/* * Copyright 2010 Jerome Glisse * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_pipe.h" #include "util/u_format.h" #include "util/u_surface.h" enum si_blitter_op /* bitmask */ { SI_SAVE_TEXTURES = 1, SI_SAVE_FRAMEBUFFER = 2, SI_SAVE_FRAGMENT_STATE = 4, SI_DISABLE_RENDER_COND = 8, SI_CLEAR = SI_SAVE_FRAGMENT_STATE, SI_CLEAR_SURFACE = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE, SI_COPY = SI_SAVE_FRAMEBUFFER | SI_SAVE_TEXTURES | SI_SAVE_FRAGMENT_STATE | SI_DISABLE_RENDER_COND, SI_BLIT = SI_SAVE_FRAMEBUFFER | SI_SAVE_TEXTURES | SI_SAVE_FRAGMENT_STATE, SI_DECOMPRESS = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE | SI_DISABLE_RENDER_COND, SI_COLOR_RESOLVE = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE }; static void si_blitter_begin(struct pipe_context *ctx, enum si_blitter_op op) { struct si_context *sctx = (struct si_context *)ctx; util_blitter_save_vertex_buffer_slot(sctx->blitter, sctx->vertex_buffer); util_blitter_save_vertex_elements(sctx->blitter, sctx->vertex_elements); util_blitter_save_vertex_shader(sctx->blitter, sctx->vs_shader.cso); util_blitter_save_tessctrl_shader(sctx->blitter, sctx->tcs_shader.cso); util_blitter_save_tesseval_shader(sctx->blitter, sctx->tes_shader.cso); util_blitter_save_geometry_shader(sctx->blitter, sctx->gs_shader.cso); util_blitter_save_so_targets(sctx->blitter, sctx->b.streamout.num_targets, (struct pipe_stream_output_target**)sctx->b.streamout.targets); util_blitter_save_rasterizer(sctx->blitter, sctx->queued.named.rasterizer); if (op & SI_SAVE_FRAGMENT_STATE) { util_blitter_save_blend(sctx->blitter, sctx->queued.named.blend); util_blitter_save_depth_stencil_alpha(sctx->blitter, sctx->queued.named.dsa); util_blitter_save_stencil_ref(sctx->blitter, &sctx->stencil_ref.state); util_blitter_save_fragment_shader(sctx->blitter, sctx->ps_shader.cso); util_blitter_save_sample_mask(sctx->blitter, sctx->sample_mask.sample_mask); util_blitter_save_viewport(sctx->blitter, &sctx->b.viewports.states[0]); util_blitter_save_scissor(sctx->blitter, &sctx->b.scissors.states[0]); } if (op & SI_SAVE_FRAMEBUFFER) util_blitter_save_framebuffer(sctx->blitter, &sctx->framebuffer.state); if (op & SI_SAVE_TEXTURES) { util_blitter_save_fragment_sampler_states( sctx->blitter, 2, sctx->samplers[PIPE_SHADER_FRAGMENT].views.sampler_states); util_blitter_save_fragment_sampler_views(sctx->blitter, 2, sctx->samplers[PIPE_SHADER_FRAGMENT].views.views); } if (op & SI_DISABLE_RENDER_COND) sctx->b.render_cond_force_off = true; } static void si_blitter_end(struct pipe_context *ctx) { struct si_context *sctx = (struct si_context *)ctx; sctx->b.render_cond_force_off = false; } static unsigned u_max_sample(struct pipe_resource *r) { return r->nr_samples ? r->nr_samples - 1 : 0; } static unsigned si_blit_dbcb_copy(struct si_context *sctx, struct r600_texture *src, struct r600_texture *dst, unsigned planes, unsigned level_mask, unsigned first_layer, unsigned last_layer, unsigned first_sample, unsigned last_sample) { struct pipe_surface surf_tmpl = {{0}}; unsigned layer, sample, checked_last_layer, max_layer; unsigned fully_copied_levels = 0; if (planes & PIPE_MASK_Z) sctx->dbcb_depth_copy_enabled = true; if (planes & PIPE_MASK_S) sctx->dbcb_stencil_copy_enabled = true; si_mark_atom_dirty(sctx, &sctx->db_render_state); assert(sctx->dbcb_depth_copy_enabled || sctx->dbcb_stencil_copy_enabled); while (level_mask) { unsigned level = u_bit_scan(&level_mask); /* The smaller the mipmap level, the less layers there are * as far as 3D textures are concerned. */ max_layer = util_max_layer(&src->resource.b.b, level); checked_last_layer = MIN2(last_layer, max_layer); surf_tmpl.u.tex.level = level; for (layer = first_layer; layer <= checked_last_layer; layer++) { struct pipe_surface *zsurf, *cbsurf; surf_tmpl.format = src->resource.b.b.format; surf_tmpl.u.tex.first_layer = layer; surf_tmpl.u.tex.last_layer = layer; zsurf = sctx->b.b.create_surface(&sctx->b.b, &src->resource.b.b, &surf_tmpl); surf_tmpl.format = dst->resource.b.b.format; cbsurf = sctx->b.b.create_surface(&sctx->b.b, &dst->resource.b.b, &surf_tmpl); for (sample = first_sample; sample <= last_sample; sample++) { if (sample != sctx->dbcb_copy_sample) { sctx->dbcb_copy_sample = sample; si_mark_atom_dirty(sctx, &sctx->db_render_state); } si_blitter_begin(&sctx->b.b, SI_DECOMPRESS); util_blitter_custom_depth_stencil(sctx->blitter, zsurf, cbsurf, 1 << sample, sctx->custom_dsa_flush, 1.0f); si_blitter_end(&sctx->b.b); } pipe_surface_reference(&zsurf, NULL); pipe_surface_reference(&cbsurf, NULL); } if (first_layer == 0 && last_layer >= max_layer && first_sample == 0 && last_sample >= u_max_sample(&src->resource.b.b)) fully_copied_levels |= 1u << level; } sctx->dbcb_depth_copy_enabled = false; sctx->dbcb_stencil_copy_enabled = false; si_mark_atom_dirty(sctx, &sctx->db_render_state); return fully_copied_levels; } static void si_blit_decompress_depth(struct pipe_context *ctx, struct r600_texture *texture, struct r600_texture *staging, unsigned first_level, unsigned last_level, unsigned first_layer, unsigned last_layer, unsigned first_sample, unsigned last_sample) { const struct util_format_description *desc; unsigned planes = 0; assert(staging != NULL && "use si_blit_decompress_zs_in_place instead"); desc = util_format_description(staging->resource.b.b.format); if (util_format_has_depth(desc)) planes |= PIPE_MASK_Z; if (util_format_has_stencil(desc)) planes |= PIPE_MASK_S; si_blit_dbcb_copy( (struct si_context *)ctx, texture, staging, planes, u_bit_consecutive(first_level, last_level - first_level + 1), first_layer, last_layer, first_sample, last_sample); } /* Helper function for si_blit_decompress_zs_in_place. */ static void si_blit_decompress_zs_planes_in_place(struct si_context *sctx, struct r600_texture *texture, unsigned planes, unsigned level_mask, unsigned first_layer, unsigned last_layer) { struct pipe_surface *zsurf, surf_tmpl = {{0}}; unsigned layer, max_layer, checked_last_layer; unsigned fully_decompressed_mask = 0; if (!level_mask) return; if (planes & PIPE_MASK_S) sctx->db_flush_stencil_inplace = true; if (planes & PIPE_MASK_Z) sctx->db_flush_depth_inplace = true; si_mark_atom_dirty(sctx, &sctx->db_render_state); surf_tmpl.format = texture->resource.b.b.format; while (level_mask) { unsigned level = u_bit_scan(&level_mask); surf_tmpl.u.tex.level = level; /* The smaller the mipmap level, the less layers there are * as far as 3D textures are concerned. */ max_layer = util_max_layer(&texture->resource.b.b, level); checked_last_layer = MIN2(last_layer, max_layer); for (layer = first_layer; layer <= checked_last_layer; layer++) { surf_tmpl.u.tex.first_layer = layer; surf_tmpl.u.tex.last_layer = layer; zsurf = sctx->b.b.create_surface(&sctx->b.b, &texture->resource.b.b, &surf_tmpl); si_blitter_begin(&sctx->b.b, SI_DECOMPRESS); util_blitter_custom_depth_stencil(sctx->blitter, zsurf, NULL, ~0, sctx->custom_dsa_flush, 1.0f); si_blitter_end(&sctx->b.b); pipe_surface_reference(&zsurf, NULL); } /* The texture will always be dirty if some layers aren't flushed. * I don't think this case occurs often though. */ if (first_layer == 0 && last_layer >= max_layer) { fully_decompressed_mask |= 1u << level; } } if (planes & PIPE_MASK_Z) texture->dirty_level_mask &= ~fully_decompressed_mask; if (planes & PIPE_MASK_S) texture->stencil_dirty_level_mask &= ~fully_decompressed_mask; sctx->db_flush_depth_inplace = false; sctx->db_flush_stencil_inplace = false; si_mark_atom_dirty(sctx, &sctx->db_render_state); } /* Helper function of si_flush_depth_texture: decompress the given levels * of Z and/or S planes in place. */ static void si_blit_decompress_zs_in_place(struct si_context *sctx, struct r600_texture *texture, unsigned levels_z, unsigned levels_s, unsigned first_layer, unsigned last_layer) { unsigned both = levels_z & levels_s; /* First, do combined Z & S decompresses for levels that need it. */ if (both) { si_blit_decompress_zs_planes_in_place( sctx, texture, PIPE_MASK_Z | PIPE_MASK_S, both, first_layer, last_layer); levels_z &= ~both; levels_s &= ~both; } /* Now do separate Z and S decompresses. */ if (levels_z) { si_blit_decompress_zs_planes_in_place( sctx, texture, PIPE_MASK_Z, levels_z, first_layer, last_layer); } if (levels_s) { si_blit_decompress_zs_planes_in_place( sctx, texture, PIPE_MASK_S, levels_s, first_layer, last_layer); } } static void si_flush_depth_texture(struct si_context *sctx, struct r600_texture *tex, unsigned required_planes, unsigned first_level, unsigned last_level, unsigned first_layer, unsigned last_layer) { unsigned inplace_planes = 0; unsigned copy_planes = 0; unsigned level_mask = u_bit_consecutive(first_level, last_level - first_level + 1); unsigned levels_z = 0; unsigned levels_s = 0; if (required_planes & PIPE_MASK_Z) { levels_z = level_mask & tex->dirty_level_mask; if (levels_z) { if (r600_can_sample_zs(tex, false)) inplace_planes |= PIPE_MASK_Z; else copy_planes |= PIPE_MASK_Z; } } if (required_planes & PIPE_MASK_S) { levels_s = level_mask & tex->stencil_dirty_level_mask; if (levels_s) { if (r600_can_sample_zs(tex, true)) inplace_planes |= PIPE_MASK_S; else copy_planes |= PIPE_MASK_S; } } assert(!tex->tc_compatible_htile || levels_z == 0); /* We may have to allocate the flushed texture here when called from * si_decompress_subresource. */ if (copy_planes && (tex->flushed_depth_texture || r600_init_flushed_depth_texture(&sctx->b.b, &tex->resource.b.b, NULL))) { struct r600_texture *dst = tex->flushed_depth_texture; unsigned fully_copied_levels; unsigned levels = 0; assert(tex->flushed_depth_texture); if (util_format_is_depth_and_stencil(dst->resource.b.b.format)) copy_planes = PIPE_MASK_Z | PIPE_MASK_S; if (copy_planes & PIPE_MASK_Z) { levels |= levels_z; levels_z = 0; } if (copy_planes & PIPE_MASK_S) { levels |= levels_s; levels_s = 0; } fully_copied_levels = si_blit_dbcb_copy( sctx, tex, dst, copy_planes, levels, first_layer, last_layer, 0, u_max_sample(&tex->resource.b.b)); if (copy_planes & PIPE_MASK_Z) tex->dirty_level_mask &= ~fully_copied_levels; if (copy_planes & PIPE_MASK_S) tex->stencil_dirty_level_mask &= ~fully_copied_levels; } if (inplace_planes) { si_blit_decompress_zs_in_place( sctx, tex, levels_z, levels_s, first_layer, last_layer); } } static void si_flush_depth_textures(struct si_context *sctx, struct si_textures_info *textures) { unsigned i; unsigned mask = textures->depth_texture_mask; while (mask) { struct pipe_sampler_view *view; struct si_sampler_view *sview; struct r600_texture *tex; i = u_bit_scan(&mask); view = textures->views.views[i]; assert(view); sview = (struct si_sampler_view*)view; tex = (struct r600_texture *)view->texture; assert(tex->db_compatible); si_flush_depth_texture( sctx, tex, sview->is_stencil_sampler ? PIPE_MASK_S : PIPE_MASK_Z, view->u.tex.first_level, view->u.tex.last_level, 0, util_max_layer(&tex->resource.b.b, view->u.tex.first_level)); } } static void si_blit_decompress_color(struct pipe_context *ctx, struct r600_texture *rtex, unsigned first_level, unsigned last_level, unsigned first_layer, unsigned last_layer, bool need_dcc_decompress) { struct si_context *sctx = (struct si_context *)ctx; void* custom_blend; unsigned layer, checked_last_layer, max_layer; unsigned level_mask = u_bit_consecutive(first_level, last_level - first_level + 1); if (!need_dcc_decompress) level_mask &= rtex->dirty_level_mask; if (!level_mask) return; if (rtex->dcc_offset && need_dcc_decompress) { custom_blend = sctx->custom_blend_dcc_decompress; /* disable levels without DCC */ for (int i = first_level; i <= last_level; i++) { if (!rtex->dcc_offset || i >= rtex->surface.num_dcc_levels) level_mask &= ~(1 << i); } } else if (rtex->fmask.size) { custom_blend = sctx->custom_blend_decompress; } else { custom_blend = sctx->custom_blend_fastclear; } while (level_mask) { unsigned level = u_bit_scan(&level_mask); /* The smaller the mipmap level, the less layers there are * as far as 3D textures are concerned. */ max_layer = util_max_layer(&rtex->resource.b.b, level); checked_last_layer = MIN2(last_layer, max_layer); for (layer = first_layer; layer <= checked_last_layer; layer++) { struct pipe_surface *cbsurf, surf_tmpl; surf_tmpl.format = rtex->resource.b.b.format; surf_tmpl.u.tex.level = level; surf_tmpl.u.tex.first_layer = layer; surf_tmpl.u.tex.last_layer = layer; cbsurf = ctx->create_surface(ctx, &rtex->resource.b.b, &surf_tmpl); si_blitter_begin(ctx, SI_DECOMPRESS); util_blitter_custom_color(sctx->blitter, cbsurf, custom_blend); si_blitter_end(ctx); pipe_surface_reference(&cbsurf, NULL); } /* The texture will always be dirty if some layers aren't flushed. * I don't think this case occurs often though. */ if (first_layer == 0 && last_layer >= max_layer) { rtex->dirty_level_mask &= ~(1 << level); } } } static void si_decompress_sampler_color_textures(struct si_context *sctx, struct si_textures_info *textures) { unsigned i; unsigned mask = textures->compressed_colortex_mask; while (mask) { struct pipe_sampler_view *view; struct r600_texture *tex; i = u_bit_scan(&mask); view = textures->views.views[i]; assert(view); tex = (struct r600_texture *)view->texture; /* CMASK or DCC can be discarded and we can still end up here. */ if (!tex->cmask.size && !tex->fmask.size && !tex->dcc_offset) continue; si_blit_decompress_color(&sctx->b.b, tex, view->u.tex.first_level, view->u.tex.last_level, 0, util_max_layer(&tex->resource.b.b, view->u.tex.first_level), false); } } static void si_decompress_image_color_textures(struct si_context *sctx, struct si_images_info *images) { unsigned i; unsigned mask = images->compressed_colortex_mask; while (mask) { const struct pipe_image_view *view; struct r600_texture *tex; i = u_bit_scan(&mask); view = &images->views[i]; assert(view->resource->target != PIPE_BUFFER); tex = (struct r600_texture *)view->resource; if (!tex->cmask.size && !tex->fmask.size && !tex->dcc_offset) continue; si_blit_decompress_color(&sctx->b.b, tex, view->u.tex.level, view->u.tex.level, 0, util_max_layer(&tex->resource.b.b, view->u.tex.level), false); } } static void si_check_render_feedback_textures(struct si_context *sctx, struct si_textures_info *textures) { uint32_t mask = textures->views.enabled_mask; while (mask) { const struct pipe_sampler_view *view; struct r600_texture *tex; bool render_feedback = false; unsigned i = u_bit_scan(&mask); view = textures->views.views[i]; if(view->texture->target == PIPE_BUFFER) continue; tex = (struct r600_texture *)view->texture; if (!tex->dcc_offset) continue; for (unsigned j = 0; j < sctx->framebuffer.state.nr_cbufs; ++j) { struct r600_surface * surf; if (!sctx->framebuffer.state.cbufs[j]) continue; surf = (struct r600_surface*)sctx->framebuffer.state.cbufs[j]; if (tex == (struct r600_texture*)surf->base.texture && surf->base.u.tex.level >= view->u.tex.first_level && surf->base.u.tex.level <= view->u.tex.last_level && surf->base.u.tex.first_layer <= view->u.tex.last_layer && surf->base.u.tex.last_layer >= view->u.tex.first_layer) render_feedback = true; } if (render_feedback) r600_texture_disable_dcc(&sctx->b, tex); } } static void si_check_render_feedback_images(struct si_context *sctx, struct si_images_info *images) { uint32_t mask = images->enabled_mask; while (mask) { const struct pipe_image_view *view; struct r600_texture *tex; bool render_feedback = false; unsigned i = u_bit_scan(&mask); view = &images->views[i]; if (view->resource->target == PIPE_BUFFER) continue; tex = (struct r600_texture *)view->resource; if (!tex->dcc_offset) continue; for (unsigned j = 0; j < sctx->framebuffer.state.nr_cbufs; ++j) { struct r600_surface * surf; if (!sctx->framebuffer.state.cbufs[j]) continue; surf = (struct r600_surface*)sctx->framebuffer.state.cbufs[j]; if (tex == (struct r600_texture*)surf->base.texture && surf->base.u.tex.level == view->u.tex.level && surf->base.u.tex.first_layer <= view->u.tex.last_layer && surf->base.u.tex.last_layer >= view->u.tex.first_layer) render_feedback = true; } if (render_feedback) r600_texture_disable_dcc(&sctx->b, tex); } } static void si_check_render_feedback(struct si_context *sctx) { if (!sctx->need_check_render_feedback) return; for (int i = 0; i < SI_NUM_SHADERS; ++i) { si_check_render_feedback_images(sctx, &sctx->images[i]); si_check_render_feedback_textures(sctx, &sctx->samplers[i]); } sctx->need_check_render_feedback = false; } static void si_decompress_textures(struct si_context *sctx, int shader_start, int shader_end) { unsigned compressed_colortex_counter; if (sctx->blitter->running) return; /* Update the compressed_colortex_mask if necessary. */ compressed_colortex_counter = p_atomic_read(&sctx->screen->b.compressed_colortex_counter); if (compressed_colortex_counter != sctx->b.last_compressed_colortex_counter) { sctx->b.last_compressed_colortex_counter = compressed_colortex_counter; si_update_compressed_colortex_masks(sctx); } /* Flush depth textures which need to be flushed. */ for (int i = shader_start; i < shader_end; i++) { if (sctx->samplers[i].depth_texture_mask) { si_flush_depth_textures(sctx, &sctx->samplers[i]); } if (sctx->samplers[i].compressed_colortex_mask) { si_decompress_sampler_color_textures(sctx, &sctx->samplers[i]); } if (sctx->images[i].compressed_colortex_mask) { si_decompress_image_color_textures(sctx, &sctx->images[i]); } } si_check_render_feedback(sctx); } void si_decompress_graphics_textures(struct si_context *sctx) { si_decompress_textures(sctx, 0, SI_NUM_GRAPHICS_SHADERS); } void si_decompress_compute_textures(struct si_context *sctx) { si_decompress_textures(sctx, SI_NUM_GRAPHICS_SHADERS, SI_NUM_SHADERS); } static void si_clear(struct pipe_context *ctx, unsigned buffers, const union pipe_color_union *color, double depth, unsigned stencil) { struct si_context *sctx = (struct si_context *)ctx; struct pipe_framebuffer_state *fb = &sctx->framebuffer.state; struct pipe_surface *zsbuf = fb->zsbuf; struct r600_texture *zstex = zsbuf ? (struct r600_texture*)zsbuf->texture : NULL; if (buffers & PIPE_CLEAR_COLOR) { evergreen_do_fast_color_clear(&sctx->b, fb, &sctx->framebuffer.atom, &buffers, &sctx->framebuffer.dirty_cbufs, color); if (!buffers) return; /* all buffers have been fast cleared */ } if (buffers & PIPE_CLEAR_COLOR) { int i; /* These buffers cannot use fast clear, make sure to disable expansion. */ for (i = 0; i < fb->nr_cbufs; i++) { struct r600_texture *tex; /* If not clearing this buffer, skip. */ if (!(buffers & (PIPE_CLEAR_COLOR0 << i))) continue; if (!fb->cbufs[i]) continue; tex = (struct r600_texture *)fb->cbufs[i]->texture; if (tex->fmask.size == 0) tex->dirty_level_mask &= ~(1 << fb->cbufs[i]->u.tex.level); } } if (zstex && zstex->htile_buffer && zsbuf->u.tex.level == 0 && zsbuf->u.tex.first_layer == 0 && zsbuf->u.tex.last_layer == util_max_layer(&zstex->resource.b.b, 0)) { /* TC-compatible HTILE only supports depth clears to 0 or 1. */ if (buffers & PIPE_CLEAR_DEPTH && (!zstex->tc_compatible_htile || depth == 0 || depth == 1)) { /* Need to disable EXPCLEAR temporarily if clearing * to a new value. */ if (!zstex->depth_cleared || zstex->depth_clear_value != depth) { sctx->db_depth_disable_expclear = true; } zstex->depth_clear_value = depth; sctx->framebuffer.dirty_zsbuf = true; si_mark_atom_dirty(sctx, &sctx->framebuffer.atom); /* updates DB_DEPTH_CLEAR */ sctx->db_depth_clear = true; si_mark_atom_dirty(sctx, &sctx->db_render_state); } /* TC-compatible HTILE only supports stencil clears to 0. */ if (buffers & PIPE_CLEAR_STENCIL && (!zstex->tc_compatible_htile || stencil == 0)) { stencil &= 0xff; /* Need to disable EXPCLEAR temporarily if clearing * to a new value. */ if (!zstex->stencil_cleared || zstex->stencil_clear_value != stencil) { sctx->db_stencil_disable_expclear = true; } zstex->stencil_clear_value = stencil; sctx->framebuffer.dirty_zsbuf = true; si_mark_atom_dirty(sctx, &sctx->framebuffer.atom); /* updates DB_STENCIL_CLEAR */ sctx->db_stencil_clear = true; si_mark_atom_dirty(sctx, &sctx->db_render_state); } } si_blitter_begin(ctx, SI_CLEAR); util_blitter_clear(sctx->blitter, fb->width, fb->height, util_framebuffer_get_num_layers(fb), buffers, color, depth, stencil); si_blitter_end(ctx); if (sctx->db_depth_clear) { sctx->db_depth_clear = false; sctx->db_depth_disable_expclear = false; zstex->depth_cleared = true; si_mark_atom_dirty(sctx, &sctx->db_render_state); } if (sctx->db_stencil_clear) { sctx->db_stencil_clear = false; sctx->db_stencil_disable_expclear = false; zstex->stencil_cleared = true; si_mark_atom_dirty(sctx, &sctx->db_render_state); } } static void si_clear_render_target(struct pipe_context *ctx, struct pipe_surface *dst, const union pipe_color_union *color, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled) { struct si_context *sctx = (struct si_context *)ctx; si_blitter_begin(ctx, SI_CLEAR_SURFACE | (render_condition_enabled ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_clear_render_target(sctx->blitter, dst, color, dstx, dsty, width, height); si_blitter_end(ctx); } static void si_clear_depth_stencil(struct pipe_context *ctx, struct pipe_surface *dst, unsigned clear_flags, double depth, unsigned stencil, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled) { struct si_context *sctx = (struct si_context *)ctx; si_blitter_begin(ctx, SI_CLEAR_SURFACE | (render_condition_enabled ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_clear_depth_stencil(sctx->blitter, dst, clear_flags, depth, stencil, dstx, dsty, width, height); si_blitter_end(ctx); } /* Helper for decompressing a portion of a color or depth resource before * blitting if any decompression is needed. * The driver doesn't decompress resources automatically while u_blitter is * rendering. */ static void si_decompress_subresource(struct pipe_context *ctx, struct pipe_resource *tex, unsigned planes, unsigned level, unsigned first_layer, unsigned last_layer) { struct si_context *sctx = (struct si_context *)ctx; struct r600_texture *rtex = (struct r600_texture*)tex; if (rtex->db_compatible) { planes &= PIPE_MASK_Z | PIPE_MASK_S; if (!(rtex->surface.flags & RADEON_SURF_SBUFFER)) planes &= ~PIPE_MASK_S; si_flush_depth_texture(sctx, rtex, planes, level, level, first_layer, last_layer); } else if (rtex->fmask.size || rtex->cmask.size || rtex->dcc_offset) { si_blit_decompress_color(ctx, rtex, level, level, first_layer, last_layer, false); } } struct texture_orig_info { unsigned format; unsigned width0; unsigned height0; unsigned npix_x; unsigned npix_y; unsigned npix0_x; unsigned npix0_y; }; void si_resource_copy_region(struct pipe_context *ctx, struct pipe_resource *dst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct pipe_resource *src, unsigned src_level, const struct pipe_box *src_box) { struct si_context *sctx = (struct si_context *)ctx; struct r600_texture *rsrc = (struct r600_texture*)src; struct pipe_surface *dst_view, dst_templ; struct pipe_sampler_view src_templ, *src_view; unsigned dst_width, dst_height, src_width0, src_height0; unsigned src_force_level = 0; struct pipe_box sbox, dstbox; /* Handle buffers first. */ if (dst->target == PIPE_BUFFER && src->target == PIPE_BUFFER) { si_copy_buffer(sctx, dst, src, dstx, src_box->x, src_box->width); return; } assert(u_max_sample(dst) == u_max_sample(src)); /* The driver doesn't decompress resources automatically while * u_blitter is rendering. */ si_decompress_subresource(ctx, src, PIPE_MASK_RGBAZS, src_level, src_box->z, src_box->z + src_box->depth - 1); dst_width = u_minify(dst->width0, dst_level); dst_height = u_minify(dst->height0, dst_level); src_width0 = src->width0; src_height0 = src->height0; util_blitter_default_dst_texture(&dst_templ, dst, dst_level, dstz); util_blitter_default_src_texture(&src_templ, src, src_level); if (util_format_is_compressed(src->format) || util_format_is_compressed(dst->format)) { unsigned blocksize = rsrc->surface.bpe; if (blocksize == 8) src_templ.format = PIPE_FORMAT_R16G16B16A16_UINT; /* 64-bit block */ else src_templ.format = PIPE_FORMAT_R32G32B32A32_UINT; /* 128-bit block */ dst_templ.format = src_templ.format; dst_width = util_format_get_nblocksx(dst->format, dst_width); dst_height = util_format_get_nblocksy(dst->format, dst_height); src_width0 = util_format_get_nblocksx(src->format, src_width0); src_height0 = util_format_get_nblocksy(src->format, src_height0); dstx = util_format_get_nblocksx(dst->format, dstx); dsty = util_format_get_nblocksy(dst->format, dsty); sbox.x = util_format_get_nblocksx(src->format, src_box->x); sbox.y = util_format_get_nblocksy(src->format, src_box->y); sbox.z = src_box->z; sbox.width = util_format_get_nblocksx(src->format, src_box->width); sbox.height = util_format_get_nblocksy(src->format, src_box->height); sbox.depth = src_box->depth; src_box = &sbox; src_force_level = src_level; } else if (!util_blitter_is_copy_supported(sctx->blitter, dst, src) || /* also *8_SNORM has precision issues, use UNORM instead */ util_format_is_snorm8(src->format)) { if (util_format_is_subsampled_422(src->format)) { src_templ.format = PIPE_FORMAT_R8G8B8A8_UINT; dst_templ.format = PIPE_FORMAT_R8G8B8A8_UINT; dst_width = util_format_get_nblocksx(dst->format, dst_width); src_width0 = util_format_get_nblocksx(src->format, src_width0); dstx = util_format_get_nblocksx(dst->format, dstx); sbox = *src_box; sbox.x = util_format_get_nblocksx(src->format, src_box->x); sbox.width = util_format_get_nblocksx(src->format, src_box->width); src_box = &sbox; } else { unsigned blocksize = rsrc->surface.bpe; switch (blocksize) { case 1: dst_templ.format = PIPE_FORMAT_R8_UNORM; src_templ.format = PIPE_FORMAT_R8_UNORM; break; case 2: dst_templ.format = PIPE_FORMAT_R8G8_UNORM; src_templ.format = PIPE_FORMAT_R8G8_UNORM; break; case 4: dst_templ.format = PIPE_FORMAT_R8G8B8A8_UNORM; src_templ.format = PIPE_FORMAT_R8G8B8A8_UNORM; break; case 8: dst_templ.format = PIPE_FORMAT_R16G16B16A16_UINT; src_templ.format = PIPE_FORMAT_R16G16B16A16_UINT; break; case 16: dst_templ.format = PIPE_FORMAT_R32G32B32A32_UINT; src_templ.format = PIPE_FORMAT_R32G32B32A32_UINT; break; default: fprintf(stderr, "Unhandled format %s with blocksize %u\n", util_format_short_name(src->format), blocksize); assert(0); } } } /* Initialize the surface. */ dst_view = r600_create_surface_custom(ctx, dst, &dst_templ, dst_width, dst_height); /* Initialize the sampler view. */ src_view = si_create_sampler_view_custom(ctx, src, &src_templ, src_width0, src_height0, src_force_level); u_box_3d(dstx, dsty, dstz, abs(src_box->width), abs(src_box->height), abs(src_box->depth), &dstbox); /* Copy. */ si_blitter_begin(ctx, SI_COPY); util_blitter_blit_generic(sctx->blitter, dst_view, &dstbox, src_view, src_box, src_width0, src_height0, PIPE_MASK_RGBAZS, PIPE_TEX_FILTER_NEAREST, NULL, false); si_blitter_end(ctx); pipe_surface_reference(&dst_view, NULL); pipe_sampler_view_reference(&src_view, NULL); } static bool do_hardware_msaa_resolve(struct pipe_context *ctx, const struct pipe_blit_info *info) { struct si_context *sctx = (struct si_context*)ctx; struct r600_texture *src = (struct r600_texture*)info->src.resource; struct r600_texture *dst = (struct r600_texture*)info->dst.resource; unsigned dst_width = u_minify(info->dst.resource->width0, info->dst.level); unsigned dst_height = u_minify(info->dst.resource->height0, info->dst.level); enum pipe_format format = info->src.format; unsigned sample_mask = ~0; struct pipe_resource *tmp, templ; struct pipe_blit_info blit; /* Check basic requirements for hw resolve. */ if (!(info->src.resource->nr_samples > 1 && info->dst.resource->nr_samples <= 1 && !util_format_is_pure_integer(format) && !util_format_is_depth_or_stencil(format) && util_max_layer(info->src.resource, 0) == 0)) return false; /* Hardware MSAA resolve doesn't work if SPI format = NORM16_ABGR and * the format is R16G16. Use R16A16, which does work. */ if (format == PIPE_FORMAT_R16G16_UNORM) format = PIPE_FORMAT_R16A16_UNORM; if (format == PIPE_FORMAT_R16G16_SNORM) format = PIPE_FORMAT_R16A16_SNORM; /* Check the remaining requirements for hw resolve. */ if (util_max_layer(info->dst.resource, info->dst.level) == 0 && !info->scissor_enable && (info->mask & PIPE_MASK_RGBA) == PIPE_MASK_RGBA && util_is_format_compatible(util_format_description(info->src.format), util_format_description(info->dst.format)) && dst_width == info->src.resource->width0 && dst_height == info->src.resource->height0 && info->dst.box.x == 0 && info->dst.box.y == 0 && info->dst.box.width == dst_width && info->dst.box.height == dst_height && info->dst.box.depth == 1 && info->src.box.x == 0 && info->src.box.y == 0 && info->src.box.width == dst_width && info->src.box.height == dst_height && info->src.box.depth == 1 && !dst->surface.is_linear && (!dst->cmask.size || !dst->dirty_level_mask)) { /* dst cannot be fast-cleared */ /* Check the last constraint. */ if (src->surface.micro_tile_mode != dst->surface.micro_tile_mode) { /* The next fast clear will switch to this mode to * get direct hw resolve next time if the mode is * different now. */ src->last_msaa_resolve_target_micro_mode = dst->surface.micro_tile_mode; goto resolve_to_temp; } /* Resolving into a surface with DCC is unsupported. Since * it's being overwritten anyway, clear it to uncompressed. * This is still the fastest codepath even with this clear. */ if (dst->dcc_offset && info->dst.level < dst->surface.num_dcc_levels) { vi_dcc_clear_level(&sctx->b, dst, info->dst.level, 0xFFFFFFFF); dst->dirty_level_mask &= ~(1 << info->dst.level); } /* Resolve directly from src to dst. */ si_blitter_begin(ctx, SI_COLOR_RESOLVE | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_custom_resolve_color(sctx->blitter, info->dst.resource, info->dst.level, info->dst.box.z, info->src.resource, info->src.box.z, sample_mask, sctx->custom_blend_resolve, format); si_blitter_end(ctx); return true; } resolve_to_temp: /* Shader-based resolve is VERY SLOW. Instead, resolve into * a temporary texture and blit. */ memset(&templ, 0, sizeof(templ)); templ.target = PIPE_TEXTURE_2D; templ.format = info->src.resource->format; templ.width0 = info->src.resource->width0; templ.height0 = info->src.resource->height0; templ.depth0 = 1; templ.array_size = 1; templ.usage = PIPE_USAGE_DEFAULT; templ.flags = R600_RESOURCE_FLAG_FORCE_TILING | R600_RESOURCE_FLAG_DISABLE_DCC; /* The src and dst microtile modes must be the same. */ if (src->surface.micro_tile_mode == RADEON_MICRO_MODE_DISPLAY) templ.bind = PIPE_BIND_SCANOUT; else templ.bind = 0; tmp = ctx->screen->resource_create(ctx->screen, &templ); if (!tmp) return false; assert(src->surface.micro_tile_mode == ((struct r600_texture*)tmp)->surface.micro_tile_mode); /* resolve */ si_blitter_begin(ctx, SI_COLOR_RESOLVE | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_custom_resolve_color(sctx->blitter, tmp, 0, 0, info->src.resource, info->src.box.z, sample_mask, sctx->custom_blend_resolve, format); si_blitter_end(ctx); /* blit */ blit = *info; blit.src.resource = tmp; blit.src.box.z = 0; si_blitter_begin(ctx, SI_BLIT | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_blit(sctx->blitter, &blit); si_blitter_end(ctx); pipe_resource_reference(&tmp, NULL); return true; } static void si_blit(struct pipe_context *ctx, const struct pipe_blit_info *info) { struct si_context *sctx = (struct si_context*)ctx; struct r600_texture *rdst = (struct r600_texture *)info->dst.resource; if (do_hardware_msaa_resolve(ctx, info)) { return; } /* Using SDMA for copying to a linear texture in GTT is much faster. * This improves DRI PRIME performance. * * resource_copy_region can't do this yet, because dma_copy calls it * on failure (recursion). */ if (rdst->surface.is_linear && sctx->b.dma_copy && util_can_blit_via_copy_region(info, false)) { sctx->b.dma_copy(ctx, info->dst.resource, info->dst.level, info->dst.box.x, info->dst.box.y, info->dst.box.z, info->src.resource, info->src.level, &info->src.box); return; } assert(util_blitter_is_blit_supported(sctx->blitter, info)); /* The driver doesn't decompress resources automatically while * u_blitter is rendering. */ vi_dcc_disable_if_incompatible_format(&sctx->b, info->src.resource, info->src.level, info->src.format); vi_dcc_disable_if_incompatible_format(&sctx->b, info->dst.resource, info->dst.level, info->dst.format); si_decompress_subresource(ctx, info->src.resource, info->mask, info->src.level, info->src.box.z, info->src.box.z + info->src.box.depth - 1); if (sctx->screen->b.debug_flags & DBG_FORCE_DMA && util_try_blit_via_copy_region(ctx, info)) return; si_blitter_begin(ctx, SI_BLIT | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND)); util_blitter_blit(sctx->blitter, info); si_blitter_end(ctx); } static boolean si_generate_mipmap(struct pipe_context *ctx, struct pipe_resource *tex, enum pipe_format format, unsigned base_level, unsigned last_level, unsigned first_layer, unsigned last_layer) { struct si_context *sctx = (struct si_context*)ctx; struct r600_texture *rtex = (struct r600_texture *)tex; if (!util_blitter_is_copy_supported(sctx->blitter, tex, tex)) return false; /* The driver doesn't decompress resources automatically while * u_blitter is rendering. */ vi_dcc_disable_if_incompatible_format(&sctx->b, tex, base_level, format); si_decompress_subresource(ctx, tex, PIPE_MASK_RGBAZS, base_level, first_layer, last_layer); /* Clear dirty_level_mask for the levels that will be overwritten. */ assert(base_level < last_level); rtex->dirty_level_mask &= ~u_bit_consecutive(base_level + 1, last_level - base_level); si_blitter_begin(ctx, SI_BLIT | SI_DISABLE_RENDER_COND); util_blitter_generate_mipmap(sctx->blitter, tex, format, base_level, last_level, first_layer, last_layer); si_blitter_end(ctx); return true; } static void si_flush_resource(struct pipe_context *ctx, struct pipe_resource *res) { struct r600_texture *rtex = (struct r600_texture*)res; assert(res->target != PIPE_BUFFER); assert(!rtex->dcc_separate_buffer || rtex->dcc_gather_statistics); /* st/dri calls flush twice per frame (not a bug), this prevents double * decompression. */ if (rtex->dcc_separate_buffer && !rtex->separate_dcc_dirty) return; if (!rtex->is_depth && (rtex->cmask.size || rtex->dcc_offset)) { si_blit_decompress_color(ctx, rtex, 0, res->last_level, 0, util_max_layer(res, 0), rtex->dcc_separate_buffer != NULL); } /* Always do the analysis even if DCC is disabled at the moment. */ if (rtex->dcc_gather_statistics && rtex->separate_dcc_dirty) { rtex->separate_dcc_dirty = false; vi_separate_dcc_process_and_reset_stats(ctx, rtex); } } static void si_decompress_dcc(struct pipe_context *ctx, struct r600_texture *rtex) { if (!rtex->dcc_offset) return; si_blit_decompress_color(ctx, rtex, 0, rtex->resource.b.b.last_level, 0, util_max_layer(&rtex->resource.b.b, 0), true); } static void si_pipe_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst, unsigned offset, unsigned size, const void *clear_value_ptr, int clear_value_size) { struct si_context *sctx = (struct si_context*)ctx; uint32_t dword_value; unsigned i; assert(offset % clear_value_size == 0); assert(size % clear_value_size == 0); if (clear_value_size > 4) { const uint32_t *u32 = clear_value_ptr; bool clear_dword_duplicated = true; /* See if we can lower large fills to dword fills. */ for (i = 1; i < clear_value_size / 4; i++) if (u32[0] != u32[i]) { clear_dword_duplicated = false; break; } if (!clear_dword_duplicated) { /* Use transform feedback for 64-bit, 96-bit, and * 128-bit fills. */ union pipe_color_union clear_value; memcpy(&clear_value, clear_value_ptr, clear_value_size); si_blitter_begin(ctx, SI_DISABLE_RENDER_COND); util_blitter_clear_buffer(sctx->blitter, dst, offset, size, clear_value_size / 4, &clear_value); si_blitter_end(ctx); return; } } /* Expand the clear value to a dword. */ switch (clear_value_size) { case 1: dword_value = *(uint8_t*)clear_value_ptr; dword_value |= (dword_value << 8) | (dword_value << 16) | (dword_value << 24); break; case 2: dword_value = *(uint16_t*)clear_value_ptr; dword_value |= dword_value << 16; break; default: dword_value = *(uint32_t*)clear_value_ptr; } sctx->b.clear_buffer(ctx, dst, offset, size, dword_value, R600_COHERENCY_SHADER); } void si_init_blit_functions(struct si_context *sctx) { sctx->b.b.clear = si_clear; sctx->b.b.clear_buffer = si_pipe_clear_buffer; sctx->b.b.clear_render_target = si_clear_render_target; sctx->b.b.clear_depth_stencil = si_clear_depth_stencil; sctx->b.b.resource_copy_region = si_resource_copy_region; sctx->b.b.blit = si_blit; sctx->b.b.flush_resource = si_flush_resource; sctx->b.b.generate_mipmap = si_generate_mipmap; sctx->b.blit_decompress_depth = si_blit_decompress_depth; sctx->b.decompress_dcc = si_decompress_dcc; }