/* * Copyright 2010 Jerome Glisse * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Jerome Glisse * Corbin Simpson */ #include "r600_pipe_common.h" #include "r600_cs.h" #include "r600_query.h" #include "util/u_format.h" #include "util/u_memory.h" #include "util/u_pack_color.h" #include "util/u_surface.h" #include "os/os_time.h" #include #include static void r600_texture_discard_cmask(struct r600_common_screen *rscreen, struct r600_texture *rtex); static enum radeon_surf_mode r600_choose_tiling(struct r600_common_screen *rscreen, const struct pipe_resource *templ); bool r600_prepare_for_dma_blit(struct r600_common_context *rctx, struct r600_texture *rdst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct r600_texture *rsrc, unsigned src_level, const struct pipe_box *src_box) { if (!rctx->dma.cs) return false; if (rdst->surface.bpe != rsrc->surface.bpe) return false; /* MSAA: Blits don't exist in the real world. */ if (rsrc->resource.b.b.nr_samples > 1 || rdst->resource.b.b.nr_samples > 1) return false; /* Depth-stencil surfaces: * When dst is linear, the DB->CB copy preserves HTILE. * When dst is tiled, the 3D path must be used to update HTILE. */ if (rsrc->is_depth || rdst->is_depth) return false; /* DCC as: * src: Use the 3D path. DCC decompression is expensive. * dst: Use the 3D path to compress the pixels with DCC. */ if (vi_dcc_enabled(rsrc, src_level) || vi_dcc_enabled(rdst, dst_level)) return false; /* CMASK as: * src: Both texture and SDMA paths need decompression. Use SDMA. * dst: If overwriting the whole texture, discard CMASK and use * SDMA. Otherwise, use the 3D path. */ if (rdst->cmask.size && rdst->dirty_level_mask & (1 << dst_level)) { /* The CMASK clear is only enabled for the first level. */ assert(dst_level == 0); if (!util_texrange_covers_whole_level(&rdst->resource.b.b, dst_level, dstx, dsty, dstz, src_box->width, src_box->height, src_box->depth)) return false; r600_texture_discard_cmask(rctx->screen, rdst); } /* All requirements are met. Prepare textures for SDMA. */ if (rsrc->cmask.size && rsrc->dirty_level_mask & (1 << src_level)) rctx->b.flush_resource(&rctx->b, &rsrc->resource.b.b); assert(!(rsrc->dirty_level_mask & (1 << src_level))); assert(!(rdst->dirty_level_mask & (1 << dst_level))); return true; } /* Same as resource_copy_region, except that both upsampling and downsampling are allowed. */ static void r600_copy_region_with_blit(struct pipe_context *pipe, struct pipe_resource *dst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct pipe_resource *src, unsigned src_level, const struct pipe_box *src_box) { struct pipe_blit_info blit; memset(&blit, 0, sizeof(blit)); blit.src.resource = src; blit.src.format = src->format; blit.src.level = src_level; blit.src.box = *src_box; blit.dst.resource = dst; blit.dst.format = dst->format; blit.dst.level = dst_level; blit.dst.box.x = dstx; blit.dst.box.y = dsty; blit.dst.box.z = dstz; blit.dst.box.width = src_box->width; blit.dst.box.height = src_box->height; blit.dst.box.depth = src_box->depth; blit.mask = util_format_get_mask(src->format) & util_format_get_mask(dst->format); blit.filter = PIPE_TEX_FILTER_NEAREST; if (blit.mask) { pipe->blit(pipe, &blit); } } /* Copy from a full GPU texture to a transfer's staging one. */ static void r600_copy_to_staging_texture(struct pipe_context *ctx, struct r600_transfer *rtransfer) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; struct pipe_transfer *transfer = (struct pipe_transfer*)rtransfer; struct pipe_resource *dst = &rtransfer->staging->b.b; struct pipe_resource *src = transfer->resource; if (src->nr_samples > 1) { r600_copy_region_with_blit(ctx, dst, 0, 0, 0, 0, src, transfer->level, &transfer->box); return; } rctx->dma_copy(ctx, dst, 0, 0, 0, 0, src, transfer->level, &transfer->box); } /* Copy from a transfer's staging texture to a full GPU one. */ static void r600_copy_from_staging_texture(struct pipe_context *ctx, struct r600_transfer *rtransfer) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; struct pipe_transfer *transfer = (struct pipe_transfer*)rtransfer; struct pipe_resource *dst = transfer->resource; struct pipe_resource *src = &rtransfer->staging->b.b; struct pipe_box sbox; u_box_3d(0, 0, 0, transfer->box.width, transfer->box.height, transfer->box.depth, &sbox); if (dst->nr_samples > 1) { r600_copy_region_with_blit(ctx, dst, transfer->level, transfer->box.x, transfer->box.y, transfer->box.z, src, 0, &sbox); return; } rctx->dma_copy(ctx, dst, transfer->level, transfer->box.x, transfer->box.y, transfer->box.z, src, 0, &sbox); } static unsigned r600_texture_get_offset(struct r600_common_screen *rscreen, struct r600_texture *rtex, unsigned level, const struct pipe_box *box, unsigned *stride, unsigned *layer_stride) { if (rscreen->chip_class >= GFX9) { *stride = rtex->surface.u.gfx9.surf_pitch * rtex->surface.bpe; *layer_stride = rtex->surface.u.gfx9.surf_slice_size; if (!box) return 0; /* Each texture is an array of slices. Each slice is an array * of mipmap levels. */ return box->z * rtex->surface.u.gfx9.surf_slice_size + rtex->surface.u.gfx9.offset[level] + (box->y / rtex->surface.blk_h * rtex->surface.u.gfx9.surf_pitch + box->x / rtex->surface.blk_w) * rtex->surface.bpe; } else { *stride = rtex->surface.u.legacy.level[level].nblk_x * rtex->surface.bpe; *layer_stride = rtex->surface.u.legacy.level[level].slice_size; if (!box) return rtex->surface.u.legacy.level[level].offset; /* Each texture is an array of mipmap levels. Each level is * an array of slices. */ return rtex->surface.u.legacy.level[level].offset + box->z * rtex->surface.u.legacy.level[level].slice_size + (box->y / rtex->surface.blk_h * rtex->surface.u.legacy.level[level].nblk_x + box->x / rtex->surface.blk_w) * rtex->surface.bpe; } } static int r600_init_surface(struct r600_common_screen *rscreen, struct radeon_surf *surface, const struct pipe_resource *ptex, enum radeon_surf_mode array_mode, unsigned pitch_in_bytes_override, unsigned offset, bool is_imported, bool is_scanout, bool is_flushed_depth, bool tc_compatible_htile) { const struct util_format_description *desc = util_format_description(ptex->format); bool is_depth, is_stencil; int r; unsigned i, bpe, flags = 0; is_depth = util_format_has_depth(desc); is_stencil = util_format_has_stencil(desc); if (rscreen->chip_class >= EVERGREEN && !is_flushed_depth && ptex->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT) { bpe = 4; /* stencil is allocated separately on evergreen */ } else { bpe = util_format_get_blocksize(ptex->format); assert(util_is_power_of_two(bpe)); } if (!is_flushed_depth && is_depth) { flags |= RADEON_SURF_ZBUFFER; if (tc_compatible_htile && (rscreen->chip_class >= GFX9 || array_mode == RADEON_SURF_MODE_2D)) { /* TC-compatible HTILE only supports Z32_FLOAT. * GFX9 also supports Z16_UNORM. * On VI, promote Z16 to Z32. DB->CB copies will convert * the format for transfers. */ if (rscreen->chip_class == VI) bpe = 4; flags |= RADEON_SURF_TC_COMPATIBLE_HTILE; } if (is_stencil) flags |= RADEON_SURF_SBUFFER; } if (rscreen->chip_class >= VI && (ptex->flags & R600_RESOURCE_FLAG_DISABLE_DCC || ptex->format == PIPE_FORMAT_R9G9B9E5_FLOAT)) flags |= RADEON_SURF_DISABLE_DCC; if (ptex->bind & PIPE_BIND_SCANOUT || is_scanout) { /* This should catch bugs in gallium users setting incorrect flags. */ assert(ptex->nr_samples <= 1 && ptex->array_size == 1 && ptex->depth0 == 1 && ptex->last_level == 0 && !(flags & RADEON_SURF_Z_OR_SBUFFER)); flags |= RADEON_SURF_SCANOUT; } if (is_imported) flags |= RADEON_SURF_IMPORTED; if (!(ptex->flags & R600_RESOURCE_FLAG_FORCE_TILING)) flags |= RADEON_SURF_OPTIMIZE_FOR_SPACE; r = rscreen->ws->surface_init(rscreen->ws, ptex, flags, bpe, array_mode, surface); if (r) { return r; } if (rscreen->chip_class >= GFX9) { assert(!pitch_in_bytes_override || pitch_in_bytes_override == surface->u.gfx9.surf_pitch * bpe); surface->u.gfx9.surf_offset = offset; } else { if (pitch_in_bytes_override && pitch_in_bytes_override != surface->u.legacy.level[0].nblk_x * bpe) { /* old ddx on evergreen over estimate alignment for 1d, only 1 level * for those */ surface->u.legacy.level[0].nblk_x = pitch_in_bytes_override / bpe; surface->u.legacy.level[0].slice_size = pitch_in_bytes_override * surface->u.legacy.level[0].nblk_y; } if (offset) { for (i = 0; i < ARRAY_SIZE(surface->u.legacy.level); ++i) surface->u.legacy.level[i].offset += offset; } } return 0; } static void r600_texture_init_metadata(struct r600_common_screen *rscreen, struct r600_texture *rtex, struct radeon_bo_metadata *metadata) { struct radeon_surf *surface = &rtex->surface; memset(metadata, 0, sizeof(*metadata)); if (rscreen->chip_class >= GFX9) { metadata->u.gfx9.swizzle_mode = surface->u.gfx9.surf.swizzle_mode; } else { metadata->u.legacy.microtile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; metadata->u.legacy.macrotile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; metadata->u.legacy.pipe_config = surface->u.legacy.pipe_config; metadata->u.legacy.bankw = surface->u.legacy.bankw; metadata->u.legacy.bankh = surface->u.legacy.bankh; metadata->u.legacy.tile_split = surface->u.legacy.tile_split; metadata->u.legacy.mtilea = surface->u.legacy.mtilea; metadata->u.legacy.num_banks = surface->u.legacy.num_banks; metadata->u.legacy.stride = surface->u.legacy.level[0].nblk_x * surface->bpe; metadata->u.legacy.scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0; } } static void r600_eliminate_fast_color_clear(struct r600_common_context *rctx, struct r600_texture *rtex) { struct r600_common_screen *rscreen = rctx->screen; struct pipe_context *ctx = &rctx->b; if (ctx == rscreen->aux_context) mtx_lock(&rscreen->aux_context_lock); ctx->flush_resource(ctx, &rtex->resource.b.b); ctx->flush(ctx, NULL, 0); if (ctx == rscreen->aux_context) mtx_unlock(&rscreen->aux_context_lock); } static void r600_texture_discard_cmask(struct r600_common_screen *rscreen, struct r600_texture *rtex) { if (!rtex->cmask.size) return; assert(rtex->resource.b.b.nr_samples <= 1); /* Disable CMASK. */ memset(&rtex->cmask, 0, sizeof(rtex->cmask)); rtex->cmask.base_address_reg = rtex->resource.gpu_address >> 8; rtex->dirty_level_mask = 0; if (rscreen->chip_class >= SI) rtex->cb_color_info &= ~SI_S_028C70_FAST_CLEAR(1); else rtex->cb_color_info &= ~EG_S_028C70_FAST_CLEAR(1); if (rtex->cmask_buffer != &rtex->resource) r600_resource_reference(&rtex->cmask_buffer, NULL); /* Notify all contexts about the change. */ p_atomic_inc(&rscreen->dirty_tex_counter); p_atomic_inc(&rscreen->compressed_colortex_counter); } static bool r600_can_disable_dcc(struct r600_texture *rtex) { /* We can't disable DCC if it can be written by another process. */ return rtex->dcc_offset && (!rtex->resource.b.is_shared || !(rtex->resource.external_usage & PIPE_HANDLE_USAGE_WRITE)); } static bool r600_texture_discard_dcc(struct r600_common_screen *rscreen, struct r600_texture *rtex) { if (!r600_can_disable_dcc(rtex)) return false; assert(rtex->dcc_separate_buffer == NULL); /* Disable DCC. */ rtex->dcc_offset = 0; /* Notify all contexts about the change. */ p_atomic_inc(&rscreen->dirty_tex_counter); return true; } /** * Disable DCC for the texture. (first decompress, then discard metadata). * * There is unresolved multi-context synchronization issue between * screen::aux_context and the current context. If applications do this with * multiple contexts, it's already undefined behavior for them and we don't * have to worry about that. The scenario is: * * If context 1 disables DCC and context 2 has queued commands that write * to the texture via CB with DCC enabled, and the order of operations is * as follows: * context 2 queues draw calls rendering to the texture, but doesn't flush * context 1 disables DCC and flushes * context 1 & 2 reset descriptors and FB state * context 2 flushes (new compressed tiles written by the draw calls) * context 1 & 2 read garbage, because DCC is disabled, yet there are * compressed tiled * * \param rctx the current context if you have one, or rscreen->aux_context * if you don't. */ bool r600_texture_disable_dcc(struct r600_common_context *rctx, struct r600_texture *rtex) { struct r600_common_screen *rscreen = rctx->screen; if (!r600_can_disable_dcc(rtex)) return false; if (&rctx->b == rscreen->aux_context) mtx_lock(&rscreen->aux_context_lock); /* Decompress DCC. */ rctx->decompress_dcc(&rctx->b, rtex); rctx->b.flush(&rctx->b, NULL, 0); if (&rctx->b == rscreen->aux_context) mtx_unlock(&rscreen->aux_context_lock); return r600_texture_discard_dcc(rscreen, rtex); } static void r600_degrade_tile_mode_to_linear(struct r600_common_context *rctx, struct r600_texture *rtex, bool invalidate_storage) { struct pipe_screen *screen = rctx->b.screen; struct r600_texture *new_tex; struct pipe_resource templ = rtex->resource.b.b; unsigned i; templ.bind |= PIPE_BIND_LINEAR; /* r600g doesn't react to dirty_tex_descriptor_counter */ if (rctx->chip_class < SI) return; if (rtex->resource.b.is_shared || rtex->surface.is_linear) return; /* This fails with MSAA, depth, and compressed textures. */ if (r600_choose_tiling(rctx->screen, &templ) != RADEON_SURF_MODE_LINEAR_ALIGNED) return; new_tex = (struct r600_texture*)screen->resource_create(screen, &templ); if (!new_tex) return; /* Copy the pixels to the new texture. */ if (!invalidate_storage) { for (i = 0; i <= templ.last_level; i++) { struct pipe_box box; u_box_3d(0, 0, 0, u_minify(templ.width0, i), u_minify(templ.height0, i), util_max_layer(&templ, i) + 1, &box); rctx->dma_copy(&rctx->b, &new_tex->resource.b.b, i, 0, 0, 0, &rtex->resource.b.b, i, &box); } } r600_texture_discard_cmask(rctx->screen, rtex); r600_texture_discard_dcc(rctx->screen, rtex); /* Replace the structure fields of rtex. */ rtex->resource.b.b.bind = templ.bind; pb_reference(&rtex->resource.buf, new_tex->resource.buf); rtex->resource.gpu_address = new_tex->resource.gpu_address; rtex->resource.vram_usage = new_tex->resource.vram_usage; rtex->resource.gart_usage = new_tex->resource.gart_usage; rtex->resource.bo_size = new_tex->resource.bo_size; rtex->resource.bo_alignment = new_tex->resource.bo_alignment; rtex->resource.domains = new_tex->resource.domains; rtex->resource.flags = new_tex->resource.flags; rtex->size = new_tex->size; rtex->surface = new_tex->surface; rtex->non_disp_tiling = new_tex->non_disp_tiling; rtex->cb_color_info = new_tex->cb_color_info; rtex->cmask = new_tex->cmask; /* needed even without CMASK */ assert(!rtex->htile_buffer); assert(!rtex->cmask.size); assert(!rtex->fmask.size); assert(!rtex->dcc_offset); assert(!rtex->is_depth); r600_texture_reference(&new_tex, NULL); p_atomic_inc(&rctx->screen->dirty_tex_counter); } static boolean r600_texture_get_handle(struct pipe_screen* screen, struct pipe_context *ctx, struct pipe_resource *resource, struct winsys_handle *whandle, unsigned usage) { struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; struct r600_common_context *rctx; struct r600_resource *res = (struct r600_resource*)resource; struct r600_texture *rtex = (struct r600_texture*)resource; struct radeon_bo_metadata metadata; bool update_metadata = false; unsigned stride, offset, slice_size; ctx = threaded_context_unwrap_sync(ctx); rctx = (struct r600_common_context*)(ctx ? ctx : rscreen->aux_context); /* This is not supported now, but it might be required for OpenCL * interop in the future. */ if (resource->target != PIPE_BUFFER && (resource->nr_samples > 1 || rtex->is_depth)) return false; if (resource->target != PIPE_BUFFER) { /* Since shader image stores don't support DCC on VI, * disable it for external clients that want write * access. */ if (usage & PIPE_HANDLE_USAGE_WRITE && rtex->dcc_offset) { if (r600_texture_disable_dcc(rctx, rtex)) update_metadata = true; } if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) && (rtex->cmask.size || rtex->dcc_offset)) { /* Eliminate fast clear (both CMASK and DCC) */ r600_eliminate_fast_color_clear(rctx, rtex); /* Disable CMASK if flush_resource isn't going * to be called. */ if (rtex->cmask.size) r600_texture_discard_cmask(rscreen, rtex); } /* Set metadata. */ if (!res->b.is_shared || update_metadata) { r600_texture_init_metadata(rscreen, rtex, &metadata); if (rscreen->query_opaque_metadata) rscreen->query_opaque_metadata(rscreen, rtex, &metadata); rscreen->ws->buffer_set_metadata(res->buf, &metadata); } } if (res->b.is_shared) { /* USAGE_EXPLICIT_FLUSH must be cleared if at least one user * doesn't set it. */ res->external_usage |= usage & ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH; if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH)) res->external_usage &= ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH; } else { res->b.is_shared = true; res->external_usage = usage; } if (rscreen->chip_class >= GFX9) { offset = rtex->surface.u.gfx9.surf_offset; stride = rtex->surface.u.gfx9.surf_pitch * rtex->surface.bpe; slice_size = rtex->surface.u.gfx9.surf_slice_size; } else { offset = rtex->surface.u.legacy.level[0].offset; stride = rtex->surface.u.legacy.level[0].nblk_x * rtex->surface.bpe; slice_size = rtex->surface.u.legacy.level[0].slice_size; } return rscreen->ws->buffer_get_handle(res->buf, stride, offset, slice_size, whandle); } static void r600_texture_destroy(struct pipe_screen *screen, struct pipe_resource *ptex) { struct r600_texture *rtex = (struct r600_texture*)ptex; struct r600_resource *resource = &rtex->resource; r600_texture_reference(&rtex->flushed_depth_texture, NULL); r600_resource_reference(&rtex->htile_buffer, NULL); if (rtex->cmask_buffer != &rtex->resource) { r600_resource_reference(&rtex->cmask_buffer, NULL); } pb_reference(&resource->buf, NULL); r600_resource_reference(&rtex->dcc_separate_buffer, NULL); r600_resource_reference(&rtex->last_dcc_separate_buffer, NULL); FREE(rtex); } static const struct u_resource_vtbl r600_texture_vtbl; /* The number of samples can be specified independently of the texture. */ void r600_texture_get_fmask_info(struct r600_common_screen *rscreen, struct r600_texture *rtex, unsigned nr_samples, struct r600_fmask_info *out) { /* FMASK is allocated like an ordinary texture. */ struct pipe_resource templ = rtex->resource.b.b; struct radeon_surf fmask = {}; unsigned flags, bpe; memset(out, 0, sizeof(*out)); if (rscreen->chip_class >= GFX9) { out->alignment = rtex->surface.u.gfx9.fmask_alignment; out->size = rtex->surface.u.gfx9.fmask_size; return; } templ.nr_samples = 1; flags = rtex->surface.flags | RADEON_SURF_FMASK; if (rscreen->chip_class <= CAYMAN) { /* Use the same parameters and tile mode. */ fmask.u.legacy.bankw = rtex->surface.u.legacy.bankw; fmask.u.legacy.bankh = rtex->surface.u.legacy.bankh; fmask.u.legacy.mtilea = rtex->surface.u.legacy.mtilea; fmask.u.legacy.tile_split = rtex->surface.u.legacy.tile_split; if (nr_samples <= 4) fmask.u.legacy.bankh = 4; } switch (nr_samples) { case 2: case 4: bpe = 1; break; case 8: bpe = 4; break; default: R600_ERR("Invalid sample count for FMASK allocation.\n"); return; } /* Overallocate FMASK on R600-R700 to fix colorbuffer corruption. * This can be fixed by writing a separate FMASK allocator specifically * for R600-R700 asics. */ if (rscreen->chip_class <= R700) { bpe *= 2; } if (rscreen->ws->surface_init(rscreen->ws, &templ, flags, bpe, RADEON_SURF_MODE_2D, &fmask)) { R600_ERR("Got error in surface_init while allocating FMASK.\n"); return; } assert(fmask.u.legacy.level[0].mode == RADEON_SURF_MODE_2D); out->slice_tile_max = (fmask.u.legacy.level[0].nblk_x * fmask.u.legacy.level[0].nblk_y) / 64; if (out->slice_tile_max) out->slice_tile_max -= 1; out->tile_mode_index = fmask.u.legacy.tiling_index[0]; out->pitch_in_pixels = fmask.u.legacy.level[0].nblk_x; out->bank_height = fmask.u.legacy.bankh; out->alignment = MAX2(256, fmask.surf_alignment); out->size = fmask.surf_size; } static void r600_texture_allocate_fmask(struct r600_common_screen *rscreen, struct r600_texture *rtex) { r600_texture_get_fmask_info(rscreen, rtex, rtex->resource.b.b.nr_samples, &rtex->fmask); rtex->fmask.offset = align64(rtex->size, rtex->fmask.alignment); rtex->size = rtex->fmask.offset + rtex->fmask.size; } void r600_texture_get_cmask_info(struct r600_common_screen *rscreen, struct r600_texture *rtex, struct r600_cmask_info *out) { unsigned cmask_tile_width = 8; unsigned cmask_tile_height = 8; unsigned cmask_tile_elements = cmask_tile_width * cmask_tile_height; unsigned element_bits = 4; unsigned cmask_cache_bits = 1024; unsigned num_pipes = rscreen->info.num_tile_pipes; unsigned pipe_interleave_bytes = rscreen->info.pipe_interleave_bytes; unsigned elements_per_macro_tile = (cmask_cache_bits / element_bits) * num_pipes; unsigned pixels_per_macro_tile = elements_per_macro_tile * cmask_tile_elements; unsigned sqrt_pixels_per_macro_tile = sqrt(pixels_per_macro_tile); unsigned macro_tile_width = util_next_power_of_two(sqrt_pixels_per_macro_tile); unsigned macro_tile_height = pixels_per_macro_tile / macro_tile_width; unsigned pitch_elements = align(rtex->resource.b.b.width0, macro_tile_width); unsigned height = align(rtex->resource.b.b.height0, macro_tile_height); unsigned base_align = num_pipes * pipe_interleave_bytes; unsigned slice_bytes = ((pitch_elements * height * element_bits + 7) / 8) / cmask_tile_elements; assert(macro_tile_width % 128 == 0); assert(macro_tile_height % 128 == 0); out->slice_tile_max = ((pitch_elements * height) / (128*128)) - 1; out->alignment = MAX2(256, base_align); out->size = (util_max_layer(&rtex->resource.b.b, 0) + 1) * align(slice_bytes, base_align); } static void si_texture_get_cmask_info(struct r600_common_screen *rscreen, struct r600_texture *rtex, struct r600_cmask_info *out) { unsigned pipe_interleave_bytes = rscreen->info.pipe_interleave_bytes; unsigned num_pipes = rscreen->info.num_tile_pipes; unsigned cl_width, cl_height; if (rscreen->chip_class >= GFX9) { out->alignment = rtex->surface.u.gfx9.cmask_alignment; out->size = rtex->surface.u.gfx9.cmask_size; return; } switch (num_pipes) { case 2: cl_width = 32; cl_height = 16; break; case 4: cl_width = 32; cl_height = 32; break; case 8: cl_width = 64; cl_height = 32; break; case 16: /* Hawaii */ cl_width = 64; cl_height = 64; break; default: assert(0); return; } unsigned base_align = num_pipes * pipe_interleave_bytes; unsigned width = align(rtex->resource.b.b.width0, cl_width*8); unsigned height = align(rtex->resource.b.b.height0, cl_height*8); unsigned slice_elements = (width * height) / (8*8); /* Each element of CMASK is a nibble. */ unsigned slice_bytes = slice_elements / 2; out->slice_tile_max = (width * height) / (128*128); if (out->slice_tile_max) out->slice_tile_max -= 1; out->alignment = MAX2(256, base_align); out->size = (util_max_layer(&rtex->resource.b.b, 0) + 1) * align(slice_bytes, base_align); } static void r600_texture_allocate_cmask(struct r600_common_screen *rscreen, struct r600_texture *rtex) { if (rscreen->chip_class >= SI) { si_texture_get_cmask_info(rscreen, rtex, &rtex->cmask); } else { r600_texture_get_cmask_info(rscreen, rtex, &rtex->cmask); } rtex->cmask.offset = align64(rtex->size, rtex->cmask.alignment); rtex->size = rtex->cmask.offset + rtex->cmask.size; if (rscreen->chip_class >= SI) rtex->cb_color_info |= SI_S_028C70_FAST_CLEAR(1); else rtex->cb_color_info |= EG_S_028C70_FAST_CLEAR(1); } static void r600_texture_alloc_cmask_separate(struct r600_common_screen *rscreen, struct r600_texture *rtex) { if (rtex->cmask_buffer) return; assert(rtex->cmask.size == 0); if (rscreen->chip_class >= SI) { si_texture_get_cmask_info(rscreen, rtex, &rtex->cmask); } else { r600_texture_get_cmask_info(rscreen, rtex, &rtex->cmask); } rtex->cmask_buffer = (struct r600_resource *) r600_aligned_buffer_create(&rscreen->b, R600_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, rtex->cmask.size, rtex->cmask.alignment); if (rtex->cmask_buffer == NULL) { rtex->cmask.size = 0; return; } /* update colorbuffer state bits */ rtex->cmask.base_address_reg = rtex->cmask_buffer->gpu_address >> 8; if (rscreen->chip_class >= SI) rtex->cb_color_info |= SI_S_028C70_FAST_CLEAR(1); else rtex->cb_color_info |= EG_S_028C70_FAST_CLEAR(1); p_atomic_inc(&rscreen->compressed_colortex_counter); } static void r600_texture_get_htile_size(struct r600_common_screen *rscreen, struct r600_texture *rtex) { unsigned cl_width, cl_height, width, height; unsigned slice_elements, slice_bytes, pipe_interleave_bytes, base_align; unsigned num_pipes = rscreen->info.num_tile_pipes; assert(rscreen->chip_class <= VI); rtex->surface.htile_size = 0; if (rscreen->chip_class <= EVERGREEN && rscreen->info.drm_major == 2 && rscreen->info.drm_minor < 26) return; /* HW bug on R6xx. */ if (rscreen->chip_class == R600 && (rtex->resource.b.b.width0 > 7680 || rtex->resource.b.b.height0 > 7680)) return; /* HTILE is broken with 1D tiling on old kernels and CIK. */ if (rscreen->chip_class >= CIK && rtex->surface.u.legacy.level[0].mode == RADEON_SURF_MODE_1D && rscreen->info.drm_major == 2 && rscreen->info.drm_minor < 38) return; /* Overalign HTILE on P2 configs to work around GPU hangs in * piglit/depthstencil-render-miplevels 585. * * This has been confirmed to help Kabini & Stoney, where the hangs * are always reproducible. I think I have seen the test hang * on Carrizo too, though it was very rare there. */ if (rscreen->chip_class >= CIK && num_pipes < 4) num_pipes = 4; switch (num_pipes) { case 1: cl_width = 32; cl_height = 16; break; case 2: cl_width = 32; cl_height = 32; break; case 4: cl_width = 64; cl_height = 32; break; case 8: cl_width = 64; cl_height = 64; break; case 16: cl_width = 128; cl_height = 64; break; default: assert(0); return; } width = align(rtex->resource.b.b.width0, cl_width * 8); height = align(rtex->resource.b.b.height0, cl_height * 8); slice_elements = (width * height) / (8 * 8); slice_bytes = slice_elements * 4; pipe_interleave_bytes = rscreen->info.pipe_interleave_bytes; base_align = num_pipes * pipe_interleave_bytes; rtex->surface.htile_alignment = base_align; rtex->surface.htile_size = (util_max_layer(&rtex->resource.b.b, 0) + 1) * align(slice_bytes, base_align); } static void r600_texture_allocate_htile(struct r600_common_screen *rscreen, struct r600_texture *rtex) { uint32_t clear_value; if (rscreen->chip_class >= GFX9 || rtex->tc_compatible_htile) { clear_value = 0x0000030F; } else { r600_texture_get_htile_size(rscreen, rtex); clear_value = 0; } if (!rtex->surface.htile_size) return; rtex->htile_buffer = (struct r600_resource*) r600_aligned_buffer_create(&rscreen->b, R600_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, rtex->surface.htile_size, rtex->surface.htile_alignment); if (rtex->htile_buffer == NULL) { /* this is not a fatal error as we can still keep rendering * without htile buffer */ R600_ERR("Failed to create buffer object for htile buffer.\n"); } else { r600_screen_clear_buffer(rscreen, &rtex->htile_buffer->b.b, 0, rtex->surface.htile_size, clear_value); } } void r600_print_texture_info(struct r600_common_screen *rscreen, struct r600_texture *rtex, FILE *f) { int i; /* Common parameters. */ fprintf(f, " Info: npix_x=%u, npix_y=%u, npix_z=%u, blk_w=%u, " "blk_h=%u, array_size=%u, last_level=%u, " "bpe=%u, nsamples=%u, flags=0x%x, %s\n", rtex->resource.b.b.width0, rtex->resource.b.b.height0, rtex->resource.b.b.depth0, rtex->surface.blk_w, rtex->surface.blk_h, rtex->resource.b.b.array_size, rtex->resource.b.b.last_level, rtex->surface.bpe, rtex->resource.b.b.nr_samples, rtex->surface.flags, util_format_short_name(rtex->resource.b.b.format)); if (rscreen->chip_class >= GFX9) { fprintf(f, " Surf: size=%"PRIu64", slice_size=%"PRIu64", " "alignment=%u, swmode=%u, epitch=%u, pitch=%u\n", rtex->surface.surf_size, rtex->surface.u.gfx9.surf_slice_size, rtex->surface.surf_alignment, rtex->surface.u.gfx9.surf.swizzle_mode, rtex->surface.u.gfx9.surf.epitch, rtex->surface.u.gfx9.surf_pitch); if (rtex->fmask.size) { fprintf(f, " FMASK: offset=%"PRIu64", size=%"PRIu64", " "alignment=%u, swmode=%u, epitch=%u\n", rtex->fmask.offset, rtex->surface.u.gfx9.fmask_size, rtex->surface.u.gfx9.fmask_alignment, rtex->surface.u.gfx9.fmask.swizzle_mode, rtex->surface.u.gfx9.fmask.epitch); } if (rtex->cmask.size) { fprintf(f, " CMask: offset=%"PRIu64", size=%"PRIu64", " "alignment=%u, rb_aligned=%u, pipe_aligned=%u\n", rtex->cmask.offset, rtex->surface.u.gfx9.cmask_size, rtex->surface.u.gfx9.cmask_alignment, rtex->surface.u.gfx9.cmask.rb_aligned, rtex->surface.u.gfx9.cmask.pipe_aligned); } if (rtex->htile_buffer) { fprintf(f, " HTile: size=%u, alignment=%u, " "rb_aligned=%u, pipe_aligned=%u\n", rtex->htile_buffer->b.b.width0, rtex->htile_buffer->buf->alignment, rtex->surface.u.gfx9.htile.rb_aligned, rtex->surface.u.gfx9.htile.pipe_aligned); } if (rtex->dcc_offset) { fprintf(f, " DCC: offset=%"PRIu64", size=%"PRIu64", " "alignment=%u, pitch_max=%u, num_dcc_levels=%u\n", rtex->dcc_offset, rtex->surface.dcc_size, rtex->surface.dcc_alignment, rtex->surface.u.gfx9.dcc_pitch_max, rtex->surface.num_dcc_levels); } if (rtex->surface.u.gfx9.stencil_offset) { fprintf(f, " Stencil: offset=%"PRIu64", swmode=%u, epitch=%u\n", rtex->surface.u.gfx9.stencil_offset, rtex->surface.u.gfx9.stencil.swizzle_mode, rtex->surface.u.gfx9.stencil.epitch); } return; } fprintf(f, " Layout: size=%"PRIu64", alignment=%u, bankw=%u, " "bankh=%u, nbanks=%u, mtilea=%u, tilesplit=%u, pipeconfig=%u, scanout=%u\n", rtex->surface.surf_size, rtex->surface.surf_alignment, rtex->surface.u.legacy.bankw, rtex->surface.u.legacy.bankh, rtex->surface.u.legacy.num_banks, rtex->surface.u.legacy.mtilea, rtex->surface.u.legacy.tile_split, rtex->surface.u.legacy.pipe_config, (rtex->surface.flags & RADEON_SURF_SCANOUT) != 0); if (rtex->fmask.size) fprintf(f, " FMask: offset=%"PRIu64", size=%"PRIu64", alignment=%u, pitch_in_pixels=%u, " "bankh=%u, slice_tile_max=%u, tile_mode_index=%u\n", rtex->fmask.offset, rtex->fmask.size, rtex->fmask.alignment, rtex->fmask.pitch_in_pixels, rtex->fmask.bank_height, rtex->fmask.slice_tile_max, rtex->fmask.tile_mode_index); if (rtex->cmask.size) fprintf(f, " CMask: offset=%"PRIu64", size=%"PRIu64", alignment=%u, " "slice_tile_max=%u\n", rtex->cmask.offset, rtex->cmask.size, rtex->cmask.alignment, rtex->cmask.slice_tile_max); if (rtex->htile_buffer) fprintf(f, " HTile: size=%u, alignment=%u, TC_compatible = %u\n", rtex->htile_buffer->b.b.width0, rtex->htile_buffer->buf->alignment, rtex->tc_compatible_htile); if (rtex->dcc_offset) { fprintf(f, " DCC: offset=%"PRIu64", size=%"PRIu64", alignment=%u\n", rtex->dcc_offset, rtex->surface.dcc_size, rtex->surface.dcc_alignment); for (i = 0; i <= rtex->resource.b.b.last_level; i++) fprintf(f, " DCCLevel[%i]: enabled=%u, offset=%"PRIu64", " "fast_clear_size=%"PRIu64"\n", i, i < rtex->surface.num_dcc_levels, rtex->surface.u.legacy.level[i].dcc_offset, rtex->surface.u.legacy.level[i].dcc_fast_clear_size); } for (i = 0; i <= rtex->resource.b.b.last_level; i++) fprintf(f, " Level[%i]: offset=%"PRIu64", slice_size=%"PRIu64", " "npix_x=%u, npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, " "mode=%u, tiling_index = %u\n", i, rtex->surface.u.legacy.level[i].offset, rtex->surface.u.legacy.level[i].slice_size, u_minify(rtex->resource.b.b.width0, i), u_minify(rtex->resource.b.b.height0, i), u_minify(rtex->resource.b.b.depth0, i), rtex->surface.u.legacy.level[i].nblk_x, rtex->surface.u.legacy.level[i].nblk_y, rtex->surface.u.legacy.level[i].mode, rtex->surface.u.legacy.tiling_index[i]); if (rtex->surface.flags & RADEON_SURF_SBUFFER) { fprintf(f, " StencilLayout: tilesplit=%u\n", rtex->surface.u.legacy.stencil_tile_split); for (i = 0; i <= rtex->resource.b.b.last_level; i++) { fprintf(f, " StencilLevel[%i]: offset=%"PRIu64", " "slice_size=%"PRIu64", npix_x=%u, " "npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, " "mode=%u, tiling_index = %u\n", i, rtex->surface.u.legacy.stencil_level[i].offset, rtex->surface.u.legacy.stencil_level[i].slice_size, u_minify(rtex->resource.b.b.width0, i), u_minify(rtex->resource.b.b.height0, i), u_minify(rtex->resource.b.b.depth0, i), rtex->surface.u.legacy.stencil_level[i].nblk_x, rtex->surface.u.legacy.stencil_level[i].nblk_y, rtex->surface.u.legacy.stencil_level[i].mode, rtex->surface.u.legacy.stencil_tiling_index[i]); } } } /* Common processing for r600_texture_create and r600_texture_from_handle */ static struct r600_texture * r600_texture_create_object(struct pipe_screen *screen, const struct pipe_resource *base, struct pb_buffer *buf, struct radeon_surf *surface) { struct r600_texture *rtex; struct r600_resource *resource; struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; rtex = CALLOC_STRUCT(r600_texture); if (!rtex) return NULL; resource = &rtex->resource; resource->b.b = *base; resource->b.b.next = NULL; resource->b.vtbl = &r600_texture_vtbl; pipe_reference_init(&resource->b.b.reference, 1); resource->b.b.screen = screen; /* don't include stencil-only formats which we don't support for rendering */ rtex->is_depth = util_format_has_depth(util_format_description(rtex->resource.b.b.format)); rtex->surface = *surface; rtex->size = rtex->surface.surf_size; rtex->tc_compatible_htile = rtex->surface.htile_size != 0 && (rtex->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE); /* TC-compatible HTILE: * - VI only supports Z32_FLOAT. * - GFX9 only supports Z32_FLOAT and Z16_UNORM. */ if (rtex->tc_compatible_htile) { if (rscreen->chip_class >= GFX9 && base->format == PIPE_FORMAT_Z16_UNORM) rtex->db_render_format = base->format; else rtex->db_render_format = PIPE_FORMAT_Z32_FLOAT; } else { rtex->db_render_format = base->format; } /* Tiled depth textures utilize the non-displayable tile order. * This must be done after r600_setup_surface. * Applies to R600-Cayman. */ rtex->non_disp_tiling = rtex->is_depth && rtex->surface.u.legacy.level[0].mode >= RADEON_SURF_MODE_1D; /* Applies to GCN. */ rtex->last_msaa_resolve_target_micro_mode = rtex->surface.micro_tile_mode; /* Disable separate DCC at the beginning. DRI2 doesn't reuse buffers * between frames, so the only thing that can enable separate DCC * with DRI2 is multiple slow clears within a frame. */ rtex->ps_draw_ratio = 0; if (rtex->is_depth) { if (base->flags & (R600_RESOURCE_FLAG_TRANSFER | R600_RESOURCE_FLAG_FLUSHED_DEPTH) || rscreen->chip_class >= EVERGREEN) { if (rscreen->chip_class >= GFX9) { rtex->can_sample_z = true; rtex->can_sample_s = true; } else { rtex->can_sample_z = !rtex->surface.u.legacy.depth_adjusted; rtex->can_sample_s = !rtex->surface.u.legacy.stencil_adjusted; } } else { if (rtex->resource.b.b.nr_samples <= 1 && (rtex->resource.b.b.format == PIPE_FORMAT_Z16_UNORM || rtex->resource.b.b.format == PIPE_FORMAT_Z32_FLOAT)) rtex->can_sample_z = true; } if (!(base->flags & (R600_RESOURCE_FLAG_TRANSFER | R600_RESOURCE_FLAG_FLUSHED_DEPTH))) { rtex->db_compatible = true; if (!(rscreen->debug_flags & DBG_NO_HYPERZ)) r600_texture_allocate_htile(rscreen, rtex); } } else { if (base->nr_samples > 1) { if (!buf) { r600_texture_allocate_fmask(rscreen, rtex); r600_texture_allocate_cmask(rscreen, rtex); rtex->cmask_buffer = &rtex->resource; } if (!rtex->fmask.size || !rtex->cmask.size) { FREE(rtex); return NULL; } } /* Shared textures must always set up DCC here. * If it's not present, it will be disabled by * apply_opaque_metadata later. */ if (rtex->surface.dcc_size && (buf || !(rscreen->debug_flags & DBG_NO_DCC)) && !(rtex->surface.flags & RADEON_SURF_SCANOUT)) { /* Reserve space for the DCC buffer. */ rtex->dcc_offset = align64(rtex->size, rtex->surface.dcc_alignment); rtex->size = rtex->dcc_offset + rtex->surface.dcc_size; } } /* Now create the backing buffer. */ if (!buf) { r600_init_resource_fields(rscreen, resource, rtex->size, rtex->surface.surf_alignment); resource->flags |= RADEON_FLAG_HANDLE; if (!r600_alloc_resource(rscreen, resource)) { FREE(rtex); return NULL; } } else { resource->buf = buf; resource->gpu_address = rscreen->ws->buffer_get_virtual_address(resource->buf); resource->bo_size = buf->size; resource->bo_alignment = buf->alignment; resource->domains = rscreen->ws->buffer_get_initial_domain(resource->buf); if (resource->domains & RADEON_DOMAIN_VRAM) resource->vram_usage = buf->size; else if (resource->domains & RADEON_DOMAIN_GTT) resource->gart_usage = buf->size; } if (rtex->cmask.size) { /* Initialize the cmask to 0xCC (= compressed state). */ r600_screen_clear_buffer(rscreen, &rtex->cmask_buffer->b.b, rtex->cmask.offset, rtex->cmask.size, 0xCCCCCCCC); } /* Initialize DCC only if the texture is not being imported. */ if (!buf && rtex->dcc_offset) { r600_screen_clear_buffer(rscreen, &rtex->resource.b.b, rtex->dcc_offset, rtex->surface.dcc_size, 0xFFFFFFFF); } /* Initialize the CMASK base register value. */ rtex->cmask.base_address_reg = (rtex->resource.gpu_address + rtex->cmask.offset) >> 8; if (rscreen->debug_flags & DBG_VM) { fprintf(stderr, "VM start=0x%"PRIX64" end=0x%"PRIX64" | Texture %ix%ix%i, %i levels, %i samples, %s\n", rtex->resource.gpu_address, rtex->resource.gpu_address + rtex->resource.buf->size, base->width0, base->height0, util_max_layer(base, 0)+1, base->last_level+1, base->nr_samples ? base->nr_samples : 1, util_format_short_name(base->format)); } if (rscreen->debug_flags & DBG_TEX) { puts("Texture:"); r600_print_texture_info(rscreen, rtex, stdout); fflush(stdout); } return rtex; } static enum radeon_surf_mode r600_choose_tiling(struct r600_common_screen *rscreen, const struct pipe_resource *templ) { const struct util_format_description *desc = util_format_description(templ->format); bool force_tiling = templ->flags & R600_RESOURCE_FLAG_FORCE_TILING; bool is_depth_stencil = util_format_is_depth_or_stencil(templ->format) && !(templ->flags & R600_RESOURCE_FLAG_FLUSHED_DEPTH); /* MSAA resources must be 2D tiled. */ if (templ->nr_samples > 1) return RADEON_SURF_MODE_2D; /* Transfer resources should be linear. */ if (templ->flags & R600_RESOURCE_FLAG_TRANSFER) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Avoid Z/S decompress blits by forcing TC-compatible HTILE on VI, * which requires 2D tiling. */ if (rscreen->chip_class == VI && is_depth_stencil && (templ->flags & PIPE_RESOURCE_FLAG_TEXTURING_MORE_LIKELY)) return RADEON_SURF_MODE_2D; /* r600g: force tiling on TEXTURE_2D and TEXTURE_3D compute resources. */ if (rscreen->chip_class >= R600 && rscreen->chip_class <= CAYMAN && (templ->bind & PIPE_BIND_COMPUTE_RESOURCE) && (templ->target == PIPE_TEXTURE_2D || templ->target == PIPE_TEXTURE_3D)) force_tiling = true; /* Handle common candidates for the linear mode. * Compressed textures and DB surfaces must always be tiled. */ if (!force_tiling && !is_depth_stencil && !util_format_is_compressed(templ->format)) { if (rscreen->debug_flags & DBG_NO_TILING) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Tiling doesn't work with the 422 (SUBSAMPLED) formats on R600+. */ if (desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Cursors are linear on SI. * (XXX double-check, maybe also use RADEON_SURF_SCANOUT) */ if (rscreen->chip_class >= SI && (templ->bind & PIPE_BIND_CURSOR)) return RADEON_SURF_MODE_LINEAR_ALIGNED; if (templ->bind & PIPE_BIND_LINEAR) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Textures with a very small height are recommended to be linear. */ if (templ->target == PIPE_TEXTURE_1D || templ->target == PIPE_TEXTURE_1D_ARRAY || /* Only very thin and long 2D textures should benefit from * linear_aligned. */ (templ->width0 > 8 && templ->height0 <= 2)) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Textures likely to be mapped often. */ if (templ->usage == PIPE_USAGE_STAGING || templ->usage == PIPE_USAGE_STREAM) return RADEON_SURF_MODE_LINEAR_ALIGNED; } /* Make small textures 1D tiled. */ if (templ->width0 <= 16 || templ->height0 <= 16 || (rscreen->debug_flags & DBG_NO_2D_TILING)) return RADEON_SURF_MODE_1D; /* The allocator will switch to 1D if needed. */ return RADEON_SURF_MODE_2D; } struct pipe_resource *r600_texture_create(struct pipe_screen *screen, const struct pipe_resource *templ) { struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; struct radeon_surf surface = {0}; bool is_flushed_depth = templ->flags & R600_RESOURCE_FLAG_FLUSHED_DEPTH; bool tc_compatible_htile = rscreen->chip_class >= VI && (templ->flags & PIPE_RESOURCE_FLAG_TEXTURING_MORE_LIKELY) && !(rscreen->debug_flags & DBG_NO_HYPERZ) && !is_flushed_depth && templ->nr_samples <= 1 && /* TC-compat HTILE is less efficient with MSAA */ util_format_is_depth_or_stencil(templ->format); int r; r = r600_init_surface(rscreen, &surface, templ, r600_choose_tiling(rscreen, templ), 0, 0, false, false, is_flushed_depth, tc_compatible_htile); if (r) { return NULL; } return (struct pipe_resource *) r600_texture_create_object(screen, templ, NULL, &surface); } static struct pipe_resource *r600_texture_from_handle(struct pipe_screen *screen, const struct pipe_resource *templ, struct winsys_handle *whandle, unsigned usage) { struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; struct pb_buffer *buf = NULL; unsigned stride = 0, offset = 0; unsigned array_mode; struct radeon_surf surface; int r; struct radeon_bo_metadata metadata = {}; struct r600_texture *rtex; bool is_scanout; /* Support only 2D textures without mipmaps */ if ((templ->target != PIPE_TEXTURE_2D && templ->target != PIPE_TEXTURE_RECT) || templ->depth0 != 1 || templ->last_level != 0) return NULL; buf = rscreen->ws->buffer_from_handle(rscreen->ws, whandle, &stride, &offset); if (!buf) return NULL; rscreen->ws->buffer_get_metadata(buf, &metadata); if (rscreen->chip_class >= GFX9) { if (metadata.u.gfx9.swizzle_mode > 0) array_mode = RADEON_SURF_MODE_2D; else array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED; is_scanout = metadata.u.gfx9.swizzle_mode == 0 || metadata.u.gfx9.swizzle_mode % 4 == 2; } else { surface.u.legacy.pipe_config = metadata.u.legacy.pipe_config; surface.u.legacy.bankw = metadata.u.legacy.bankw; surface.u.legacy.bankh = metadata.u.legacy.bankh; surface.u.legacy.tile_split = metadata.u.legacy.tile_split; surface.u.legacy.mtilea = metadata.u.legacy.mtilea; surface.u.legacy.num_banks = metadata.u.legacy.num_banks; if (metadata.u.legacy.macrotile == RADEON_LAYOUT_TILED) array_mode = RADEON_SURF_MODE_2D; else if (metadata.u.legacy.microtile == RADEON_LAYOUT_TILED) array_mode = RADEON_SURF_MODE_1D; else array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED; is_scanout = metadata.u.legacy.scanout; } r = r600_init_surface(rscreen, &surface, templ, array_mode, stride, offset, true, is_scanout, false, false); if (r) { return NULL; } rtex = r600_texture_create_object(screen, templ, buf, &surface); if (!rtex) return NULL; rtex->resource.b.is_shared = true; rtex->resource.external_usage = usage; if (rscreen->apply_opaque_metadata) rscreen->apply_opaque_metadata(rscreen, rtex, &metadata); /* Validate that addrlib arrived at the same surface parameters. */ if (rscreen->chip_class >= GFX9) { assert(metadata.u.gfx9.swizzle_mode == surface.u.gfx9.surf.swizzle_mode); } return &rtex->resource.b.b; } bool r600_init_flushed_depth_texture(struct pipe_context *ctx, struct pipe_resource *texture, struct r600_texture **staging) { struct r600_texture *rtex = (struct r600_texture*)texture; struct pipe_resource resource; struct r600_texture **flushed_depth_texture = staging ? staging : &rtex->flushed_depth_texture; enum pipe_format pipe_format = texture->format; if (!staging) { if (rtex->flushed_depth_texture) return true; /* it's ready */ if (!rtex->can_sample_z && rtex->can_sample_s) { switch (pipe_format) { case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT: /* Save memory by not allocating the S plane. */ pipe_format = PIPE_FORMAT_Z32_FLOAT; break; case PIPE_FORMAT_Z24_UNORM_S8_UINT: case PIPE_FORMAT_S8_UINT_Z24_UNORM: /* Save memory bandwidth by not copying the * stencil part during flush. * * This potentially increases memory bandwidth * if an application uses both Z and S texturing * simultaneously (a flushed Z24S8 texture * would be stored compactly), but how often * does that really happen? */ pipe_format = PIPE_FORMAT_Z24X8_UNORM; break; default:; } } else if (!rtex->can_sample_s && rtex->can_sample_z) { assert(util_format_has_stencil(util_format_description(pipe_format))); /* DB->CB copies to an 8bpp surface don't work. */ pipe_format = PIPE_FORMAT_X24S8_UINT; } } memset(&resource, 0, sizeof(resource)); resource.target = texture->target; resource.format = pipe_format; resource.width0 = texture->width0; resource.height0 = texture->height0; resource.depth0 = texture->depth0; resource.array_size = texture->array_size; resource.last_level = texture->last_level; resource.nr_samples = texture->nr_samples; resource.usage = staging ? PIPE_USAGE_STAGING : PIPE_USAGE_DEFAULT; resource.bind = texture->bind & ~PIPE_BIND_DEPTH_STENCIL; resource.flags = texture->flags | R600_RESOURCE_FLAG_FLUSHED_DEPTH; if (staging) resource.flags |= R600_RESOURCE_FLAG_TRANSFER; *flushed_depth_texture = (struct r600_texture *)ctx->screen->resource_create(ctx->screen, &resource); if (*flushed_depth_texture == NULL) { R600_ERR("failed to create temporary texture to hold flushed depth\n"); return false; } (*flushed_depth_texture)->non_disp_tiling = false; return true; } /** * Initialize the pipe_resource descriptor to be of the same size as the box, * which is supposed to hold a subregion of the texture "orig" at the given * mipmap level. */ static void r600_init_temp_resource_from_box(struct pipe_resource *res, struct pipe_resource *orig, const struct pipe_box *box, unsigned level, unsigned flags) { memset(res, 0, sizeof(*res)); res->format = orig->format; res->width0 = box->width; res->height0 = box->height; res->depth0 = 1; res->array_size = 1; res->usage = flags & R600_RESOURCE_FLAG_TRANSFER ? PIPE_USAGE_STAGING : PIPE_USAGE_DEFAULT; res->flags = flags; /* We must set the correct texture target and dimensions for a 3D box. */ if (box->depth > 1 && util_max_layer(orig, level) > 0) { res->target = PIPE_TEXTURE_2D_ARRAY; res->array_size = box->depth; } else { res->target = PIPE_TEXTURE_2D; } } static bool r600_can_invalidate_texture(struct r600_common_screen *rscreen, struct r600_texture *rtex, unsigned transfer_usage, const struct pipe_box *box) { /* r600g doesn't react to dirty_tex_descriptor_counter */ return rscreen->chip_class >= SI && !rtex->resource.b.is_shared && !(transfer_usage & PIPE_TRANSFER_READ) && rtex->resource.b.b.last_level == 0 && util_texrange_covers_whole_level(&rtex->resource.b.b, 0, box->x, box->y, box->z, box->width, box->height, box->depth); } static void r600_texture_invalidate_storage(struct r600_common_context *rctx, struct r600_texture *rtex) { struct r600_common_screen *rscreen = rctx->screen; /* There is no point in discarding depth and tiled buffers. */ assert(!rtex->is_depth); assert(rtex->surface.is_linear); /* Reallocate the buffer in the same pipe_resource. */ r600_alloc_resource(rscreen, &rtex->resource); /* Initialize the CMASK base address (needed even without CMASK). */ rtex->cmask.base_address_reg = (rtex->resource.gpu_address + rtex->cmask.offset) >> 8; p_atomic_inc(&rscreen->dirty_tex_counter); rctx->num_alloc_tex_transfer_bytes += rtex->size; } static void *r600_texture_transfer_map(struct pipe_context *ctx, struct pipe_resource *texture, unsigned level, unsigned usage, const struct pipe_box *box, struct pipe_transfer **ptransfer) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; struct r600_texture *rtex = (struct r600_texture*)texture; struct r600_transfer *trans; struct r600_resource *buf; unsigned offset = 0; char *map; bool use_staging_texture = false; assert(!(texture->flags & R600_RESOURCE_FLAG_TRANSFER)); assert(box->width && box->height && box->depth); /* Depth textures use staging unconditionally. */ if (!rtex->is_depth) { /* Degrade the tile mode if we get too many transfers on APUs. * On dGPUs, the staging texture is always faster. * Only count uploads that are at least 4x4 pixels large. */ if (!rctx->screen->info.has_dedicated_vram && level == 0 && box->width >= 4 && box->height >= 4 && p_atomic_inc_return(&rtex->num_level0_transfers) == 10) { bool can_invalidate = r600_can_invalidate_texture(rctx->screen, rtex, usage, box); r600_degrade_tile_mode_to_linear(rctx, rtex, can_invalidate); } /* Tiled textures need to be converted into a linear texture for CPU * access. The staging texture is always linear and is placed in GART. * * Reading from VRAM or GTT WC is slow, always use the staging * texture in this case. * * Use the staging texture for uploads if the underlying BO * is busy. */ if (!rtex->surface.is_linear) use_staging_texture = true; else if (usage & PIPE_TRANSFER_READ) use_staging_texture = rtex->resource.domains & RADEON_DOMAIN_VRAM || rtex->resource.flags & RADEON_FLAG_GTT_WC; /* Write & linear only: */ else if (r600_rings_is_buffer_referenced(rctx, rtex->resource.buf, RADEON_USAGE_READWRITE) || !rctx->ws->buffer_wait(rtex->resource.buf, 0, RADEON_USAGE_READWRITE)) { /* It's busy. */ if (r600_can_invalidate_texture(rctx->screen, rtex, usage, box)) r600_texture_invalidate_storage(rctx, rtex); else use_staging_texture = true; } } trans = CALLOC_STRUCT(r600_transfer); if (!trans) return NULL; pipe_resource_reference(&trans->b.b.resource, texture); trans->b.b.level = level; trans->b.b.usage = usage; trans->b.b.box = *box; if (rtex->is_depth) { struct r600_texture *staging_depth; if (rtex->resource.b.b.nr_samples > 1) { /* MSAA depth buffers need to be converted to single sample buffers. * * Mapping MSAA depth buffers can occur if ReadPixels is called * with a multisample GLX visual. * * First downsample the depth buffer to a temporary texture, * then decompress the temporary one to staging. * * Only the region being mapped is transfered. */ struct pipe_resource resource; r600_init_temp_resource_from_box(&resource, texture, box, level, 0); if (!r600_init_flushed_depth_texture(ctx, &resource, &staging_depth)) { R600_ERR("failed to create temporary texture to hold untiled copy\n"); FREE(trans); return NULL; } if (usage & PIPE_TRANSFER_READ) { struct pipe_resource *temp = ctx->screen->resource_create(ctx->screen, &resource); if (!temp) { R600_ERR("failed to create a temporary depth texture\n"); FREE(trans); return NULL; } r600_copy_region_with_blit(ctx, temp, 0, 0, 0, 0, texture, level, box); rctx->blit_decompress_depth(ctx, (struct r600_texture*)temp, staging_depth, 0, 0, 0, box->depth, 0, 0); pipe_resource_reference(&temp, NULL); } /* Just get the strides. */ r600_texture_get_offset(rctx->screen, staging_depth, level, NULL, &trans->b.b.stride, &trans->b.b.layer_stride); } else { /* XXX: only readback the rectangle which is being mapped? */ /* XXX: when discard is true, no need to read back from depth texture */ if (!r600_init_flushed_depth_texture(ctx, texture, &staging_depth)) { R600_ERR("failed to create temporary texture to hold untiled copy\n"); FREE(trans); return NULL; } rctx->blit_decompress_depth(ctx, rtex, staging_depth, level, level, box->z, box->z + box->depth - 1, 0, 0); offset = r600_texture_get_offset(rctx->screen, staging_depth, level, box, &trans->b.b.stride, &trans->b.b.layer_stride); } trans->staging = (struct r600_resource*)staging_depth; buf = trans->staging; } else if (use_staging_texture) { struct pipe_resource resource; struct r600_texture *staging; r600_init_temp_resource_from_box(&resource, texture, box, level, R600_RESOURCE_FLAG_TRANSFER); resource.usage = (usage & PIPE_TRANSFER_READ) ? PIPE_USAGE_STAGING : PIPE_USAGE_STREAM; /* Create the temporary texture. */ staging = (struct r600_texture*)ctx->screen->resource_create(ctx->screen, &resource); if (!staging) { R600_ERR("failed to create temporary texture to hold untiled copy\n"); FREE(trans); return NULL; } trans->staging = &staging->resource; /* Just get the strides. */ r600_texture_get_offset(rctx->screen, staging, 0, NULL, &trans->b.b.stride, &trans->b.b.layer_stride); if (usage & PIPE_TRANSFER_READ) r600_copy_to_staging_texture(ctx, trans); else usage |= PIPE_TRANSFER_UNSYNCHRONIZED; buf = trans->staging; } else { /* the resource is mapped directly */ offset = r600_texture_get_offset(rctx->screen, rtex, level, box, &trans->b.b.stride, &trans->b.b.layer_stride); buf = &rtex->resource; } if (!(map = r600_buffer_map_sync_with_rings(rctx, buf, usage))) { r600_resource_reference(&trans->staging, NULL); FREE(trans); return NULL; } *ptransfer = &trans->b.b; return map + offset; } static void r600_texture_transfer_unmap(struct pipe_context *ctx, struct pipe_transfer* transfer) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; struct r600_transfer *rtransfer = (struct r600_transfer*)transfer; struct pipe_resource *texture = transfer->resource; struct r600_texture *rtex = (struct r600_texture*)texture; if ((transfer->usage & PIPE_TRANSFER_WRITE) && rtransfer->staging) { if (rtex->is_depth && rtex->resource.b.b.nr_samples <= 1) { ctx->resource_copy_region(ctx, texture, transfer->level, transfer->box.x, transfer->box.y, transfer->box.z, &rtransfer->staging->b.b, transfer->level, &transfer->box); } else { r600_copy_from_staging_texture(ctx, rtransfer); } } if (rtransfer->staging) { rctx->num_alloc_tex_transfer_bytes += rtransfer->staging->buf->size; r600_resource_reference(&rtransfer->staging, NULL); } /* Heuristic for {upload, draw, upload, draw, ..}: * * Flush the gfx IB if we've allocated too much texture storage. * * The idea is that we don't want to build IBs that use too much * memory and put pressure on the kernel memory manager and we also * want to make temporary and invalidated buffers go idle ASAP to * decrease the total memory usage or make them reusable. The memory * usage will be slightly higher than given here because of the buffer * cache in the winsys. * * The result is that the kernel memory manager is never a bottleneck. */ if (rctx->num_alloc_tex_transfer_bytes > rctx->screen->info.gart_size / 4) { rctx->gfx.flush(rctx, RADEON_FLUSH_ASYNC, NULL); rctx->num_alloc_tex_transfer_bytes = 0; } pipe_resource_reference(&transfer->resource, NULL); FREE(transfer); } static const struct u_resource_vtbl r600_texture_vtbl = { NULL, /* get_handle */ r600_texture_destroy, /* resource_destroy */ r600_texture_transfer_map, /* transfer_map */ u_default_transfer_flush_region, /* transfer_flush_region */ r600_texture_transfer_unmap, /* transfer_unmap */ }; /* DCC channel type categories within which formats can be reinterpreted * while keeping the same DCC encoding. The swizzle must also match. */ enum dcc_channel_type { dcc_channel_float32, dcc_channel_uint32, dcc_channel_sint32, dcc_channel_float16, dcc_channel_uint16, dcc_channel_sint16, dcc_channel_uint_10_10_10_2, dcc_channel_uint8, dcc_channel_sint8, dcc_channel_incompatible, }; /* Return the type of DCC encoding. */ static enum dcc_channel_type vi_get_dcc_channel_type(const struct util_format_description *desc) { int i; /* Find the first non-void channel. */ for (i = 0; i < desc->nr_channels; i++) if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) break; if (i == desc->nr_channels) return dcc_channel_incompatible; switch (desc->channel[i].size) { case 32: if (desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT) return dcc_channel_float32; if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) return dcc_channel_uint32; return dcc_channel_sint32; case 16: if (desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT) return dcc_channel_float16; if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) return dcc_channel_uint16; return dcc_channel_sint16; case 10: return dcc_channel_uint_10_10_10_2; case 8: if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) return dcc_channel_uint8; return dcc_channel_sint8; default: return dcc_channel_incompatible; } } /* Return if it's allowed to reinterpret one format as another with DCC enabled. */ bool vi_dcc_formats_compatible(enum pipe_format format1, enum pipe_format format2) { const struct util_format_description *desc1, *desc2; enum dcc_channel_type type1, type2; int i; if (format1 == format2) return true; desc1 = util_format_description(format1); desc2 = util_format_description(format2); if (desc1->nr_channels != desc2->nr_channels) return false; /* Swizzles must be the same. */ for (i = 0; i < desc1->nr_channels; i++) if (desc1->swizzle[i] <= PIPE_SWIZZLE_W && desc2->swizzle[i] <= PIPE_SWIZZLE_W && desc1->swizzle[i] != desc2->swizzle[i]) return false; type1 = vi_get_dcc_channel_type(desc1); type2 = vi_get_dcc_channel_type(desc2); return type1 != dcc_channel_incompatible && type2 != dcc_channel_incompatible && type1 == type2; } bool vi_dcc_formats_are_incompatible(struct pipe_resource *tex, unsigned level, enum pipe_format view_format) { struct r600_texture *rtex = (struct r600_texture *)tex; return vi_dcc_enabled(rtex, level) && !vi_dcc_formats_compatible(tex->format, view_format); } /* This can't be merged with the above function, because * vi_dcc_formats_compatible should be called only when DCC is enabled. */ void vi_disable_dcc_if_incompatible_format(struct r600_common_context *rctx, struct pipe_resource *tex, unsigned level, enum pipe_format view_format) { struct r600_texture *rtex = (struct r600_texture *)tex; if (vi_dcc_enabled(rtex, level) && !vi_dcc_formats_compatible(tex->format, view_format)) if (!r600_texture_disable_dcc(rctx, (struct r600_texture*)tex)) rctx->decompress_dcc(&rctx->b, rtex); } struct pipe_surface *r600_create_surface_custom(struct pipe_context *pipe, struct pipe_resource *texture, const struct pipe_surface *templ, unsigned width0, unsigned height0, unsigned width, unsigned height) { struct r600_surface *surface = CALLOC_STRUCT(r600_surface); if (!surface) return NULL; assert(templ->u.tex.first_layer <= util_max_layer(texture, templ->u.tex.level)); assert(templ->u.tex.last_layer <= util_max_layer(texture, templ->u.tex.level)); pipe_reference_init(&surface->base.reference, 1); pipe_resource_reference(&surface->base.texture, texture); surface->base.context = pipe; surface->base.format = templ->format; surface->base.width = width; surface->base.height = height; surface->base.u = templ->u; surface->width0 = width0; surface->height0 = height0; surface->dcc_incompatible = texture->target != PIPE_BUFFER && vi_dcc_formats_are_incompatible(texture, templ->u.tex.level, templ->format); return &surface->base; } static struct pipe_surface *r600_create_surface(struct pipe_context *pipe, struct pipe_resource *tex, const struct pipe_surface *templ) { unsigned level = templ->u.tex.level; unsigned width = u_minify(tex->width0, level); unsigned height = u_minify(tex->height0, level); if (tex->target != PIPE_BUFFER && templ->format != tex->format) { const struct util_format_description *tex_desc = util_format_description(tex->format); const struct util_format_description *templ_desc = util_format_description(templ->format); assert(tex_desc->block.bits == templ_desc->block.bits); /* Adjust size of surface if and only if the block width or * height is changed. */ if (tex_desc->block.width != templ_desc->block.width || tex_desc->block.height != templ_desc->block.height) { unsigned nblks_x = util_format_get_nblocksx(tex->format, width); unsigned nblks_y = util_format_get_nblocksy(tex->format, height); width = nblks_x * templ_desc->block.width; height = nblks_y * templ_desc->block.height; } } return r600_create_surface_custom(pipe, tex, templ, tex->width0, tex->height0, width, height); } static void r600_surface_destroy(struct pipe_context *pipe, struct pipe_surface *surface) { struct r600_surface *surf = (struct r600_surface*)surface; r600_resource_reference(&surf->cb_buffer_fmask, NULL); r600_resource_reference(&surf->cb_buffer_cmask, NULL); pipe_resource_reference(&surface->texture, NULL); FREE(surface); } static void r600_clear_texture(struct pipe_context *pipe, struct pipe_resource *tex, unsigned level, const struct pipe_box *box, const void *data) { struct pipe_screen *screen = pipe->screen; struct r600_texture *rtex = (struct r600_texture*)tex; struct pipe_surface tmpl = {{0}}; struct pipe_surface *sf; const struct util_format_description *desc = util_format_description(tex->format); tmpl.format = tex->format; tmpl.u.tex.first_layer = box->z; tmpl.u.tex.last_layer = box->z + box->depth - 1; tmpl.u.tex.level = level; sf = pipe->create_surface(pipe, tex, &tmpl); if (!sf) return; if (rtex->is_depth) { unsigned clear; float depth; uint8_t stencil = 0; /* Depth is always present. */ clear = PIPE_CLEAR_DEPTH; desc->unpack_z_float(&depth, 0, data, 0, 1, 1); if (rtex->surface.flags & RADEON_SURF_SBUFFER) { clear |= PIPE_CLEAR_STENCIL; desc->unpack_s_8uint(&stencil, 0, data, 0, 1, 1); } pipe->clear_depth_stencil(pipe, sf, clear, depth, stencil, box->x, box->y, box->width, box->height, false); } else { union pipe_color_union color; /* pipe_color_union requires the full vec4 representation. */ if (util_format_is_pure_uint(tex->format)) desc->unpack_rgba_uint(color.ui, 0, data, 0, 1, 1); else if (util_format_is_pure_sint(tex->format)) desc->unpack_rgba_sint(color.i, 0, data, 0, 1, 1); else desc->unpack_rgba_float(color.f, 0, data, 0, 1, 1); if (screen->is_format_supported(screen, tex->format, tex->target, 0, PIPE_BIND_RENDER_TARGET)) { pipe->clear_render_target(pipe, sf, &color, box->x, box->y, box->width, box->height, false); } else { /* Software fallback - just for R9G9B9E5_FLOAT */ util_clear_render_target(pipe, sf, &color, box->x, box->y, box->width, box->height); } } pipe_surface_reference(&sf, NULL); } unsigned r600_translate_colorswap(enum pipe_format format, bool do_endian_swap) { const struct util_format_description *desc = util_format_description(format); #define HAS_SWIZZLE(chan,swz) (desc->swizzle[chan] == PIPE_SWIZZLE_##swz) if (format == PIPE_FORMAT_R11G11B10_FLOAT) /* isn't plain */ return V_0280A0_SWAP_STD; if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) return ~0U; switch (desc->nr_channels) { case 1: if (HAS_SWIZZLE(0,X)) return V_0280A0_SWAP_STD; /* X___ */ else if (HAS_SWIZZLE(3,X)) return V_0280A0_SWAP_ALT_REV; /* ___X */ break; case 2: if ((HAS_SWIZZLE(0,X) && HAS_SWIZZLE(1,Y)) || (HAS_SWIZZLE(0,X) && HAS_SWIZZLE(1,NONE)) || (HAS_SWIZZLE(0,NONE) && HAS_SWIZZLE(1,Y))) return V_0280A0_SWAP_STD; /* XY__ */ else if ((HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(1,X)) || (HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(1,NONE)) || (HAS_SWIZZLE(0,NONE) && HAS_SWIZZLE(1,X))) /* YX__ */ return (do_endian_swap ? V_0280A0_SWAP_STD : V_0280A0_SWAP_STD_REV); else if (HAS_SWIZZLE(0,X) && HAS_SWIZZLE(3,Y)) return V_0280A0_SWAP_ALT; /* X__Y */ else if (HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(3,X)) return V_0280A0_SWAP_ALT_REV; /* Y__X */ break; case 3: if (HAS_SWIZZLE(0,X)) return (do_endian_swap ? V_0280A0_SWAP_STD_REV : V_0280A0_SWAP_STD); else if (HAS_SWIZZLE(0,Z)) return V_0280A0_SWAP_STD_REV; /* ZYX */ break; case 4: /* check the middle channels, the 1st and 4th channel can be NONE */ if (HAS_SWIZZLE(1,Y) && HAS_SWIZZLE(2,Z)) { return V_0280A0_SWAP_STD; /* XYZW */ } else if (HAS_SWIZZLE(1,Z) && HAS_SWIZZLE(2,Y)) { return V_0280A0_SWAP_STD_REV; /* WZYX */ } else if (HAS_SWIZZLE(1,Y) && HAS_SWIZZLE(2,X)) { return V_0280A0_SWAP_ALT; /* ZYXW */ } else if (HAS_SWIZZLE(1,Z) && HAS_SWIZZLE(2,W)) { /* YZWX */ if (desc->is_array) return V_0280A0_SWAP_ALT_REV; else return (do_endian_swap ? V_0280A0_SWAP_ALT : V_0280A0_SWAP_ALT_REV); } break; } return ~0U; } /* PIPELINE_STAT-BASED DCC ENABLEMENT FOR DISPLAYABLE SURFACES */ static void vi_dcc_clean_up_context_slot(struct r600_common_context *rctx, int slot) { int i; if (rctx->dcc_stats[slot].query_active) vi_separate_dcc_stop_query(&rctx->b, rctx->dcc_stats[slot].tex); for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats[slot].ps_stats); i++) if (rctx->dcc_stats[slot].ps_stats[i]) { rctx->b.destroy_query(&rctx->b, rctx->dcc_stats[slot].ps_stats[i]); rctx->dcc_stats[slot].ps_stats[i] = NULL; } r600_texture_reference(&rctx->dcc_stats[slot].tex, NULL); } /** * Return the per-context slot where DCC statistics queries for the texture live. */ static unsigned vi_get_context_dcc_stats_index(struct r600_common_context *rctx, struct r600_texture *tex) { int i, empty_slot = -1; /* Remove zombie textures (textures kept alive by this array only). */ for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) if (rctx->dcc_stats[i].tex && rctx->dcc_stats[i].tex->resource.b.b.reference.count == 1) vi_dcc_clean_up_context_slot(rctx, i); /* Find the texture. */ for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) { /* Return if found. */ if (rctx->dcc_stats[i].tex == tex) { rctx->dcc_stats[i].last_use_timestamp = os_time_get(); return i; } /* Record the first seen empty slot. */ if (empty_slot == -1 && !rctx->dcc_stats[i].tex) empty_slot = i; } /* Not found. Remove the oldest member to make space in the array. */ if (empty_slot == -1) { int oldest_slot = 0; /* Find the oldest slot. */ for (i = 1; i < ARRAY_SIZE(rctx->dcc_stats); i++) if (rctx->dcc_stats[oldest_slot].last_use_timestamp > rctx->dcc_stats[i].last_use_timestamp) oldest_slot = i; /* Clean up the oldest slot. */ vi_dcc_clean_up_context_slot(rctx, oldest_slot); empty_slot = oldest_slot; } /* Add the texture to the new slot. */ r600_texture_reference(&rctx->dcc_stats[empty_slot].tex, tex); rctx->dcc_stats[empty_slot].last_use_timestamp = os_time_get(); return empty_slot; } static struct pipe_query * vi_create_resuming_pipestats_query(struct pipe_context *ctx) { struct r600_query_hw *query = (struct r600_query_hw*) ctx->create_query(ctx, PIPE_QUERY_PIPELINE_STATISTICS, 0); query->flags |= R600_QUERY_HW_FLAG_BEGIN_RESUMES; return (struct pipe_query*)query; } /** * Called when binding a color buffer. */ void vi_separate_dcc_start_query(struct pipe_context *ctx, struct r600_texture *tex) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; unsigned i = vi_get_context_dcc_stats_index(rctx, tex); assert(!rctx->dcc_stats[i].query_active); if (!rctx->dcc_stats[i].ps_stats[0]) rctx->dcc_stats[i].ps_stats[0] = vi_create_resuming_pipestats_query(ctx); /* begin or resume the query */ ctx->begin_query(ctx, rctx->dcc_stats[i].ps_stats[0]); rctx->dcc_stats[i].query_active = true; } /** * Called when unbinding a color buffer. */ void vi_separate_dcc_stop_query(struct pipe_context *ctx, struct r600_texture *tex) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; unsigned i = vi_get_context_dcc_stats_index(rctx, tex); assert(rctx->dcc_stats[i].query_active); assert(rctx->dcc_stats[i].ps_stats[0]); /* pause or end the query */ ctx->end_query(ctx, rctx->dcc_stats[i].ps_stats[0]); rctx->dcc_stats[i].query_active = false; } static bool vi_should_enable_separate_dcc(struct r600_texture *tex) { /* The minimum number of fullscreen draws per frame that is required * to enable DCC. */ return tex->ps_draw_ratio + tex->num_slow_clears >= 5; } /* Called by fast clear. */ static void vi_separate_dcc_try_enable(struct r600_common_context *rctx, struct r600_texture *tex) { /* The intent is to use this with shared displayable back buffers, * but it's not strictly limited only to them. */ if (!tex->resource.b.is_shared || !(tex->resource.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) || tex->resource.b.b.target != PIPE_TEXTURE_2D || tex->resource.b.b.last_level > 0 || !tex->surface.dcc_size) return; if (tex->dcc_offset) return; /* already enabled */ /* Enable the DCC stat gathering. */ if (!tex->dcc_gather_statistics) { tex->dcc_gather_statistics = true; vi_separate_dcc_start_query(&rctx->b, tex); } if (!vi_should_enable_separate_dcc(tex)) return; /* stats show that DCC decompression is too expensive */ assert(tex->surface.num_dcc_levels); assert(!tex->dcc_separate_buffer); r600_texture_discard_cmask(rctx->screen, tex); /* Get a DCC buffer. */ if (tex->last_dcc_separate_buffer) { assert(tex->dcc_gather_statistics); assert(!tex->dcc_separate_buffer); tex->dcc_separate_buffer = tex->last_dcc_separate_buffer; tex->last_dcc_separate_buffer = NULL; } else { tex->dcc_separate_buffer = (struct r600_resource*) r600_aligned_buffer_create(rctx->b.screen, R600_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, tex->surface.dcc_size, tex->surface.dcc_alignment); if (!tex->dcc_separate_buffer) return; } /* dcc_offset is the absolute GPUVM address. */ tex->dcc_offset = tex->dcc_separate_buffer->gpu_address; /* no need to flag anything since this is called by fast clear that * flags framebuffer state */ } /** * Called by pipe_context::flush_resource, the place where DCC decompression * takes place. */ void vi_separate_dcc_process_and_reset_stats(struct pipe_context *ctx, struct r600_texture *tex) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; struct pipe_query *tmp; unsigned i = vi_get_context_dcc_stats_index(rctx, tex); bool query_active = rctx->dcc_stats[i].query_active; bool disable = false; if (rctx->dcc_stats[i].ps_stats[2]) { union pipe_query_result result; /* Read the results. */ ctx->get_query_result(ctx, rctx->dcc_stats[i].ps_stats[2], true, &result); r600_query_hw_reset_buffers(rctx, (struct r600_query_hw*) rctx->dcc_stats[i].ps_stats[2]); /* Compute the approximate number of fullscreen draws. */ tex->ps_draw_ratio = result.pipeline_statistics.ps_invocations / (tex->resource.b.b.width0 * tex->resource.b.b.height0); rctx->last_tex_ps_draw_ratio = tex->ps_draw_ratio; disable = tex->dcc_separate_buffer && !vi_should_enable_separate_dcc(tex); } tex->num_slow_clears = 0; /* stop the statistics query for ps_stats[0] */ if (query_active) vi_separate_dcc_stop_query(ctx, tex); /* Move the queries in the queue by one. */ tmp = rctx->dcc_stats[i].ps_stats[2]; rctx->dcc_stats[i].ps_stats[2] = rctx->dcc_stats[i].ps_stats[1]; rctx->dcc_stats[i].ps_stats[1] = rctx->dcc_stats[i].ps_stats[0]; rctx->dcc_stats[i].ps_stats[0] = tmp; /* create and start a new query as ps_stats[0] */ if (query_active) vi_separate_dcc_start_query(ctx, tex); if (disable) { assert(!tex->last_dcc_separate_buffer); tex->last_dcc_separate_buffer = tex->dcc_separate_buffer; tex->dcc_separate_buffer = NULL; tex->dcc_offset = 0; /* no need to flag anything since this is called after * decompression that re-sets framebuffer state */ } } /* FAST COLOR CLEAR */ static void evergreen_set_clear_color(struct r600_texture *rtex, enum pipe_format surface_format, const union pipe_color_union *color) { union util_color uc; memset(&uc, 0, sizeof(uc)); if (rtex->surface.bpe == 16) { /* DCC fast clear only: * CLEAR_WORD0 = R = G = B * CLEAR_WORD1 = A */ assert(color->ui[0] == color->ui[1] && color->ui[0] == color->ui[2]); uc.ui[0] = color->ui[0]; uc.ui[1] = color->ui[3]; } else if (util_format_is_pure_uint(surface_format)) { util_format_write_4ui(surface_format, color->ui, 0, &uc, 0, 0, 0, 1, 1); } else if (util_format_is_pure_sint(surface_format)) { util_format_write_4i(surface_format, color->i, 0, &uc, 0, 0, 0, 1, 1); } else { util_pack_color(color->f, surface_format, &uc); } memcpy(rtex->color_clear_value, &uc, 2 * sizeof(uint32_t)); } static bool vi_get_fast_clear_parameters(enum pipe_format surface_format, const union pipe_color_union *color, uint32_t* reset_value, bool* clear_words_needed) { bool values[4] = {}; int i; bool main_value = false; bool extra_value = false; int extra_channel; const struct util_format_description *desc = util_format_description(surface_format); if (desc->block.bits == 128 && (color->ui[0] != color->ui[1] || color->ui[0] != color->ui[2])) return false; *clear_words_needed = true; *reset_value = 0x20202020U; /* If we want to clear without needing a fast clear eliminate step, we * can set each channel to 0 or 1 (or 0/max for integer formats). We * have two sets of flags, one for the last or first channel(extra) and * one for the other channels(main). */ if (surface_format == PIPE_FORMAT_R11G11B10_FLOAT || surface_format == PIPE_FORMAT_B5G6R5_UNORM || surface_format == PIPE_FORMAT_B5G6R5_SRGB) { extra_channel = -1; } else if (desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) { if(r600_translate_colorswap(surface_format, false) <= 1) extra_channel = desc->nr_channels - 1; else extra_channel = 0; } else return true; for (i = 0; i < 4; ++i) { int index = desc->swizzle[i] - PIPE_SWIZZLE_X; if (desc->swizzle[i] < PIPE_SWIZZLE_X || desc->swizzle[i] > PIPE_SWIZZLE_W) continue; if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) { /* Use the maximum value for clamping the clear color. */ int max = u_bit_consecutive(0, desc->channel[i].size - 1); values[i] = color->i[i] != 0; if (color->i[i] != 0 && MIN2(color->i[i], max) != max) return true; } else if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) { /* Use the maximum value for clamping the clear color. */ unsigned max = u_bit_consecutive(0, desc->channel[i].size); values[i] = color->ui[i] != 0U; if (color->ui[i] != 0U && MIN2(color->ui[i], max) != max) return true; } else { values[i] = color->f[i] != 0.0F; if (color->f[i] != 0.0F && color->f[i] != 1.0F) return true; } if (index == extra_channel) extra_value = values[i]; else main_value = values[i]; } for (int i = 0; i < 4; ++i) if (values[i] != main_value && desc->swizzle[i] - PIPE_SWIZZLE_X != extra_channel && desc->swizzle[i] >= PIPE_SWIZZLE_X && desc->swizzle[i] <= PIPE_SWIZZLE_W) return true; *clear_words_needed = false; if (main_value) *reset_value |= 0x80808080U; if (extra_value) *reset_value |= 0x40404040U; return true; } void vi_dcc_clear_level(struct r600_common_context *rctx, struct r600_texture *rtex, unsigned level, unsigned clear_value) { struct pipe_resource *dcc_buffer; uint64_t dcc_offset, clear_size; assert(vi_dcc_enabled(rtex, level)); if (rtex->dcc_separate_buffer) { dcc_buffer = &rtex->dcc_separate_buffer->b.b; dcc_offset = 0; } else { dcc_buffer = &rtex->resource.b.b; dcc_offset = rtex->dcc_offset; } if (rctx->chip_class >= GFX9) { /* Mipmap level clears aren't implemented. */ assert(rtex->resource.b.b.last_level == 0); /* MSAA needs a different clear size. */ assert(rtex->resource.b.b.nr_samples <= 1); clear_size = rtex->surface.dcc_size; } else { dcc_offset += rtex->surface.u.legacy.level[level].dcc_offset; clear_size = rtex->surface.u.legacy.level[level].dcc_fast_clear_size; } rctx->clear_buffer(&rctx->b, dcc_buffer, dcc_offset, clear_size, clear_value, R600_COHERENCY_CB_META); } /* Set the same micro tile mode as the destination of the last MSAA resolve. * This allows hitting the MSAA resolve fast path, which requires that both * src and dst micro tile modes match. */ static void si_set_optimal_micro_tile_mode(struct r600_common_screen *rscreen, struct r600_texture *rtex) { if (rtex->resource.b.is_shared || rtex->resource.b.b.nr_samples <= 1 || rtex->surface.micro_tile_mode == rtex->last_msaa_resolve_target_micro_mode) return; assert(rscreen->chip_class >= GFX9 || rtex->surface.u.legacy.level[0].mode == RADEON_SURF_MODE_2D); assert(rtex->resource.b.b.last_level == 0); if (rscreen->chip_class >= GFX9) { /* 4K or larger tiles only. 0 is linear. 1-3 are 256B tiles. */ assert(rtex->surface.u.gfx9.surf.swizzle_mode >= 4); /* If you do swizzle_mode % 4, you'll get: * 0 = Depth * 1 = Standard, * 2 = Displayable * 3 = Rotated * * Depth-sample order isn't allowed: */ assert(rtex->surface.u.gfx9.surf.swizzle_mode % 4 != 0); switch (rtex->last_msaa_resolve_target_micro_mode) { case RADEON_MICRO_MODE_DISPLAY: rtex->surface.u.gfx9.surf.swizzle_mode &= ~0x3; rtex->surface.u.gfx9.surf.swizzle_mode += 2; /* D */ break; case RADEON_MICRO_MODE_THIN: rtex->surface.u.gfx9.surf.swizzle_mode &= ~0x3; rtex->surface.u.gfx9.surf.swizzle_mode += 1; /* S */ break; case RADEON_MICRO_MODE_ROTATED: rtex->surface.u.gfx9.surf.swizzle_mode &= ~0x3; rtex->surface.u.gfx9.surf.swizzle_mode += 3; /* R */ break; default: /* depth */ assert(!"unexpected micro mode"); return; } } else if (rscreen->chip_class >= CIK) { /* These magic numbers were copied from addrlib. It doesn't use * any definitions for them either. They are all 2D_TILED_THIN1 * modes with different bpp and micro tile mode. */ switch (rtex->last_msaa_resolve_target_micro_mode) { case RADEON_MICRO_MODE_DISPLAY: rtex->surface.u.legacy.tiling_index[0] = 10; break; case RADEON_MICRO_MODE_THIN: rtex->surface.u.legacy.tiling_index[0] = 14; break; case RADEON_MICRO_MODE_ROTATED: rtex->surface.u.legacy.tiling_index[0] = 28; break; default: /* depth, thick */ assert(!"unexpected micro mode"); return; } } else { /* SI */ switch (rtex->last_msaa_resolve_target_micro_mode) { case RADEON_MICRO_MODE_DISPLAY: switch (rtex->surface.bpe) { case 1: rtex->surface.u.legacy.tiling_index[0] = 10; break; case 2: rtex->surface.u.legacy.tiling_index[0] = 11; break; default: /* 4, 8 */ rtex->surface.u.legacy.tiling_index[0] = 12; break; } break; case RADEON_MICRO_MODE_THIN: switch (rtex->surface.bpe) { case 1: rtex->surface.u.legacy.tiling_index[0] = 14; break; case 2: rtex->surface.u.legacy.tiling_index[0] = 15; break; case 4: rtex->surface.u.legacy.tiling_index[0] = 16; break; default: /* 8, 16 */ rtex->surface.u.legacy.tiling_index[0] = 17; break; } break; default: /* depth, thick */ assert(!"unexpected micro mode"); return; } } rtex->surface.micro_tile_mode = rtex->last_msaa_resolve_target_micro_mode; p_atomic_inc(&rscreen->dirty_tex_counter); } void evergreen_do_fast_color_clear(struct r600_common_context *rctx, struct pipe_framebuffer_state *fb, struct r600_atom *fb_state, unsigned *buffers, unsigned *dirty_cbufs, const union pipe_color_union *color) { int i; /* This function is broken in BE, so just disable this path for now */ #ifdef PIPE_ARCH_BIG_ENDIAN return; #endif if (rctx->render_cond) return; for (i = 0; i < fb->nr_cbufs; i++) { struct r600_texture *tex; unsigned clear_bit = PIPE_CLEAR_COLOR0 << i; if (!fb->cbufs[i]) continue; /* if this colorbuffer is not being cleared */ if (!(*buffers & clear_bit)) continue; tex = (struct r600_texture *)fb->cbufs[i]->texture; /* the clear is allowed if all layers are bound */ if (fb->cbufs[i]->u.tex.first_layer != 0 || fb->cbufs[i]->u.tex.last_layer != util_max_layer(&tex->resource.b.b, 0)) { continue; } /* cannot clear mipmapped textures */ if (fb->cbufs[i]->texture->last_level != 0) { continue; } /* only supported on tiled surfaces */ if (tex->surface.is_linear) { continue; } /* shared textures can't use fast clear without an explicit flush, * because there is no way to communicate the clear color among * all clients */ if (tex->resource.b.is_shared && !(tex->resource.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH)) continue; /* fast color clear with 1D tiling doesn't work on old kernels and CIK */ if (rctx->chip_class == CIK && tex->surface.u.legacy.level[0].mode == RADEON_SURF_MODE_1D && rctx->screen->info.drm_major == 2 && rctx->screen->info.drm_minor < 38) { continue; } /* Fast clear is the most appropriate place to enable DCC for * displayable surfaces. */ if (rctx->chip_class >= VI && !(rctx->screen->debug_flags & DBG_NO_DCC_FB)) { vi_separate_dcc_try_enable(rctx, tex); /* RB+ isn't supported with a CMASK clear only on Stoney, * so all clears are considered to be hypothetically slow * clears, which is weighed when determining whether to * enable separate DCC. */ if (tex->dcc_gather_statistics && rctx->family == CHIP_STONEY) tex->num_slow_clears++; } /* Try to clear DCC first, otherwise try CMASK. */ if (vi_dcc_enabled(tex, 0)) { uint32_t reset_value; bool clear_words_needed; /* TODO: fix DCC clear */ if (rctx->chip_class >= GFX9) continue; if (rctx->screen->debug_flags & DBG_NO_DCC_CLEAR) continue; if (!vi_get_fast_clear_parameters(fb->cbufs[i]->format, color, &reset_value, &clear_words_needed)) continue; vi_dcc_clear_level(rctx, tex, 0, reset_value); unsigned level_bit = 1 << fb->cbufs[i]->u.tex.level; if (clear_words_needed) { bool need_compressed_update = !tex->dirty_level_mask; tex->dirty_level_mask |= level_bit; if (need_compressed_update) p_atomic_inc(&rctx->screen->compressed_colortex_counter); } tex->separate_dcc_dirty = true; } else { /* 128-bit formats are unusupported */ if (tex->surface.bpe > 8) { continue; } /* RB+ doesn't work with CMASK fast clear on Stoney. */ if (rctx->family == CHIP_STONEY) continue; /* ensure CMASK is enabled */ r600_texture_alloc_cmask_separate(rctx->screen, tex); if (tex->cmask.size == 0) { continue; } /* Do the fast clear. */ rctx->clear_buffer(&rctx->b, &tex->cmask_buffer->b.b, tex->cmask.offset, tex->cmask.size, 0, R600_COHERENCY_CB_META); bool need_compressed_update = !tex->dirty_level_mask; tex->dirty_level_mask |= 1 << fb->cbufs[i]->u.tex.level; if (need_compressed_update) p_atomic_inc(&rctx->screen->compressed_colortex_counter); } /* We can change the micro tile mode before a full clear. */ if (rctx->screen->chip_class >= SI) si_set_optimal_micro_tile_mode(rctx->screen, tex); evergreen_set_clear_color(tex, fb->cbufs[i]->format, color); if (dirty_cbufs) *dirty_cbufs |= 1 << i; rctx->set_atom_dirty(rctx, fb_state, true); *buffers &= ~clear_bit; } } void r600_init_screen_texture_functions(struct r600_common_screen *rscreen) { rscreen->b.resource_from_handle = r600_texture_from_handle; rscreen->b.resource_get_handle = r600_texture_get_handle; } void r600_init_context_texture_functions(struct r600_common_context *rctx) { rctx->b.create_surface = r600_create_surface; rctx->b.surface_destroy = r600_surface_destroy; rctx->b.clear_texture = r600_clear_texture; }