b.bind; sdst->b.max_forced_staging_uploads = ssrc->b.max_forced_staging_uploads; sdst->max_forced_staging_uploads = ssrc->max_forced_staging_uploads; sdst->flags = ssrc->flags; assert(sdst->vram_usage == ssrc->vram_usage); assert(sdst->gart_usage == ssrc->gart_usage); assert(sdst->bo_size == ssrc->bo_size); assert(sdst->bo_alignment == ssrc->bo_alignment); assert(sdst->domains == ssrc->domains); si_rebind_buffer(sctx, dst); } static void si_invalidate_resource(struct pipe_context *ctx, struct pipe_resource *resource) { struct si_context *sctx = (struct si_context *)ctx; struct si_resource *buf = si_resource(resource); /* We currently only do anyting here for buffers */ if (resource->target == PIPE_BUFFER) (void)si_invalidate_buffer(sctx, buf); } static void *si_buffer_get_transfer(struct pipe_context *ctx, struct pipe_resource *resource, unsigned usage, const struct pipe_box *box, struct pipe_transfer **ptransfer, void *data, struct si_resource *staging, unsigned offset) { struct si_context *sctx = (struct si_context *)ctx; struct si_transfer *transfer; if (usage & PIPE_TRANSFER_THREAD_SAFE) transfer = malloc(sizeof(*transfer)); else if (usage & TC_TRANSFER_MAP_THREADED_UNSYNC) transfer = slab_alloc(&sctx->pool_transfers_unsync); else transfer = slab_alloc(&sctx->pool_transfers); transfer->b.b.resource = NULL; pipe_resource_reference(&transfer->b.b.resource, resource); transfer->b.b.level = 0; transfer->b.b.usage = usage; transfer->b.b.box = *box; transfer->b.b.stride = 0; transfer->b.b.layer_stride = 0; transfer->b.staging = NULL; transfer->offset = offset; transfer->staging = staging; *ptransfer = &transfer->b.b; return data; } static void *si_buffer_transfer_map(struct pipe_context *ctx, struct pipe_resource *resource, unsigned level, unsigned usage, const struct pipe_box *box, struct pipe_transfer **ptransfer) { struct si_context *sctx = (struct si_context *)ctx; struct si_resource *buf = si_resource(resource); uint8_t *data; assert(box->x + box->width <= resource->width0); /* From GL_AMD_pinned_memory issues: * * 4) Is glMapBuffer on a shared buffer guaranteed to return the * same system address which was specified at creation time? * * RESOLVED: NO. The GL implementation might return a different * virtual mapping of that memory, although the same physical * page will be used. * * So don't ever use staging buffers. */ if (buf->b.is_user_ptr) usage |= PIPE_TRANSFER_PERSISTENT; /* See if the buffer range being mapped has never been initialized, * in which case it can be mapped unsynchronized. */ if (!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED | TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED)) && usage & PIPE_TRANSFER_WRITE && !buf->b.is_shared && !util_ranges_intersect(&buf->valid_buffer_range, box->x, box->x + box->width)) { usage |= PIPE_TRANSFER_UNSYNCHRONIZED; } /* If discarding the entire range, discard the whole resource instead. */ if (usage & PIPE_TRANSFER_DISCARD_RANGE && box->x == 0 && box->width == resource->width0) { usage |= PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE; } /* If a buffer in VRAM is too large and the range is discarded, don't * map it directly. This makes sure that the buffer stays in VRAM. */ bool force_discard_range = false; if (usage & (PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE | PIPE_TRANSFER_DISCARD_RANGE) && !(usage & PIPE_TRANSFER_PERSISTENT) && /* Try not to decrement the counter if it's not positive. Still racy, * but it makes it harder to wrap the counter from INT_MIN to INT_MAX. */ buf->max_forced_staging_uploads > 0 && p_atomic_dec_return(&buf->max_forced_staging_uploads) >= 0) { usage &= ~(PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE | PIPE_TRANSFER_UNSYNCHRONIZED); usage |= PIPE_TRANSFER_DISCARD_RANGE; force_discard_range = true; } if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE && !(usage & (PIPE_TRANSFER_UNSYNCHRONIZED | TC_TRANSFER_MAP_NO_INVALIDATE))) { assert(usage & PIPE_TRANSFER_WRITE); if (si_invalidate_buffer(sctx, buf)) { /* At this point, the buffer is always idle. */ usage |= PIPE_TRANSFER_UNSYNCHRONIZED; } else { /* Fall back to a temporary buffer. */ usage |= PIPE_TRANSFER_DISCARD_RANGE; } } if (usage & PIPE_TRANSFER_FLUSH_EXPLICIT && buf->b.b.flags & SI_RESOURCE_FLAG_UPLOAD_FLUSH_EXPLICIT_VIA_SDMA) { usage &= ~(PIPE_TRANSFER_UNSYNCHRONIZED | PIPE_TRANSFER_PERSISTENT); usage |= PIPE_TRANSFER_DISCARD_RANGE; force_discard_range = true; } if (usage & PIPE_TRANSFER_DISCARD_RANGE && ((!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED | PIPE_TRANSFER_PERSISTENT))) || (buf->flags & RADEON_FLAG_SPARSE))) { assert(usage & PIPE_TRANSFER_WRITE); /* Check if mapping this buffer would cause waiting for the GPU. */ if (buf->flags & RADEON_FLAG_SPARSE || force_discard_range || si_rings_is_buffer_referenced(sctx, buf->buf, RADEON_USAGE_READWRITE) || !sctx->ws->buffer_wait(buf->buf, 0, RADEON_USAGE_READWRITE)) { /* Do a wait-free write-only transfer using a temporary buffer. */ struct u_upload_mgr *uploader; struct si_resource *staging = NULL; unsigned offset; /* If we are not called from the driver thread, we have * to use the uploader from u_threaded_context, which is * local to the calling thread. */ if (usage & TC_TRANSFER_MAP_THREADED_UNSYNC) uploader = sctx->tc->base.stream_uploader; else uploader = sctx->b.stream_uploader; u_upload_alloc(uploader, 0, box->width + (box->x % SI_MAP_BUFFER_ALIGNMENT), sctx->screen->info.tcc_cache_line_size, &offset, (struct pipe_resource **)&staging, (void **)&data); if (staging) { data += box->x % SI_MAP_BUFFER_ALIGNMENT; return si_buffer_get_transfer(ctx, resource, usage, box, ptransfer, data, staging, offset); } else if (buf->flags & RADEON_FLAG_SPARSE) { return NULL; } } else { /* At this point, the buffer is always idle (we checked it above). */ usage |= PIPE_TRANSFER_UNSYNCHRONIZED; } } /* Use a staging buffer in cached GTT for reads. */ else if (((usage & PIPE_TRANSFER_READ) && !(usage & PIPE_TRANSFER_PERSISTENT) && (buf->domains & RADEON_DOMAIN_VRAM || buf->flags & RADEON_FLAG_GTT_WC)) || (buf->flags & RADEON_FLAG_SPARSE)) { struct si_resource *staging; assert(!(usage & (TC_TRANSFER_MAP_THREADED_UNSYNC | PIPE_TRANSFER_THREAD_SAFE))); staging = si_resource(pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_STAGING, box->width + (box->x % SI_MAP_BUFFER_ALIGNMENT))); if (staging) { /* Copy the VRAM buffer to the staging buffer. */ si_sdma_copy_buffer(sctx, &staging->b.b, resource, box->x % SI_MAP_BUFFER_ALIGNMENT, box->x, box->width); data = si_buffer_map_sync_with_rings(sctx, staging, usage & ~PIPE_TRANSFER_UNSYNCHRONIZED); if (!data) { si_resource_reference(&staging, NULL); return NULL; } data += box->x % SI_MAP_BUFFER_ALIGNMENT; return si_buffer_get_transfer(ctx, resource, usage, box, ptransfer, data, staging, 0); } else if (buf->flags & RADEON_FLAG_SPARSE) { return NULL; } } data = si_buffer_map_sync_with_rings(sctx, buf, usage); if (!data) { return NULL; } data += box->x; return si_buffer_get_transfer(ctx, resource, usage, box, ptransfer, data, NULL, 0); } static void si_buffer_do_flush_region(struct pipe_context *ctx, struct pipe_transfer *transfer, const struct pipe_box *box) { struct si_context *sctx = (struct si_context *)ctx; struct si_transfer *stransfer = (struct si_transfer *)transfer; struct si_resource *buf = si_resource(transfer->resource); if (stransfer->staging) { unsigned src_offset = stransfer->offset + transfer->box.x % SI_MAP_BUFFER_ALIGNMENT + (box->x - transfer->box.x); if (buf->b.b.flags & SI_RESOURCE_FLAG_UPLOAD_FLUSH_EXPLICIT_VIA_SDMA) { /* This should be true for all uploaders. */ assert(transfer->box.x == 0); /* Find a previous upload and extend its range. The last * upload is likely to be at the end of the list. */ for (int i = sctx->num_sdma_uploads - 1; i >= 0; i--) { struct si_sdma_upload *up = &sctx->sdma_uploads[i]; if (up->dst != buf) continue; assert(up->src == stransfer->staging); assert(box->x > up->dst_offset); up->size = box->x + box->width - up->dst_offset; return; } /* Enlarge the array if it's full. */ if (sctx->num_sdma_uploads == sctx->max_sdma_uploads) { unsigned size; sctx->max_sdma_uploads += 4; size = sctx->max_sdma_uploads * sizeof(sctx->sdma_uploads[0]); sctx->sdma_uploads = realloc(sctx->sdma_uploads, size); } /* Add a new upload. */ struct si_sdma_upload *up = &sctx->sdma_uploads[sctx->num_sdma_uploads++]; up->dst = up->src = NULL; si_resource_reference(&up->dst, buf); si_resource_reference(&up->src, stransfer->staging); up->dst_offset = box->x; up->src_offset = src_offset; up->size = box->width; return; } /* Copy the staging buffer into the original one. */ si_copy_buffer(sctx, transfer->resource, &stransfer->staging->b.b, box->x, src_offset, box->width); } util_range_add(&buf->b.b, &buf->valid_buffer_range, box->x, box->x + box->width); } static void si_buffer_flush_region(struct pipe_context *ctx, struct pipe_transfer *transfer, const struct pipe_box *rel_box) { unsigned required_usage = PIPE_TRANSFER_WRITE | PIPE_TRANSFER_FLUSH_EXPLICIT; if ((transfer->usage & required_usage) == required_usage) { struct pipe_box box; u_box_1d(transfer->box.x + rel_box->x, rel_box->width, &box); si_buffer_do_flush_region(ctx, transfer, &box); } } static void si_buffer_transfer_unmap(struct pipe_context *ctx, struct pipe_transfer *transfer) { struct si_context *sctx = (struct si_context *)ctx; struct si_transfer *stransfer = (struct si_transfer *)transfer; if (transfer->usage & PIPE_TRANSFER_WRITE && !(transfer->usage & PIPE_TRANSFER_FLUSH_EXPLICIT)) si_buffer_do_flush_region(ctx, transfer, &transfer->box); si_resource_reference(&stransfer->staging, NULL); assert(stransfer->b.staging == NULL); /* for threaded context only */ pipe_resource_reference(&transfer->resource, NULL); if (transfer->usage & PIPE_TRANSFER_THREAD_SAFE) { free(transfer); } else { /* Don't use pool_transfers_unsync. We are always in the driver * thread. Freeing an object into a different pool is allowed. */ slab_free(&sctx->pool_transfers, transfer); } } static void si_buffer_subdata(struct pipe_context *ctx, struct pipe_resource *buffer, unsigned usage, unsigned offset, unsigned size, const void *data) { struct pipe_transfer *transfer = NULL; struct pipe_box box; uint8_t *map = NULL; usage |= PIPE_TRANSFER_WRITE; if (!(usage & PIPE_TRANSFER_MAP_DIRECTLY)) usage |= PIPE_TRANSFER_DISCARD_RANGE; u_box_1d(offset, size, &box); map = si_buffer_transfer_map(ctx, buffer, 0, usage, &box, &transfer); if (!map) return; memcpy(map, data, size); si_buffer_transfer_unmap(ctx, transfer); } static const struct u_resource_vtbl si_buffer_vtbl = { NULL, /* get_handle */ si_buffer_destroy, /* resource_destroy */ si_buffer_transfer_map, /* transfer_map */ si_buffer_flush_region, /* transfer_flush_region */ si_buffer_transfer_unmap, /* transfer_unmap */ }; static struct si_resource *si_alloc_buffer_struct(struct pipe_screen *screen, const struct pipe_resource *templ) { struct si_resource *buf; buf = MALLOC_STRUCT(si_resource); buf->b.b = *templ; buf->b.b.next = NULL; pipe_reference_init(&buf->b.b.reference, 1); buf->b.b.screen = screen; buf->b.vtbl = &si_buffer_vtbl; threaded_resource_init(&buf->b.b); buf->buf = NULL; buf->bind_history = 0; buf->TC_L2_dirty = false; util_range_init(&buf->valid_buffer_range); return buf; } static struct pipe_resource *si_buffer_create(struct pipe_screen *screen, const struct pipe_resource *templ, unsigned alignment) { struct si_screen *sscreen = (struct si_screen *)screen; struct si_resource *buf = si_alloc_buffer_struct(screen, templ); if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE) buf->b.b.flags |= SI_RESOURCE_FLAG_UNMAPPABLE; si_init_resource_fields(sscreen, buf, templ->width0, alignment); if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE) buf->flags |= RADEON_FLAG_SPARSE; if (!si_alloc_resource(sscreen, buf)) { FREE(buf); return NULL; } return &buf->b.b; } struct pipe_resource *pipe_aligned_buffer_create(struct pipe_screen *screen, unsigned flags, unsigned usage, unsigned size, unsigned alignment) { struct pipe_resource buffer; memset(&buffer, 0, sizeof buffer); buffer.target = PIPE_BUFFER; buffer.format = PIPE_FORMAT_R8_UNORM; buffer.bind = 0; buffer.usage = usage; buffer.flags = flags; buffer.width0 = size; buffer.height0 = 1; buffer.depth0 = 1; buffer.array_size = 1; return si_buffer_create(screen, &buffer, alignment); } struct si_resource *si_aligned_buffer_create(struct pipe_screen *screen, unsigned flags, unsigned usage, unsigned size, unsigned alignment) { return si_resource(pipe_aligned_buffer_create(screen, flags, usage, size, alignment)); } static struct pipe_resource *si_buffer_from_user_memory(struct pipe_screen *screen, const struct pipe_resource *templ, void *user_memory) { struct si_screen *sscreen = (struct si_screen *)screen; struct radeon_winsys *ws = sscreen->ws; struct si_resource *buf = si_alloc_buffer_struct(screen, templ); buf->domains = RADEON_DOMAIN_GTT; buf->flags = 0; buf->b.is_user_ptr = true; util_range_add(&buf->b.b, &buf->valid_buffer_range, 0, templ->width0); util_range_add(&buf->b.b, &buf->b.valid_buffer_range, 0, templ->width0); /* Convert a user pointer to a buffer. */ buf->buf = ws->buffer_from_ptr(ws, user_memory, templ->width0); if (!buf->buf) { FREE(buf); return NULL; } buf->gpu_address = ws->buffer_get_virtual_address(buf->buf); buf->vram_usage = 0; buf->gart_usage = templ->width0; return &buf->b.b; } static struct pipe_resource *si_resource_create(struct pipe_screen *screen, const struct pipe_resource *templ) { if (templ->target == PIPE_BUFFER) { return si_buffer_create(screen, templ, 256); } else { return si_texture_create(screen, templ); } } static bool si_resource_commit(struct pipe_context *pctx, struct pipe_resource *resource, unsigned level, struct pipe_box *box, bool commit) { struct si_context *ctx = (struct si_context *)pctx; struct si_resource *res = si_resource(resource); /* * Since buffer commitment changes cannot be pipelined, we need to * (a) flush any pending commands that refer to the buffer we're about * to change, and * (b) wait for threaded submit to finish, including those that were * triggered by some other, earlier operation. */ if (radeon_emitted(ctx->gfx_cs, ctx->initial_gfx_cs_size) && ctx->ws->cs_is_buffer_referenced(ctx->gfx_cs, res->buf, RADEON_USAGE_READWRITE)) { si_flush_gfx_cs(ctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); } if (radeon_emitted(ctx->sdma_cs, 0) && ctx->ws->cs_is_buffer_referenced(ctx->sdma_cs, res->buf, RADEON_USAGE_READWRITE)) { si_flush_dma_cs(ctx, PIPE_FLUSH_ASYNC, NULL); } if (ctx->sdma_cs) ctx->ws->cs_sync_flush(ctx->sdma_cs); ctx->ws->cs_sync_flush(ctx->gfx_cs); assert(resource->target == PIPE_BUFFER); return ctx->ws->buffer_commit(res->buf, box->x, box->width, commit); } void si_init_screen_buffer_functions(struct si_screen *sscreen) { sscreen->b.resource_create = si_resource_create; sscreen->b.resource_destroy = u_resource_destroy_vtbl; sscreen->b.resource_from_user_memory = si_buffer_from_user_memory; } void si_init_buffer_functions(struct si_context *sctx) { sctx->b.invalidate_resource = si_invalidate_resource; sctx->b.transfer_map = u_transfer_map_vtbl; sctx->b.transfer_flush_region = u_transfer_flush_region_vtbl; sctx->b.transfer_unmap = u_transfer_unmap_vtbl; sctx->b.texture_subdata = u_default_texture_subdata; sctx->b.buffer_subdata = si_buffer_subdata; sctx->b.resource_commit = si_resource_commit; }