#include "gallivm/lp_bld_tgsi_action.h" #include "gallivm/lp_bld_const.h" #include "gallivm/lp_bld_intr.h" #include "gallivm/lp_bld_tgsi.h" #include "radeon_llvm.h" #include "radeon_llvm_emit.h" #include "tgsi/tgsi_info.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_scan.h" #include "tgsi/tgsi_dump.h" #include "radeonsi_pipe.h" #include "radeonsi_shader.h" #include "si_state.h" #include "sid.h" #include #include #include /* static ps_remap_inputs( struct tgsi_llvm_context * tl_ctx, unsigned tgsi_index, unsigned tgsi_chan) { : } struct si_input { struct list_head head; unsigned tgsi_index; unsigned tgsi_chan; unsigned order; }; */ struct si_shader_context { struct radeon_llvm_context radeon_bld; struct r600_context *rctx; struct tgsi_parse_context parse; struct tgsi_token * tokens; struct si_pipe_shader *shader; unsigned type; /* TGSI_PROCESSOR_* specifies the type of shader. */ /* unsigned num_inputs; */ /* struct list_head inputs; */ /* unsigned * input_mappings *//* From TGSI to SI hw */ /* struct tgsi_shader_info info;*/ }; static struct si_shader_context * si_shader_context( struct lp_build_tgsi_context * bld_base) { return (struct si_shader_context *)bld_base; } #define PERSPECTIVE_BASE 0 #define LINEAR_BASE 9 #define SAMPLE_OFFSET 0 #define CENTER_OFFSET 2 #define CENTROID_OFSET 4 #define USE_SGPR_MAX_SUFFIX_LEN 5 #define CONST_ADDR_SPACE 2 #define USER_SGPR_ADDR_SPACE 8 enum sgpr_type { SGPR_CONST_PTR_F32, SGPR_CONST_PTR_V4I32, SGPR_CONST_PTR_V8I32, SGPR_I32, SGPR_I64 }; /** * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad * * @param offset The offset parameter specifies the number of * elements to offset, not the number of bytes or dwords. An element is the * the type pointed to by the base_ptr parameter (e.g. int is the element of * an int* pointer) * * When LLVM lowers the load instruction, it will convert the element offset * into a dword offset automatically. * */ static LLVMValueRef build_indexed_load( struct gallivm_state * gallivm, LLVMValueRef base_ptr, LLVMValueRef offset) { LLVMValueRef computed_ptr = LLVMBuildGEP( gallivm->builder, base_ptr, &offset, 1, ""); return LLVMBuildLoad(gallivm->builder, computed_ptr, ""); } /** * Load a value stored in one of the user SGPRs * * @param sgpr This is the sgpr to load the value from. If you need to load a * value that is stored in consecutive SGPR registers (e.g. a 64-bit pointer), * then you should pass the index of the first SGPR that holds the value. For * example, if you want to load a pointer that is stored in SGPRs 2 and 3, then * use pass 2 for the sgpr parameter. * * The value of the sgpr parameter must also be aligned to the width of the type * being loaded, so that the sgpr parameter is divisible by the dword width of the * type. For example, if the value being loaded is two dwords wide, then the sgpr * parameter must be divisible by two. */ static LLVMValueRef use_sgpr( struct gallivm_state * gallivm, enum sgpr_type type, unsigned sgpr) { LLVMValueRef sgpr_index; LLVMTypeRef ret_type; LLVMValueRef ptr; sgpr_index = lp_build_const_int32(gallivm, sgpr); switch (type) { case SGPR_CONST_PTR_F32: assert(sgpr % 2 == 0); ret_type = LLVMFloatTypeInContext(gallivm->context); ret_type = LLVMPointerType(ret_type, CONST_ADDR_SPACE); break; case SGPR_I32: ret_type = LLVMInt32TypeInContext(gallivm->context); break; case SGPR_I64: assert(sgpr % 2 == 0); ret_type= LLVMInt64TypeInContext(gallivm->context); break; case SGPR_CONST_PTR_V4I32: assert(sgpr % 2 == 0); ret_type = LLVMInt32TypeInContext(gallivm->context); ret_type = LLVMVectorType(ret_type, 4); ret_type = LLVMPointerType(ret_type, CONST_ADDR_SPACE); break; case SGPR_CONST_PTR_V8I32: assert(sgpr % 2 == 0); ret_type = LLVMInt32TypeInContext(gallivm->context); ret_type = LLVMVectorType(ret_type, 8); ret_type = LLVMPointerType(ret_type, CONST_ADDR_SPACE); break; default: assert(!"Unsupported SGPR type in use_sgpr()"); return NULL; } ret_type = LLVMPointerType(ret_type, USER_SGPR_ADDR_SPACE); ptr = LLVMBuildIntToPtr(gallivm->builder, sgpr_index, ret_type, ""); return LLVMBuildLoad(gallivm->builder, ptr, ""); } static void declare_input_vs( struct si_shader_context * si_shader_ctx, unsigned input_index, const struct tgsi_full_declaration *decl) { LLVMValueRef t_list_ptr; LLVMValueRef t_offset; LLVMValueRef t_list; LLVMValueRef attribute_offset; LLVMValueRef buffer_index_reg; LLVMValueRef args[3]; LLVMTypeRef vec4_type; LLVMValueRef input; struct lp_build_context * uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; struct lp_build_context * base = &si_shader_ctx->radeon_bld.soa.bld_base.base; struct r600_context *rctx = si_shader_ctx->rctx; struct pipe_vertex_element *velem = &rctx->vertex_elements->elements[input_index]; unsigned chan; /* Load the T list */ /* XXX: Communicate with the rest of the driver about which SGPR the T# * list pointer is going to be stored in. Hard code to SGPR[6:7] for * now */ t_list_ptr = use_sgpr(base->gallivm, SGPR_CONST_PTR_V4I32, 6); t_offset = lp_build_const_int32(base->gallivm, velem->vertex_buffer_index); t_list = build_indexed_load(base->gallivm, t_list_ptr, t_offset); /* Build the attribute offset */ attribute_offset = lp_build_const_int32(base->gallivm, velem->src_offset); /* Load the buffer index is always, which is always stored in VGPR0 * for Vertex Shaders */ buffer_index_reg = lp_build_intrinsic(base->gallivm->builder, "llvm.SI.vs.load.buffer.index", uint->elem_type, NULL, 0); vec4_type = LLVMVectorType(base->elem_type, 4); args[0] = t_list; args[1] = attribute_offset; args[2] = buffer_index_reg; input = lp_build_intrinsic(base->gallivm->builder, "llvm.SI.vs.load.input", vec4_type, args, 3); /* Break up the vec4 into individual components */ for (chan = 0; chan < 4; chan++) { LLVMValueRef llvm_chan = lp_build_const_int32(base->gallivm, chan); /* XXX: Use a helper function for this. There is one in * tgsi_llvm.c. */ si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, chan)] = LLVMBuildExtractElement(base->gallivm->builder, input, llvm_chan, ""); } } static void declare_input_fs( struct si_shader_context * si_shader_ctx, unsigned input_index, const struct tgsi_full_declaration *decl) { const char * intr_name; unsigned chan; struct lp_build_context * base = &si_shader_ctx->radeon_bld.soa.bld_base.base; struct gallivm_state * gallivm = base->gallivm; /* This value is: * [15:0] NewPrimMask (Bit mask for each quad. It is set it the * quad begins a new primitive. Bit 0 always needs * to be unset) * [32:16] ParamOffset * */ /* XXX: This register number must be identical to the S_00B02C_USER_SGPR * register field value */ LLVMValueRef params = use_sgpr(base->gallivm, SGPR_I32, 6); /* XXX: Is this the input_index? */ LLVMValueRef attr_number = lp_build_const_int32(gallivm, input_index); /* XXX: Handle all possible interpolation modes */ switch (decl->Interp.Interpolate) { case TGSI_INTERPOLATE_COLOR: /* XXX: Flat shading hangs the GPU */ if (si_shader_ctx->rctx->queued.named.rasterizer->flatshade) { #if 0 intr_name = "llvm.SI.fs.interp.constant"; #else intr_name = "llvm.SI.fs.interp.linear.center"; #endif } else { if (decl->Interp.Centroid) intr_name = "llvm.SI.fs.interp.persp.centroid"; else intr_name = "llvm.SI.fs.interp.persp.center"; } break; case TGSI_INTERPOLATE_CONSTANT: /* XXX: Flat shading hangs the GPU */ #if 0 intr_name = "llvm.SI.fs.interp.constant"; break; #endif case TGSI_INTERPOLATE_LINEAR: if (decl->Interp.Centroid) intr_name = "llvm.SI.fs.interp.linear.centroid"; else intr_name = "llvm.SI.fs.interp.linear.center"; break; case TGSI_INTERPOLATE_PERSPECTIVE: if (decl->Interp.Centroid) intr_name = "llvm.SI.fs.interp.persp.centroid"; else intr_name = "llvm.SI.fs.interp.persp.center"; break; default: fprintf(stderr, "Warning: Unhandled interpolation mode.\n"); return; } /* XXX: Could there be more than TGSI_NUM_CHANNELS (4) ? */ for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { LLVMValueRef args[3]; LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context); args[0] = llvm_chan; args[1] = attr_number; args[2] = params; si_shader_ctx->radeon_bld.inputs[soa_index] = lp_build_intrinsic(gallivm->builder, intr_name, input_type, args, 3); } } static void declare_input( struct radeon_llvm_context * radeon_bld, unsigned input_index, const struct tgsi_full_declaration *decl) { struct si_shader_context * si_shader_ctx = si_shader_context(&radeon_bld->soa.bld_base); if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX) { declare_input_vs(si_shader_ctx, input_index, decl); } else if (si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT) { declare_input_fs(si_shader_ctx, input_index, decl); } else { fprintf(stderr, "Warning: Unsupported shader type,\n"); } } static LLVMValueRef fetch_constant( struct lp_build_tgsi_context * bld_base, const struct tgsi_full_src_register *reg, enum tgsi_opcode_type type, unsigned swizzle) { struct lp_build_context * base = &bld_base->base; LLVMValueRef const_ptr; LLVMValueRef offset; /* XXX: Assume the pointer to the constant buffer is being stored in * SGPR[0:1] */ const_ptr = use_sgpr(base->gallivm, SGPR_CONST_PTR_F32, 0); /* XXX: This assumes that the constant buffer is not packed, so * CONST[0].x will have an offset of 0 and CONST[1].x will have an * offset of 4. */ offset = lp_build_const_int32(base->gallivm, (reg->Register.Index * 4) + swizzle); return build_indexed_load(base->gallivm, const_ptr, offset); } /* XXX: This is partially implemented for VS only at this point. It is not complete */ static void si_llvm_emit_epilogue(struct lp_build_tgsi_context * bld_base) { struct si_shader_context * si_shader_ctx = si_shader_context(bld_base); struct si_shader * shader = &si_shader_ctx->shader->shader; struct lp_build_context * base = &bld_base->base; struct lp_build_context * uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld; struct tgsi_parse_context *parse = &si_shader_ctx->parse; LLVMValueRef last_args[9] = { 0 }; while (!tgsi_parse_end_of_tokens(parse)) { /* XXX: component_bits controls which components of the output * registers actually get exported. (e.g bit 0 means export * X component, bit 1 means export Y component, etc.) I'm * hard coding this to 0xf for now. In the future, we might * want to do something else. */ unsigned component_bits = 0xf; unsigned chan; struct tgsi_full_declaration *d = &parse->FullToken.FullDeclaration; LLVMValueRef args[9]; unsigned target; unsigned index; unsigned color_count = 0; unsigned param_count = 0; int i; tgsi_parse_token(parse); if (parse->FullToken.Token.Type != TGSI_TOKEN_TYPE_DECLARATION) continue; switch (d->Declaration.File) { case TGSI_FILE_INPUT: i = shader->ninput++; shader->input[i].name = d->Semantic.Name; shader->input[i].sid = d->Semantic.Index; shader->input[i].interpolate = d->Interp.Interpolate; shader->input[i].centroid = d->Interp.Centroid; break; case TGSI_FILE_OUTPUT: i = shader->noutput++; shader->output[i].name = d->Semantic.Name; shader->output[i].sid = d->Semantic.Index; shader->output[i].interpolate = d->Interp.Interpolate; break; } if (d->Declaration.File != TGSI_FILE_OUTPUT) continue; for (index = d->Range.First; index <= d->Range.Last; index++) { for (chan = 0; chan < 4; chan++ ) { LLVMValueRef out_ptr = si_shader_ctx->radeon_bld.soa.outputs [index][chan]; /* +5 because the first output value will be * the 6th argument to the intrinsic. */ args[chan + 5]= LLVMBuildLoad( base->gallivm->builder, out_ptr, ""); } /* XXX: We probably need to keep track of the output * values, so we know what we are passing to the next * stage. */ /* Select the correct target */ switch(d->Semantic.Name) { case TGSI_SEMANTIC_POSITION: target = V_008DFC_SQ_EXP_POS; break; case TGSI_SEMANTIC_COLOR: if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX) { target = V_008DFC_SQ_EXP_PARAM + param_count; shader->output[i].param_offset = param_count; param_count++; } else { target = V_008DFC_SQ_EXP_MRT + color_count; color_count++; } break; case TGSI_SEMANTIC_GENERIC: target = V_008DFC_SQ_EXP_PARAM + param_count; shader->output[i].param_offset = param_count; param_count++; break; default: target = 0; fprintf(stderr, "Warning: SI unhandled output type:%d\n", d->Semantic.Name); } /* Specify which components to enable */ args[0] = lp_build_const_int32(base->gallivm, component_bits); /* Specify whether the EXEC mask represents the valid mask */ args[1] = lp_build_const_int32(base->gallivm, 0); /* Specify whether this is the last export */ args[2] = lp_build_const_int32(base->gallivm, 0); /* Specify the target we are exporting */ args[3] = lp_build_const_int32(base->gallivm, target); /* Set COMPR flag to zero to export data as 32-bit */ args[4] = uint->zero; if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX ? (d->Semantic.Name == TGSI_SEMANTIC_POSITION) : (d->Semantic.Name == TGSI_SEMANTIC_COLOR)) { if (last_args[0]) { lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), last_args, 9); } memcpy(last_args, args, sizeof(args)); } else { lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), args, 9); } } } /* Specify whether the EXEC mask represents the valid mask */ last_args[1] = lp_build_const_int32(base->gallivm, si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT); /* Specify that this is the last export */ last_args[2] = lp_build_const_int32(base->gallivm, 1); lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export", LLVMVoidTypeInContext(base->gallivm->context), last_args, 9); /* XXX: Look up what this function does */ /* ctx->shader->output[i].spi_sid = r600_spi_sid(&ctx->shader->output[i]);*/ } static void tex_fetch_args( struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { LLVMValueRef ptr; LLVMValueRef offset; /* WriteMask */ emit_data->args[0] = lp_build_const_int32(bld_base->base.gallivm, emit_data->inst->Dst[0].Register.WriteMask); /* Coordinates */ /* XXX: Not all sample instructions need 4 address arguments. */ emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, LP_CHAN_ALL); /* Resource */ ptr = use_sgpr(bld_base->base.gallivm, SGPR_CONST_PTR_V8I32, 4); offset = lp_build_const_int32(bld_base->base.gallivm, 8 * emit_data->inst->Src[1].Register.Index); emit_data->args[2] = build_indexed_load(bld_base->base.gallivm, ptr, offset); /* Sampler */ ptr = use_sgpr(bld_base->base.gallivm, SGPR_CONST_PTR_V4I32, 2); offset = lp_build_const_int32(bld_base->base.gallivm, 4 * emit_data->inst->Src[1].Register.Index); emit_data->args[3] = build_indexed_load(bld_base->base.gallivm, ptr, offset); /* Dimensions */ /* XXX: We might want to pass this information to the shader at some. */ /* emit_data->args[4] = lp_build_const_int32(bld_base->base.gallivm, emit_data->inst->Texture.Texture); */ emit_data->arg_count = 4; /* XXX: To optimize, we could use a float or v2f32, if the last bits of * the writemask are clear */ emit_data->dst_type = LLVMVectorType( LLVMFloatTypeInContext(bld_base->base.gallivm->context), 4); } static const struct lp_build_tgsi_action tex_action = { .fetch_args = tex_fetch_args, .emit = lp_build_tgsi_intrinsic, .intr_name = "llvm.SI.sample" }; int si_pipe_shader_create( struct pipe_context *ctx, struct si_pipe_shader *shader) { struct r600_context *rctx = (struct r600_context*)ctx; struct si_shader_context si_shader_ctx; struct tgsi_shader_info shader_info; struct lp_build_tgsi_context * bld_base; LLVMModuleRef mod; unsigned char * inst_bytes; unsigned inst_byte_count; unsigned i; bool dump; dump = debug_get_bool_option("RADEON_DUMP_SHADERS", FALSE); radeon_llvm_context_init(&si_shader_ctx.radeon_bld); bld_base = &si_shader_ctx.radeon_bld.soa.bld_base; tgsi_scan_shader(shader->tokens, &shader_info); bld_base->info = &shader_info; bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant; bld_base->emit_epilogue = si_llvm_emit_epilogue; bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action; si_shader_ctx.radeon_bld.load_input = declare_input; si_shader_ctx.tokens = shader->tokens; tgsi_parse_init(&si_shader_ctx.parse, si_shader_ctx.tokens); si_shader_ctx.shader = shader; si_shader_ctx.type = si_shader_ctx.parse.FullHeader.Processor.Processor; si_shader_ctx.rctx = rctx; shader->shader.nr_cbufs = rctx->framebuffer.nr_cbufs; /* Dump TGSI code before doing TGSI->LLVM conversion in case the * conversion fails. */ if (dump) { tgsi_dump(shader->tokens, 0); } lp_build_tgsi_llvm(bld_base, shader->tokens); radeon_llvm_finalize_module(&si_shader_ctx.radeon_bld); mod = bld_base->base.gallivm->module; if (dump) { LLVMDumpModule(mod); } radeon_llvm_compile(mod, &inst_bytes, &inst_byte_count, "SI", dump); if (dump) { fprintf(stderr, "SI CODE:\n"); for (i = 0; i < inst_byte_count; i+=4 ) { fprintf(stderr, "%02x%02x%02x%02x\n", inst_bytes[i + 3], inst_bytes[i + 2], inst_bytes[i + 1], inst_bytes[i]); } } shader->num_sgprs = util_le32_to_cpu(*(uint32_t*)inst_bytes); shader->num_vgprs = util_le32_to_cpu(*(uint32_t*)(inst_bytes + 4)); shader->spi_ps_input_ena = util_le32_to_cpu(*(uint32_t*)(inst_bytes + 8)); tgsi_parse_free(&si_shader_ctx.parse); /* copy new shader */ if (shader->bo == NULL) { uint32_t *ptr; shader->bo = (struct r600_resource*) pipe_buffer_create(ctx->screen, PIPE_BIND_CUSTOM, PIPE_USAGE_IMMUTABLE, inst_byte_count); if (shader->bo == NULL) { return -ENOMEM; } ptr = (uint32_t*)rctx->ws->buffer_map(shader->bo->cs_buf, rctx->cs, PIPE_TRANSFER_WRITE); if (0 /*R600_BIG_ENDIAN*/) { for (i = 0; i < (inst_byte_count-12)/4; ++i) { ptr[i] = util_bswap32(*(uint32_t*)(inst_bytes+12 + i*4)); } } else { memcpy(ptr, inst_bytes + 12, inst_byte_count - 12); } rctx->ws->buffer_unmap(shader->bo->cs_buf); } free(inst_bytes); return 0; } void si_pipe_shader_destroy(struct pipe_context *ctx, struct si_pipe_shader *shader) { pipe_resource_reference((struct pipe_resource**)&shader->bo, NULL); memset(&shader->shader,0,sizeof(struct si_shader)); }