/* * Copyright 2010 Jerome Glisse * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "radeonsi/si_pipe.h" #include "radeonsi/si_query.h" #include "util/u_format.h" #include "util/u_log.h" #include "util/u_memory.h" #include "util/u_pack_color.h" #include "util/u_resource.h" #include "util/u_surface.h" #include "util/os_time.h" #include #include #include "state_tracker/drm_driver.h" #include "amd/common/sid.h" static enum radeon_surf_mode si_choose_tiling(struct si_screen *sscreen, const struct pipe_resource *templ); bool si_prepare_for_dma_blit(struct si_context *sctx, struct r600_texture *rdst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct r600_texture *rsrc, unsigned src_level, const struct pipe_box *src_box) { if (!sctx->b.dma_cs) return false; if (rdst->surface.bpe != rsrc->surface.bpe) return false; /* MSAA: Blits don't exist in the real world. */ if (rsrc->resource.b.b.nr_samples > 1 || rdst->resource.b.b.nr_samples > 1) return false; /* Depth-stencil surfaces: * When dst is linear, the DB->CB copy preserves HTILE. * When dst is tiled, the 3D path must be used to update HTILE. */ if (rsrc->is_depth || rdst->is_depth) return false; /* DCC as: * src: Use the 3D path. DCC decompression is expensive. * dst: Use the 3D path to compress the pixels with DCC. */ if (vi_dcc_enabled(rsrc, src_level) || vi_dcc_enabled(rdst, dst_level)) return false; /* CMASK as: * src: Both texture and SDMA paths need decompression. Use SDMA. * dst: If overwriting the whole texture, discard CMASK and use * SDMA. Otherwise, use the 3D path. */ if (rdst->cmask.size && rdst->dirty_level_mask & (1 << dst_level)) { /* The CMASK clear is only enabled for the first level. */ assert(dst_level == 0); if (!util_texrange_covers_whole_level(&rdst->resource.b.b, dst_level, dstx, dsty, dstz, src_box->width, src_box->height, src_box->depth)) return false; si_texture_discard_cmask(sctx->screen, rdst); } /* All requirements are met. Prepare textures for SDMA. */ if (rsrc->cmask.size && rsrc->dirty_level_mask & (1 << src_level)) sctx->b.b.flush_resource(&sctx->b.b, &rsrc->resource.b.b); assert(!(rsrc->dirty_level_mask & (1 << src_level))); assert(!(rdst->dirty_level_mask & (1 << dst_level))); return true; } /* Same as resource_copy_region, except that both upsampling and downsampling are allowed. */ static void si_copy_region_with_blit(struct pipe_context *pipe, struct pipe_resource *dst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct pipe_resource *src, unsigned src_level, const struct pipe_box *src_box) { struct pipe_blit_info blit; memset(&blit, 0, sizeof(blit)); blit.src.resource = src; blit.src.format = src->format; blit.src.level = src_level; blit.src.box = *src_box; blit.dst.resource = dst; blit.dst.format = dst->format; blit.dst.level = dst_level; blit.dst.box.x = dstx; blit.dst.box.y = dsty; blit.dst.box.z = dstz; blit.dst.box.width = src_box->width; blit.dst.box.height = src_box->height; blit.dst.box.depth = src_box->depth; blit.mask = util_format_get_mask(src->format) & util_format_get_mask(dst->format); blit.filter = PIPE_TEX_FILTER_NEAREST; if (blit.mask) { pipe->blit(pipe, &blit); } } /* Copy from a full GPU texture to a transfer's staging one. */ static void si_copy_to_staging_texture(struct pipe_context *ctx, struct r600_transfer *rtransfer) { struct si_context *sctx = (struct si_context*)ctx; struct pipe_transfer *transfer = (struct pipe_transfer*)rtransfer; struct pipe_resource *dst = &rtransfer->staging->b.b; struct pipe_resource *src = transfer->resource; if (src->nr_samples > 1) { si_copy_region_with_blit(ctx, dst, 0, 0, 0, 0, src, transfer->level, &transfer->box); return; } sctx->b.dma_copy(ctx, dst, 0, 0, 0, 0, src, transfer->level, &transfer->box); } /* Copy from a transfer's staging texture to a full GPU one. */ static void si_copy_from_staging_texture(struct pipe_context *ctx, struct r600_transfer *rtransfer) { struct si_context *sctx = (struct si_context*)ctx; struct pipe_transfer *transfer = (struct pipe_transfer*)rtransfer; struct pipe_resource *dst = transfer->resource; struct pipe_resource *src = &rtransfer->staging->b.b; struct pipe_box sbox; u_box_3d(0, 0, 0, transfer->box.width, transfer->box.height, transfer->box.depth, &sbox); if (dst->nr_samples > 1) { si_copy_region_with_blit(ctx, dst, transfer->level, transfer->box.x, transfer->box.y, transfer->box.z, src, 0, &sbox); return; } sctx->b.dma_copy(ctx, dst, transfer->level, transfer->box.x, transfer->box.y, transfer->box.z, src, 0, &sbox); } static unsigned si_texture_get_offset(struct si_screen *sscreen, struct r600_texture *rtex, unsigned level, const struct pipe_box *box, unsigned *stride, unsigned *layer_stride) { if (sscreen->info.chip_class >= GFX9) { *stride = rtex->surface.u.gfx9.surf_pitch * rtex->surface.bpe; *layer_stride = rtex->surface.u.gfx9.surf_slice_size; if (!box) return 0; /* Each texture is an array of slices. Each slice is an array * of mipmap levels. */ return box->z * rtex->surface.u.gfx9.surf_slice_size + rtex->surface.u.gfx9.offset[level] + (box->y / rtex->surface.blk_h * rtex->surface.u.gfx9.surf_pitch + box->x / rtex->surface.blk_w) * rtex->surface.bpe; } else { *stride = rtex->surface.u.legacy.level[level].nblk_x * rtex->surface.bpe; assert((uint64_t)rtex->surface.u.legacy.level[level].slice_size_dw * 4 <= UINT_MAX); *layer_stride = (uint64_t)rtex->surface.u.legacy.level[level].slice_size_dw * 4; if (!box) return rtex->surface.u.legacy.level[level].offset; /* Each texture is an array of mipmap levels. Each level is * an array of slices. */ return rtex->surface.u.legacy.level[level].offset + box->z * (uint64_t)rtex->surface.u.legacy.level[level].slice_size_dw * 4 + (box->y / rtex->surface.blk_h * rtex->surface.u.legacy.level[level].nblk_x + box->x / rtex->surface.blk_w) * rtex->surface.bpe; } } static int si_init_surface(struct si_screen *sscreen, struct radeon_surf *surface, const struct pipe_resource *ptex, enum radeon_surf_mode array_mode, unsigned pitch_in_bytes_override, unsigned offset, bool is_imported, bool is_scanout, bool is_flushed_depth, bool tc_compatible_htile) { const struct util_format_description *desc = util_format_description(ptex->format); bool is_depth, is_stencil; int r; unsigned i, bpe, flags = 0; is_depth = util_format_has_depth(desc); is_stencil = util_format_has_stencil(desc); if (!is_flushed_depth && ptex->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT) { bpe = 4; /* stencil is allocated separately on evergreen */ } else { bpe = util_format_get_blocksize(ptex->format); assert(util_is_power_of_two_or_zero(bpe)); } if (!is_flushed_depth && is_depth) { flags |= RADEON_SURF_ZBUFFER; if (tc_compatible_htile && (sscreen->info.chip_class >= GFX9 || array_mode == RADEON_SURF_MODE_2D)) { /* TC-compatible HTILE only supports Z32_FLOAT. * GFX9 also supports Z16_UNORM. * On VI, promote Z16 to Z32. DB->CB copies will convert * the format for transfers. */ if (sscreen->info.chip_class == VI) bpe = 4; flags |= RADEON_SURF_TC_COMPATIBLE_HTILE; } if (is_stencil) flags |= RADEON_SURF_SBUFFER; } if (sscreen->info.chip_class >= VI && (ptex->flags & SI_RESOURCE_FLAG_DISABLE_DCC || ptex->format == PIPE_FORMAT_R9G9B9E5_FLOAT || /* DCC MSAA array textures are disallowed due to incomplete clear impl. */ (ptex->nr_samples >= 2 && (!sscreen->dcc_msaa_allowed || ptex->array_size > 1)))) flags |= RADEON_SURF_DISABLE_DCC; if (ptex->bind & PIPE_BIND_SCANOUT || is_scanout) { /* This should catch bugs in gallium users setting incorrect flags. */ assert(ptex->nr_samples <= 1 && ptex->array_size == 1 && ptex->depth0 == 1 && ptex->last_level == 0 && !(flags & RADEON_SURF_Z_OR_SBUFFER)); flags |= RADEON_SURF_SCANOUT; } if (ptex->bind & PIPE_BIND_SHARED) flags |= RADEON_SURF_SHAREABLE; if (is_imported) flags |= RADEON_SURF_IMPORTED | RADEON_SURF_SHAREABLE; if (!(ptex->flags & SI_RESOURCE_FLAG_FORCE_TILING)) flags |= RADEON_SURF_OPTIMIZE_FOR_SPACE; r = sscreen->ws->surface_init(sscreen->ws, ptex, flags, bpe, array_mode, surface); if (r) { return r; } unsigned pitch = pitch_in_bytes_override / bpe; if (sscreen->info.chip_class >= GFX9) { if (pitch) { surface->u.gfx9.surf_pitch = pitch; surface->u.gfx9.surf_slice_size = (uint64_t)pitch * surface->u.gfx9.surf_height * bpe; } surface->u.gfx9.surf_offset = offset; } else { if (pitch) { surface->u.legacy.level[0].nblk_x = pitch; surface->u.legacy.level[0].slice_size_dw = ((uint64_t)pitch * surface->u.legacy.level[0].nblk_y * bpe) / 4; } if (offset) { for (i = 0; i < ARRAY_SIZE(surface->u.legacy.level); ++i) surface->u.legacy.level[i].offset += offset; } } return 0; } static void si_texture_init_metadata(struct si_screen *sscreen, struct r600_texture *rtex, struct radeon_bo_metadata *metadata) { struct radeon_surf *surface = &rtex->surface; memset(metadata, 0, sizeof(*metadata)); if (sscreen->info.chip_class >= GFX9) { metadata->u.gfx9.swizzle_mode = surface->u.gfx9.surf.swizzle_mode; } else { metadata->u.legacy.microtile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; metadata->u.legacy.macrotile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; metadata->u.legacy.pipe_config = surface->u.legacy.pipe_config; metadata->u.legacy.bankw = surface->u.legacy.bankw; metadata->u.legacy.bankh = surface->u.legacy.bankh; metadata->u.legacy.tile_split = surface->u.legacy.tile_split; metadata->u.legacy.mtilea = surface->u.legacy.mtilea; metadata->u.legacy.num_banks = surface->u.legacy.num_banks; metadata->u.legacy.stride = surface->u.legacy.level[0].nblk_x * surface->bpe; metadata->u.legacy.scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0; } } static void si_surface_import_metadata(struct si_screen *sscreen, struct radeon_surf *surf, struct radeon_bo_metadata *metadata, enum radeon_surf_mode *array_mode, bool *is_scanout) { if (sscreen->info.chip_class >= GFX9) { if (metadata->u.gfx9.swizzle_mode > 0) *array_mode = RADEON_SURF_MODE_2D; else *array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED; *is_scanout = metadata->u.gfx9.swizzle_mode == 0 || metadata->u.gfx9.swizzle_mode % 4 == 2; surf->u.gfx9.surf.swizzle_mode = metadata->u.gfx9.swizzle_mode; } else { surf->u.legacy.pipe_config = metadata->u.legacy.pipe_config; surf->u.legacy.bankw = metadata->u.legacy.bankw; surf->u.legacy.bankh = metadata->u.legacy.bankh; surf->u.legacy.tile_split = metadata->u.legacy.tile_split; surf->u.legacy.mtilea = metadata->u.legacy.mtilea; surf->u.legacy.num_banks = metadata->u.legacy.num_banks; if (metadata->u.legacy.macrotile == RADEON_LAYOUT_TILED) *array_mode = RADEON_SURF_MODE_2D; else if (metadata->u.legacy.microtile == RADEON_LAYOUT_TILED) *array_mode = RADEON_SURF_MODE_1D; else *array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED; *is_scanout = metadata->u.legacy.scanout; } } void si_eliminate_fast_color_clear(struct si_context *sctx, struct r600_texture *rtex) { struct si_screen *sscreen = sctx->screen; struct pipe_context *ctx = &sctx->b.b; if (ctx == sscreen->aux_context) mtx_lock(&sscreen->aux_context_lock); unsigned n = sctx->b.num_decompress_calls; ctx->flush_resource(ctx, &rtex->resource.b.b); /* Flush only if any fast clear elimination took place. */ if (n != sctx->b.num_decompress_calls) ctx->flush(ctx, NULL, 0); if (ctx == sscreen->aux_context) mtx_unlock(&sscreen->aux_context_lock); } void si_texture_discard_cmask(struct si_screen *sscreen, struct r600_texture *rtex) { if (!rtex->cmask.size) return; assert(rtex->resource.b.b.nr_samples <= 1); /* Disable CMASK. */ memset(&rtex->cmask, 0, sizeof(rtex->cmask)); rtex->cmask.base_address_reg = rtex->resource.gpu_address >> 8; rtex->dirty_level_mask = 0; rtex->cb_color_info &= ~S_028C70_FAST_CLEAR(1); if (rtex->cmask_buffer != &rtex->resource) r600_resource_reference(&rtex->cmask_buffer, NULL); /* Notify all contexts about the change. */ p_atomic_inc(&sscreen->dirty_tex_counter); p_atomic_inc(&sscreen->compressed_colortex_counter); } static bool si_can_disable_dcc(struct r600_texture *rtex) { /* We can't disable DCC if it can be written by another process. */ return rtex->dcc_offset && (!rtex->resource.b.is_shared || !(rtex->resource.external_usage & PIPE_HANDLE_USAGE_WRITE)); } static bool si_texture_discard_dcc(struct si_screen *sscreen, struct r600_texture *rtex) { if (!si_can_disable_dcc(rtex)) return false; assert(rtex->dcc_separate_buffer == NULL); /* Disable DCC. */ rtex->dcc_offset = 0; /* Notify all contexts about the change. */ p_atomic_inc(&sscreen->dirty_tex_counter); return true; } /** * Disable DCC for the texture. (first decompress, then discard metadata). * * There is unresolved multi-context synchronization issue between * screen::aux_context and the current context. If applications do this with * multiple contexts, it's already undefined behavior for them and we don't * have to worry about that. The scenario is: * * If context 1 disables DCC and context 2 has queued commands that write * to the texture via CB with DCC enabled, and the order of operations is * as follows: * context 2 queues draw calls rendering to the texture, but doesn't flush * context 1 disables DCC and flushes * context 1 & 2 reset descriptors and FB state * context 2 flushes (new compressed tiles written by the draw calls) * context 1 & 2 read garbage, because DCC is disabled, yet there are * compressed tiled * * \param sctx the current context if you have one, or rscreen->aux_context * if you don't. */ bool si_texture_disable_dcc(struct si_context *sctx, struct r600_texture *rtex) { struct si_screen *sscreen = sctx->screen; if (!si_can_disable_dcc(rtex)) return false; if (&sctx->b.b == sscreen->aux_context) mtx_lock(&sscreen->aux_context_lock); /* Decompress DCC. */ si_decompress_dcc(sctx, rtex); sctx->b.b.flush(&sctx->b.b, NULL, 0); if (&sctx->b.b == sscreen->aux_context) mtx_unlock(&sscreen->aux_context_lock); return si_texture_discard_dcc(sscreen, rtex); } static void si_reallocate_texture_inplace(struct si_context *sctx, struct r600_texture *rtex, unsigned new_bind_flag, bool invalidate_storage) { struct pipe_screen *screen = sctx->b.b.screen; struct r600_texture *new_tex; struct pipe_resource templ = rtex->resource.b.b; unsigned i; templ.bind |= new_bind_flag; if (rtex->resource.b.is_shared) return; if (new_bind_flag == PIPE_BIND_LINEAR) { if (rtex->surface.is_linear) return; /* This fails with MSAA, depth, and compressed textures. */ if (si_choose_tiling(sctx->screen, &templ) != RADEON_SURF_MODE_LINEAR_ALIGNED) return; } new_tex = (struct r600_texture*)screen->resource_create(screen, &templ); if (!new_tex) return; /* Copy the pixels to the new texture. */ if (!invalidate_storage) { for (i = 0; i <= templ.last_level; i++) { struct pipe_box box; u_box_3d(0, 0, 0, u_minify(templ.width0, i), u_minify(templ.height0, i), util_num_layers(&templ, i), &box); sctx->b.dma_copy(&sctx->b.b, &new_tex->resource.b.b, i, 0, 0, 0, &rtex->resource.b.b, i, &box); } } if (new_bind_flag == PIPE_BIND_LINEAR) { si_texture_discard_cmask(sctx->screen, rtex); si_texture_discard_dcc(sctx->screen, rtex); } /* Replace the structure fields of rtex. */ rtex->resource.b.b.bind = templ.bind; pb_reference(&rtex->resource.buf, new_tex->resource.buf); rtex->resource.gpu_address = new_tex->resource.gpu_address; rtex->resource.vram_usage = new_tex->resource.vram_usage; rtex->resource.gart_usage = new_tex->resource.gart_usage; rtex->resource.bo_size = new_tex->resource.bo_size; rtex->resource.bo_alignment = new_tex->resource.bo_alignment; rtex->resource.domains = new_tex->resource.domains; rtex->resource.flags = new_tex->resource.flags; rtex->size = new_tex->size; rtex->db_render_format = new_tex->db_render_format; rtex->db_compatible = new_tex->db_compatible; rtex->can_sample_z = new_tex->can_sample_z; rtex->can_sample_s = new_tex->can_sample_s; rtex->surface = new_tex->surface; rtex->fmask = new_tex->fmask; rtex->cmask = new_tex->cmask; rtex->cb_color_info = new_tex->cb_color_info; rtex->last_msaa_resolve_target_micro_mode = new_tex->last_msaa_resolve_target_micro_mode; rtex->htile_offset = new_tex->htile_offset; rtex->tc_compatible_htile = new_tex->tc_compatible_htile; rtex->depth_cleared = new_tex->depth_cleared; rtex->stencil_cleared = new_tex->stencil_cleared; rtex->dcc_gather_statistics = new_tex->dcc_gather_statistics; rtex->framebuffers_bound = new_tex->framebuffers_bound; if (new_bind_flag == PIPE_BIND_LINEAR) { assert(!rtex->htile_offset); assert(!rtex->cmask.size); assert(!rtex->fmask.size); assert(!rtex->dcc_offset); assert(!rtex->is_depth); } r600_texture_reference(&new_tex, NULL); p_atomic_inc(&sctx->screen->dirty_tex_counter); } static uint32_t si_get_bo_metadata_word1(struct si_screen *sscreen) { return (ATI_VENDOR_ID << 16) | sscreen->info.pci_id; } static void si_query_opaque_metadata(struct si_screen *sscreen, struct r600_texture *rtex, struct radeon_bo_metadata *md) { struct pipe_resource *res = &rtex->resource.b.b; static const unsigned char swizzle[] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z, PIPE_SWIZZLE_W }; uint32_t desc[8], i; bool is_array = util_texture_is_array(res->target); /* DRM 2.x.x doesn't support this. */ if (sscreen->info.drm_major != 3) return; assert(rtex->dcc_separate_buffer == NULL); assert(rtex->fmask.size == 0); /* Metadata image format format version 1: * [0] = 1 (metadata format identifier) * [1] = (VENDOR_ID << 16) | PCI_ID * [2:9] = image descriptor for the whole resource * [2] is always 0, because the base address is cleared * [9] is the DCC offset bits [39:8] from the beginning of * the buffer * [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level */ md->metadata[0] = 1; /* metadata image format version 1 */ /* TILE_MODE_INDEX is ambiguous without a PCI ID. */ md->metadata[1] = si_get_bo_metadata_word1(sscreen); si_make_texture_descriptor(sscreen, rtex, true, res->target, res->format, swizzle, 0, res->last_level, 0, is_array ? res->array_size - 1 : 0, res->width0, res->height0, res->depth0, desc, NULL); si_set_mutable_tex_desc_fields(sscreen, rtex, &rtex->surface.u.legacy.level[0], 0, 0, rtex->surface.blk_w, false, desc); /* Clear the base address and set the relative DCC offset. */ desc[0] = 0; desc[1] &= C_008F14_BASE_ADDRESS_HI; desc[7] = rtex->dcc_offset >> 8; /* Dwords [2:9] contain the image descriptor. */ memcpy(&md->metadata[2], desc, sizeof(desc)); md->size_metadata = 10 * 4; /* Dwords [10:..] contain the mipmap level offsets. */ if (sscreen->info.chip_class <= VI) { for (i = 0; i <= res->last_level; i++) md->metadata[10+i] = rtex->surface.u.legacy.level[i].offset >> 8; md->size_metadata += (1 + res->last_level) * 4; } } static void si_apply_opaque_metadata(struct si_screen *sscreen, struct r600_texture *rtex, struct radeon_bo_metadata *md) { uint32_t *desc = &md->metadata[2]; if (sscreen->info.chip_class < VI) return; /* Return if DCC is enabled. The texture should be set up with it * already. */ if (md->size_metadata >= 10 * 4 && /* at least 2(header) + 8(desc) dwords */ md->metadata[0] != 0 && md->metadata[1] == si_get_bo_metadata_word1(sscreen) && G_008F28_COMPRESSION_EN(desc[6])) { rtex->dcc_offset = (uint64_t)desc[7] << 8; return; } /* Disable DCC. These are always set by texture_from_handle and must * be cleared here. */ rtex->dcc_offset = 0; } static boolean si_texture_get_handle(struct pipe_screen* screen, struct pipe_context *ctx, struct pipe_resource *resource, struct winsys_handle *whandle, unsigned usage) { struct si_screen *sscreen = (struct si_screen*)screen; struct si_context *sctx; struct r600_resource *res = (struct r600_resource*)resource; struct r600_texture *rtex = (struct r600_texture*)resource; struct radeon_bo_metadata metadata; bool update_metadata = false; unsigned stride, offset, slice_size; bool flush = false; ctx = threaded_context_unwrap_sync(ctx); sctx = (struct si_context*)(ctx ? ctx : sscreen->aux_context); if (resource->target != PIPE_BUFFER) { /* This is not supported now, but it might be required for OpenCL * interop in the future. */ if (resource->nr_samples > 1 || rtex->is_depth) return false; /* Move a suballocated texture into a non-suballocated allocation. */ if (sscreen->ws->buffer_is_suballocated(res->buf) || rtex->surface.tile_swizzle || (rtex->resource.flags & RADEON_FLAG_NO_INTERPROCESS_SHARING && sscreen->info.has_local_buffers && whandle->type != DRM_API_HANDLE_TYPE_KMS)) { assert(!res->b.is_shared); si_reallocate_texture_inplace(sctx, rtex, PIPE_BIND_SHARED, false); flush = true; assert(res->b.b.bind & PIPE_BIND_SHARED); assert(res->flags & RADEON_FLAG_NO_SUBALLOC); assert(!(res->flags & RADEON_FLAG_NO_INTERPROCESS_SHARING)); assert(rtex->surface.tile_swizzle == 0); } /* Since shader image stores don't support DCC on VI, * disable it for external clients that want write * access. */ if (usage & PIPE_HANDLE_USAGE_WRITE && rtex->dcc_offset) { if (si_texture_disable_dcc(sctx, rtex)) { update_metadata = true; /* si_texture_disable_dcc flushes the context */ flush = false; } } if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) && (rtex->cmask.size || rtex->dcc_offset)) { /* Eliminate fast clear (both CMASK and DCC) */ si_eliminate_fast_color_clear(sctx, rtex); /* eliminate_fast_color_clear flushes the context */ flush = false; /* Disable CMASK if flush_resource isn't going * to be called. */ if (rtex->cmask.size) si_texture_discard_cmask(sscreen, rtex); } /* Set metadata. */ if (!res->b.is_shared || update_metadata) { si_texture_init_metadata(sscreen, rtex, &metadata); si_query_opaque_metadata(sscreen, rtex, &metadata); sscreen->ws->buffer_set_metadata(res->buf, &metadata); } if (sscreen->info.chip_class >= GFX9) { offset = rtex->surface.u.gfx9.surf_offset; stride = rtex->surface.u.gfx9.surf_pitch * rtex->surface.bpe; slice_size = rtex->surface.u.gfx9.surf_slice_size; } else { offset = rtex->surface.u.legacy.level[0].offset; stride = rtex->surface.u.legacy.level[0].nblk_x * rtex->surface.bpe; slice_size = (uint64_t)rtex->surface.u.legacy.level[0].slice_size_dw * 4; } } else { /* Buffer exports are for the OpenCL interop. */ /* Move a suballocated buffer into a non-suballocated allocation. */ if (sscreen->ws->buffer_is_suballocated(res->buf) || /* A DMABUF export always fails if the BO is local. */ (rtex->resource.flags & RADEON_FLAG_NO_INTERPROCESS_SHARING && sscreen->info.has_local_buffers)) { assert(!res->b.is_shared); /* Allocate a new buffer with PIPE_BIND_SHARED. */ struct pipe_resource templ = res->b.b; templ.bind |= PIPE_BIND_SHARED; struct pipe_resource *newb = screen->resource_create(screen, &templ); if (!newb) return false; /* Copy the old buffer contents to the new one. */ struct pipe_box box; u_box_1d(0, newb->width0, &box); sctx->b.b.resource_copy_region(&sctx->b.b, newb, 0, 0, 0, 0, &res->b.b, 0, &box); flush = true; /* Move the new buffer storage to the old pipe_resource. */ si_replace_buffer_storage(&sctx->b.b, &res->b.b, newb); pipe_resource_reference(&newb, NULL); assert(res->b.b.bind & PIPE_BIND_SHARED); assert(res->flags & RADEON_FLAG_NO_SUBALLOC); } /* Buffers */ offset = 0; stride = 0; slice_size = 0; } if (flush) sctx->b.b.flush(&sctx->b.b, NULL, 0); if (res->b.is_shared) { /* USAGE_EXPLICIT_FLUSH must be cleared if at least one user * doesn't set it. */ res->external_usage |= usage & ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH; if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH)) res->external_usage &= ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH; } else { res->b.is_shared = true; res->external_usage = usage; } return sscreen->ws->buffer_get_handle(res->buf, stride, offset, slice_size, whandle); } static void si_texture_destroy(struct pipe_screen *screen, struct pipe_resource *ptex) { struct r600_texture *rtex = (struct r600_texture*)ptex; struct r600_resource *resource = &rtex->resource; r600_texture_reference(&rtex->flushed_depth_texture, NULL); if (rtex->cmask_buffer != &rtex->resource) { r600_resource_reference(&rtex->cmask_buffer, NULL); } pb_reference(&resource->buf, NULL); r600_resource_reference(&rtex->dcc_separate_buffer, NULL); r600_resource_reference(&rtex->last_dcc_separate_buffer, NULL); FREE(rtex); } static const struct u_resource_vtbl si_texture_vtbl; /* The number of samples can be specified independently of the texture. */ void si_texture_get_fmask_info(struct si_screen *sscreen, struct r600_texture *rtex, unsigned nr_samples, struct r600_fmask_info *out) { /* FMASK is allocated like an ordinary texture. */ struct pipe_resource templ = rtex->resource.b.b; struct radeon_surf fmask = {}; unsigned flags, bpe; memset(out, 0, sizeof(*out)); if (sscreen->info.chip_class >= GFX9) { out->alignment = rtex->surface.u.gfx9.fmask_alignment; out->size = rtex->surface.u.gfx9.fmask_size; out->tile_swizzle = rtex->surface.u.gfx9.fmask_tile_swizzle; return; } templ.nr_samples = 1; flags = rtex->surface.flags | RADEON_SURF_FMASK; switch (nr_samples) { case 2: case 4: bpe = 1; break; case 8: bpe = 4; break; default: PRINT_ERR("Invalid sample count for FMASK allocation.\n"); return; } if (sscreen->ws->surface_init(sscreen->ws, &templ, flags, bpe, RADEON_SURF_MODE_2D, &fmask)) { PRINT_ERR("Got error in surface_init while allocating FMASK.\n"); return; } assert(fmask.u.legacy.level[0].mode == RADEON_SURF_MODE_2D); out->slice_tile_max = (fmask.u.legacy.level[0].nblk_x * fmask.u.legacy.level[0].nblk_y) / 64; if (out->slice_tile_max) out->slice_tile_max -= 1; out->tile_mode_index = fmask.u.legacy.tiling_index[0]; out->pitch_in_pixels = fmask.u.legacy.level[0].nblk_x; out->bank_height = fmask.u.legacy.bankh; out->tile_swizzle = fmask.tile_swizzle; out->alignment = MAX2(256, fmask.surf_alignment); out->size = fmask.surf_size; } static void si_texture_allocate_fmask(struct si_screen *sscreen, struct r600_texture *rtex) { si_texture_get_fmask_info(sscreen, rtex, rtex->resource.b.b.nr_samples, &rtex->fmask); rtex->fmask.offset = align64(rtex->size, rtex->fmask.alignment); rtex->size = rtex->fmask.offset + rtex->fmask.size; } void si_texture_get_cmask_info(struct si_screen *sscreen, struct r600_texture *rtex, struct r600_cmask_info *out) { unsigned pipe_interleave_bytes = sscreen->info.pipe_interleave_bytes; unsigned num_pipes = sscreen->info.num_tile_pipes; unsigned cl_width, cl_height; if (sscreen->info.chip_class >= GFX9) { out->alignment = rtex->surface.u.gfx9.cmask_alignment; out->size = rtex->surface.u.gfx9.cmask_size; return; } switch (num_pipes) { case 2: cl_width = 32; cl_height = 16; break; case 4: cl_width = 32; cl_height = 32; break; case 8: cl_width = 64; cl_height = 32; break; case 16: /* Hawaii */ cl_width = 64; cl_height = 64; break; default: assert(0); return; } unsigned base_align = num_pipes * pipe_interleave_bytes; unsigned width = align(rtex->resource.b.b.width0, cl_width*8); unsigned height = align(rtex->resource.b.b.height0, cl_height*8); unsigned slice_elements = (width * height) / (8*8); /* Each element of CMASK is a nibble. */ unsigned slice_bytes = slice_elements / 2; out->slice_tile_max = (width * height) / (128*128); if (out->slice_tile_max) out->slice_tile_max -= 1; out->alignment = MAX2(256, base_align); out->size = util_num_layers(&rtex->resource.b.b, 0) * align(slice_bytes, base_align); } static void si_texture_allocate_cmask(struct si_screen *sscreen, struct r600_texture *rtex) { si_texture_get_cmask_info(sscreen, rtex, &rtex->cmask); rtex->cmask.offset = align64(rtex->size, rtex->cmask.alignment); rtex->size = rtex->cmask.offset + rtex->cmask.size; rtex->cb_color_info |= S_028C70_FAST_CLEAR(1); } static void si_texture_get_htile_size(struct si_screen *sscreen, struct r600_texture *rtex) { unsigned cl_width, cl_height, width, height; unsigned slice_elements, slice_bytes, pipe_interleave_bytes, base_align; unsigned num_pipes = sscreen->info.num_tile_pipes; assert(sscreen->info.chip_class <= VI); rtex->surface.htile_size = 0; /* HTILE is broken with 1D tiling on old kernels and CIK. */ if (sscreen->info.chip_class >= CIK && rtex->surface.u.legacy.level[0].mode == RADEON_SURF_MODE_1D && sscreen->info.drm_major == 2 && sscreen->info.drm_minor < 38) return; /* Overalign HTILE on P2 configs to work around GPU hangs in * piglit/depthstencil-render-miplevels 585. * * This has been confirmed to help Kabini & Stoney, where the hangs * are always reproducible. I think I have seen the test hang * on Carrizo too, though it was very rare there. */ if (sscreen->info.chip_class >= CIK && num_pipes < 4) num_pipes = 4; switch (num_pipes) { case 1: cl_width = 32; cl_height = 16; break; case 2: cl_width = 32; cl_height = 32; break; case 4: cl_width = 64; cl_height = 32; break; case 8: cl_width = 64; cl_height = 64; break; case 16: cl_width = 128; cl_height = 64; break; default: assert(0); return; } width = align(rtex->resource.b.b.width0, cl_width * 8); height = align(rtex->resource.b.b.height0, cl_height * 8); slice_elements = (width * height) / (8 * 8); slice_bytes = slice_elements * 4; pipe_interleave_bytes = sscreen->info.pipe_interleave_bytes; base_align = num_pipes * pipe_interleave_bytes; rtex->surface.htile_alignment = base_align; rtex->surface.htile_size = util_num_layers(&rtex->resource.b.b, 0) * align(slice_bytes, base_align); } static void si_texture_allocate_htile(struct si_screen *sscreen, struct r600_texture *rtex) { if (sscreen->info.chip_class <= VI && !rtex->tc_compatible_htile) si_texture_get_htile_size(sscreen, rtex); if (!rtex->surface.htile_size) return; rtex->htile_offset = align(rtex->size, rtex->surface.htile_alignment); rtex->size = rtex->htile_offset + rtex->surface.htile_size; } void si_print_texture_info(struct si_screen *sscreen, struct r600_texture *rtex, struct u_log_context *log) { int i; /* Common parameters. */ u_log_printf(log, " Info: npix_x=%u, npix_y=%u, npix_z=%u, blk_w=%u, " "blk_h=%u, array_size=%u, last_level=%u, " "bpe=%u, nsamples=%u, flags=0x%x, %s\n", rtex->resource.b.b.width0, rtex->resource.b.b.height0, rtex->resource.b.b.depth0, rtex->surface.blk_w, rtex->surface.blk_h, rtex->resource.b.b.array_size, rtex->resource.b.b.last_level, rtex->surface.bpe, rtex->resource.b.b.nr_samples, rtex->surface.flags, util_format_short_name(rtex->resource.b.b.format)); if (sscreen->info.chip_class >= GFX9) { u_log_printf(log, " Surf: size=%"PRIu64", slice_size=%"PRIu64", " "alignment=%u, swmode=%u, epitch=%u, pitch=%u\n", rtex->surface.surf_size, rtex->surface.u.gfx9.surf_slice_size, rtex->surface.surf_alignment, rtex->surface.u.gfx9.surf.swizzle_mode, rtex->surface.u.gfx9.surf.epitch, rtex->surface.u.gfx9.surf_pitch); if (rtex->fmask.size) { u_log_printf(log, " FMASK: offset=%"PRIu64", size=%"PRIu64", " "alignment=%u, swmode=%u, epitch=%u\n", rtex->fmask.offset, rtex->surface.u.gfx9.fmask_size, rtex->surface.u.gfx9.fmask_alignment, rtex->surface.u.gfx9.fmask.swizzle_mode, rtex->surface.u.gfx9.fmask.epitch); } if (rtex->cmask.size) { u_log_printf(log, " CMask: offset=%"PRIu64", size=%"PRIu64", " "alignment=%u, rb_aligned=%u, pipe_aligned=%u\n", rtex->cmask.offset, rtex->surface.u.gfx9.cmask_size, rtex->surface.u.gfx9.cmask_alignment, rtex->surface.u.gfx9.cmask.rb_aligned, rtex->surface.u.gfx9.cmask.pipe_aligned); } if (rtex->htile_offset) { u_log_printf(log, " HTile: offset=%"PRIu64", size=%u, alignment=%u, " "rb_aligned=%u, pipe_aligned=%u\n", rtex->htile_offset, rtex->surface.htile_size, rtex->surface.htile_alignment, rtex->surface.u.gfx9.htile.rb_aligned, rtex->surface.u.gfx9.htile.pipe_aligned); } if (rtex->dcc_offset) { u_log_printf(log, " DCC: offset=%"PRIu64", size=%u, " "alignment=%u, pitch_max=%u, num_dcc_levels=%u\n", rtex->dcc_offset, rtex->surface.dcc_size, rtex->surface.dcc_alignment, rtex->surface.u.gfx9.dcc_pitch_max, rtex->surface.num_dcc_levels); } if (rtex->surface.u.gfx9.stencil_offset) { u_log_printf(log, " Stencil: offset=%"PRIu64", swmode=%u, epitch=%u\n", rtex->surface.u.gfx9.stencil_offset, rtex->surface.u.gfx9.stencil.swizzle_mode, rtex->surface.u.gfx9.stencil.epitch); } return; } u_log_printf(log, " Layout: size=%"PRIu64", alignment=%u, bankw=%u, " "bankh=%u, nbanks=%u, mtilea=%u, tilesplit=%u, pipeconfig=%u, scanout=%u\n", rtex->surface.surf_size, rtex->surface.surf_alignment, rtex->surface.u.legacy.bankw, rtex->surface.u.legacy.bankh, rtex->surface.u.legacy.num_banks, rtex->surface.u.legacy.mtilea, rtex->surface.u.legacy.tile_split, rtex->surface.u.legacy.pipe_config, (rtex->surface.flags & RADEON_SURF_SCANOUT) != 0); if (rtex->fmask.size) u_log_printf(log, " FMask: offset=%"PRIu64", size=%"PRIu64", alignment=%u, pitch_in_pixels=%u, " "bankh=%u, slice_tile_max=%u, tile_mode_index=%u\n", rtex->fmask.offset, rtex->fmask.size, rtex->fmask.alignment, rtex->fmask.pitch_in_pixels, rtex->fmask.bank_height, rtex->fmask.slice_tile_max, rtex->fmask.tile_mode_index); if (rtex->cmask.size) u_log_printf(log, " CMask: offset=%"PRIu64", size=%"PRIu64", alignment=%u, " "slice_tile_max=%u\n", rtex->cmask.offset, rtex->cmask.size, rtex->cmask.alignment, rtex->cmask.slice_tile_max); if (rtex->htile_offset) u_log_printf(log, " HTile: offset=%"PRIu64", size=%u, " "alignment=%u, TC_compatible = %u\n", rtex->htile_offset, rtex->surface.htile_size, rtex->surface.htile_alignment, rtex->tc_compatible_htile); if (rtex->dcc_offset) { u_log_printf(log, " DCC: offset=%"PRIu64", size=%u, alignment=%u\n", rtex->dcc_offset, rtex->surface.dcc_size, rtex->surface.dcc_alignment); for (i = 0; i <= rtex->resource.b.b.last_level; i++) u_log_printf(log, " DCCLevel[%i]: enabled=%u, offset=%u, " "fast_clear_size=%u\n", i, i < rtex->surface.num_dcc_levels, rtex->surface.u.legacy.level[i].dcc_offset, rtex->surface.u.legacy.level[i].dcc_fast_clear_size); } for (i = 0; i <= rtex->resource.b.b.last_level; i++) u_log_printf(log, " Level[%i]: offset=%"PRIu64", slice_size=%"PRIu64", " "npix_x=%u, npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, " "mode=%u, tiling_index = %u\n", i, rtex->surface.u.legacy.level[i].offset, (uint64_t)rtex->surface.u.legacy.level[i].slice_size_dw * 4, u_minify(rtex->resource.b.b.width0, i), u_minify(rtex->resource.b.b.height0, i), u_minify(rtex->resource.b.b.depth0, i), rtex->surface.u.legacy.level[i].nblk_x, rtex->surface.u.legacy.level[i].nblk_y, rtex->surface.u.legacy.level[i].mode, rtex->surface.u.legacy.tiling_index[i]); if (rtex->surface.has_stencil) { u_log_printf(log, " StencilLayout: tilesplit=%u\n", rtex->surface.u.legacy.stencil_tile_split); for (i = 0; i <= rtex->resource.b.b.last_level; i++) { u_log_printf(log, " StencilLevel[%i]: offset=%"PRIu64", " "slice_size=%"PRIu64", npix_x=%u, " "npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, " "mode=%u, tiling_index = %u\n", i, rtex->surface.u.legacy.stencil_level[i].offset, (uint64_t)rtex->surface.u.legacy.stencil_level[i].slice_size_dw * 4, u_minify(rtex->resource.b.b.width0, i), u_minify(rtex->resource.b.b.height0, i), u_minify(rtex->resource.b.b.depth0, i), rtex->surface.u.legacy.stencil_level[i].nblk_x, rtex->surface.u.legacy.stencil_level[i].nblk_y, rtex->surface.u.legacy.stencil_level[i].mode, rtex->surface.u.legacy.stencil_tiling_index[i]); } } } /* Common processing for r600_texture_create and r600_texture_from_handle */ static struct r600_texture * si_texture_create_object(struct pipe_screen *screen, const struct pipe_resource *base, struct pb_buffer *buf, struct radeon_surf *surface) { struct r600_texture *rtex; struct r600_resource *resource; struct si_screen *sscreen = (struct si_screen*)screen; rtex = CALLOC_STRUCT(r600_texture); if (!rtex) return NULL; resource = &rtex->resource; resource->b.b = *base; resource->b.b.next = NULL; resource->b.vtbl = &si_texture_vtbl; pipe_reference_init(&resource->b.b.reference, 1); resource->b.b.screen = screen; /* don't include stencil-only formats which we don't support for rendering */ rtex->is_depth = util_format_has_depth(util_format_description(rtex->resource.b.b.format)); rtex->surface = *surface; rtex->size = rtex->surface.surf_size; rtex->tc_compatible_htile = rtex->surface.htile_size != 0 && (rtex->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE); /* TC-compatible HTILE: * - VI only supports Z32_FLOAT. * - GFX9 only supports Z32_FLOAT and Z16_UNORM. */ if (rtex->tc_compatible_htile) { if (sscreen->info.chip_class >= GFX9 && base->format == PIPE_FORMAT_Z16_UNORM) rtex->db_render_format = base->format; else { rtex->db_render_format = PIPE_FORMAT_Z32_FLOAT; rtex->upgraded_depth = base->format != PIPE_FORMAT_Z32_FLOAT && base->format != PIPE_FORMAT_Z32_FLOAT_S8X24_UINT; } } else { rtex->db_render_format = base->format; } /* Applies to GCN. */ rtex->last_msaa_resolve_target_micro_mode = rtex->surface.micro_tile_mode; /* Disable separate DCC at the beginning. DRI2 doesn't reuse buffers * between frames, so the only thing that can enable separate DCC * with DRI2 is multiple slow clears within a frame. */ rtex->ps_draw_ratio = 0; if (rtex->is_depth) { if (sscreen->info.chip_class >= GFX9) { rtex->can_sample_z = true; rtex->can_sample_s = true; } else { rtex->can_sample_z = !rtex->surface.u.legacy.depth_adjusted; rtex->can_sample_s = !rtex->surface.u.legacy.stencil_adjusted; } if (!(base->flags & (SI_RESOURCE_FLAG_TRANSFER | SI_RESOURCE_FLAG_FLUSHED_DEPTH))) { rtex->db_compatible = true; if (!(sscreen->debug_flags & DBG(NO_HYPERZ))) si_texture_allocate_htile(sscreen, rtex); } } else { if (base->nr_samples > 1 && !buf && !(sscreen->debug_flags & DBG(NO_FMASK))) { si_texture_allocate_fmask(sscreen, rtex); si_texture_allocate_cmask(sscreen, rtex); rtex->cmask_buffer = &rtex->resource; if (!rtex->fmask.size || !rtex->cmask.size) { FREE(rtex); return NULL; } } /* Shared textures must always set up DCC here. * If it's not present, it will be disabled by * apply_opaque_metadata later. */ if (rtex->surface.dcc_size && (buf || !(sscreen->debug_flags & DBG(NO_DCC))) && !(rtex->surface.flags & RADEON_SURF_SCANOUT)) { /* Reserve space for the DCC buffer. */ rtex->dcc_offset = align64(rtex->size, rtex->surface.dcc_alignment); rtex->size = rtex->dcc_offset + rtex->surface.dcc_size; } } /* Now create the backing buffer. */ if (!buf) { si_init_resource_fields(sscreen, resource, rtex->size, rtex->surface.surf_alignment); if (!si_alloc_resource(sscreen, resource)) { FREE(rtex); return NULL; } } else { resource->buf = buf; resource->gpu_address = sscreen->ws->buffer_get_virtual_address(resource->buf); resource->bo_size = buf->size; resource->bo_alignment = buf->alignment; resource->domains = sscreen->ws->buffer_get_initial_domain(resource->buf); if (resource->domains & RADEON_DOMAIN_VRAM) resource->vram_usage = buf->size; else if (resource->domains & RADEON_DOMAIN_GTT) resource->gart_usage = buf->size; } if (rtex->cmask.size) { /* Initialize the cmask to 0xCC (= compressed state). */ si_screen_clear_buffer(sscreen, &rtex->cmask_buffer->b.b, rtex->cmask.offset, rtex->cmask.size, 0xCCCCCCCC); } if (rtex->htile_offset) { uint32_t clear_value = 0; if (sscreen->info.chip_class >= GFX9 || rtex->tc_compatible_htile) clear_value = 0x0000030F; si_screen_clear_buffer(sscreen, &rtex->resource.b.b, rtex->htile_offset, rtex->surface.htile_size, clear_value); } /* Initialize DCC only if the texture is not being imported. */ if (!buf && rtex->dcc_offset) { si_screen_clear_buffer(sscreen, &rtex->resource.b.b, rtex->dcc_offset, rtex->surface.dcc_size, 0xFFFFFFFF); } /* Initialize the CMASK base register value. */ rtex->cmask.base_address_reg = (rtex->resource.gpu_address + rtex->cmask.offset) >> 8; if (sscreen->debug_flags & DBG(VM)) { fprintf(stderr, "VM start=0x%"PRIX64" end=0x%"PRIX64" | Texture %ix%ix%i, %i levels, %i samples, %s\n", rtex->resource.gpu_address, rtex->resource.gpu_address + rtex->resource.buf->size, base->width0, base->height0, util_num_layers(base, 0), base->last_level+1, base->nr_samples ? base->nr_samples : 1, util_format_short_name(base->format)); } if (sscreen->debug_flags & DBG(TEX)) { puts("Texture:"); struct u_log_context log; u_log_context_init(&log); si_print_texture_info(sscreen, rtex, &log); u_log_new_page_print(&log, stdout); fflush(stdout); u_log_context_destroy(&log); } return rtex; } static enum radeon_surf_mode si_choose_tiling(struct si_screen *sscreen, const struct pipe_resource *templ) { const struct util_format_description *desc = util_format_description(templ->format); bool force_tiling = templ->flags & SI_RESOURCE_FLAG_FORCE_TILING; bool is_depth_stencil = util_format_is_depth_or_stencil(templ->format) && !(templ->flags & SI_RESOURCE_FLAG_FLUSHED_DEPTH); /* MSAA resources must be 2D tiled. */ if (templ->nr_samples > 1) return RADEON_SURF_MODE_2D; /* Transfer resources should be linear. */ if (templ->flags & SI_RESOURCE_FLAG_TRANSFER) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Avoid Z/S decompress blits by forcing TC-compatible HTILE on VI, * which requires 2D tiling. */ if (sscreen->info.chip_class == VI && is_depth_stencil && (templ->flags & PIPE_RESOURCE_FLAG_TEXTURING_MORE_LIKELY)) return RADEON_SURF_MODE_2D; /* Handle common candidates for the linear mode. * Compressed textures and DB surfaces must always be tiled. */ if (!force_tiling && !is_depth_stencil && !util_format_is_compressed(templ->format)) { if (sscreen->debug_flags & DBG(NO_TILING)) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Tiling doesn't work with the 422 (SUBSAMPLED) formats on R600+. */ if (desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Cursors are linear on SI. * (XXX double-check, maybe also use RADEON_SURF_SCANOUT) */ if (templ->bind & PIPE_BIND_CURSOR) return RADEON_SURF_MODE_LINEAR_ALIGNED; if (templ->bind & PIPE_BIND_LINEAR) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Textures with a very small height are recommended to be linear. */ if (templ->target == PIPE_TEXTURE_1D || templ->target == PIPE_TEXTURE_1D_ARRAY || /* Only very thin and long 2D textures should benefit from * linear_aligned. */ (templ->width0 > 8 && templ->height0 <= 2)) return RADEON_SURF_MODE_LINEAR_ALIGNED; /* Textures likely to be mapped often. */ if (templ->usage == PIPE_USAGE_STAGING || templ->usage == PIPE_USAGE_STREAM) return RADEON_SURF_MODE_LINEAR_ALIGNED; } /* Make small textures 1D tiled. */ if (templ->width0 <= 16 || templ->height0 <= 16 || (sscreen->debug_flags & DBG(NO_2D_TILING))) return RADEON_SURF_MODE_1D; /* The allocator will switch to 1D if needed. */ return RADEON_SURF_MODE_2D; } struct pipe_resource *si_texture_create(struct pipe_screen *screen, const struct pipe_resource *templ) { struct si_screen *sscreen = (struct si_screen*)screen; struct radeon_surf surface = {0}; bool is_flushed_depth = templ->flags & SI_RESOURCE_FLAG_FLUSHED_DEPTH; bool tc_compatible_htile = sscreen->info.chip_class >= VI && (templ->flags & PIPE_RESOURCE_FLAG_TEXTURING_MORE_LIKELY) && !(sscreen->debug_flags & DBG(NO_HYPERZ)) && !is_flushed_depth && templ->nr_samples <= 1 && /* TC-compat HTILE is less efficient with MSAA */ util_format_is_depth_or_stencil(templ->format); int r; r = si_init_surface(sscreen, &surface, templ, si_choose_tiling(sscreen, templ), 0, 0, false, false, is_flushed_depth, tc_compatible_htile); if (r) { return NULL; } return (struct pipe_resource *) si_texture_create_object(screen, templ, NULL, &surface); } static struct pipe_resource *si_texture_from_handle(struct pipe_screen *screen, const struct pipe_resource *templ, struct winsys_handle *whandle, unsigned usage) { struct si_screen *sscreen = (struct si_screen*)screen; struct pb_buffer *buf = NULL; unsigned stride = 0, offset = 0; enum radeon_surf_mode array_mode; struct radeon_surf surface = {}; int r; struct radeon_bo_metadata metadata = {}; struct r600_texture *rtex; bool is_scanout; /* Support only 2D textures without mipmaps */ if ((templ->target != PIPE_TEXTURE_2D && templ->target != PIPE_TEXTURE_RECT) || templ->depth0 != 1 || templ->last_level != 0) return NULL; buf = sscreen->ws->buffer_from_handle(sscreen->ws, whandle, &stride, &offset); if (!buf) return NULL; sscreen->ws->buffer_get_metadata(buf, &metadata); si_surface_import_metadata(sscreen, &surface, &metadata, &array_mode, &is_scanout); r = si_init_surface(sscreen, &surface, templ, array_mode, stride, offset, true, is_scanout, false, false); if (r) { return NULL; } rtex = si_texture_create_object(screen, templ, buf, &surface); if (!rtex) return NULL; rtex->resource.b.is_shared = true; rtex->resource.external_usage = usage; si_apply_opaque_metadata(sscreen, rtex, &metadata); assert(rtex->surface.tile_swizzle == 0); return &rtex->resource.b.b; } bool si_init_flushed_depth_texture(struct pipe_context *ctx, struct pipe_resource *texture, struct r600_texture **staging) { struct r600_texture *rtex = (struct r600_texture*)texture; struct pipe_resource resource; struct r600_texture **flushed_depth_texture = staging ? staging : &rtex->flushed_depth_texture; enum pipe_format pipe_format = texture->format; if (!staging) { if (rtex->flushed_depth_texture) return true; /* it's ready */ if (!rtex->can_sample_z && rtex->can_sample_s) { switch (pipe_format) { case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT: /* Save memory by not allocating the S plane. */ pipe_format = PIPE_FORMAT_Z32_FLOAT; break; case PIPE_FORMAT_Z24_UNORM_S8_UINT: case PIPE_FORMAT_S8_UINT_Z24_UNORM: /* Save memory bandwidth by not copying the * stencil part during flush. * * This potentially increases memory bandwidth * if an application uses both Z and S texturing * simultaneously (a flushed Z24S8 texture * would be stored compactly), but how often * does that really happen? */ pipe_format = PIPE_FORMAT_Z24X8_UNORM; break; default:; } } else if (!rtex->can_sample_s && rtex->can_sample_z) { assert(util_format_has_stencil(util_format_description(pipe_format))); /* DB->CB copies to an 8bpp surface don't work. */ pipe_format = PIPE_FORMAT_X24S8_UINT; } } memset(&resource, 0, sizeof(resource)); resource.target = texture->target; resource.format = pipe_format; resource.width0 = texture->width0; resource.height0 = texture->height0; resource.depth0 = texture->depth0; resource.array_size = texture->array_size; resource.last_level = texture->last_level; resource.nr_samples = texture->nr_samples; resource.usage = staging ? PIPE_USAGE_STAGING : PIPE_USAGE_DEFAULT; resource.bind = texture->bind & ~PIPE_BIND_DEPTH_STENCIL; resource.flags = texture->flags | SI_RESOURCE_FLAG_FLUSHED_DEPTH; if (staging) resource.flags |= SI_RESOURCE_FLAG_TRANSFER; *flushed_depth_texture = (struct r600_texture *)ctx->screen->resource_create(ctx->screen, &resource); if (*flushed_depth_texture == NULL) { PRINT_ERR("failed to create temporary texture to hold flushed depth\n"); return false; } return true; } /** * Initialize the pipe_resource descriptor to be of the same size as the box, * which is supposed to hold a subregion of the texture "orig" at the given * mipmap level. */ static void si_init_temp_resource_from_box(struct pipe_resource *res, struct pipe_resource *orig, const struct pipe_box *box, unsigned level, unsigned flags) { memset(res, 0, sizeof(*res)); res->format = orig->format; res->width0 = box->width; res->height0 = box->height; res->depth0 = 1; res->array_size = 1; res->usage = flags & SI_RESOURCE_FLAG_TRANSFER ? PIPE_USAGE_STAGING : PIPE_USAGE_DEFAULT; res->flags = flags; /* We must set the correct texture target and dimensions for a 3D box. */ if (box->depth > 1 && util_max_layer(orig, level) > 0) { res->target = PIPE_TEXTURE_2D_ARRAY; res->array_size = box->depth; } else { res->target = PIPE_TEXTURE_2D; } } static bool si_can_invalidate_texture(struct si_screen *sscreen, struct r600_texture *rtex, unsigned transfer_usage, const struct pipe_box *box) { return !rtex->resource.b.is_shared && !(transfer_usage & PIPE_TRANSFER_READ) && rtex->resource.b.b.last_level == 0 && util_texrange_covers_whole_level(&rtex->resource.b.b, 0, box->x, box->y, box->z, box->width, box->height, box->depth); } static void si_texture_invalidate_storage(struct si_context *sctx, struct r600_texture *rtex) { struct si_screen *sscreen = sctx->screen; /* There is no point in discarding depth and tiled buffers. */ assert(!rtex->is_depth); assert(rtex->surface.is_linear); /* Reallocate the buffer in the same pipe_resource. */ si_alloc_resource(sscreen, &rtex->resource); /* Initialize the CMASK base address (needed even without CMASK). */ rtex->cmask.base_address_reg = (rtex->resource.gpu_address + rtex->cmask.offset) >> 8; p_atomic_inc(&sscreen->dirty_tex_counter); sctx->b.num_alloc_tex_transfer_bytes += rtex->size; } static void *si_texture_transfer_map(struct pipe_context *ctx, struct pipe_resource *texture, unsigned level, unsigned usage, const struct pipe_box *box, struct pipe_transfer **ptransfer) { struct si_context *sctx = (struct si_context*)ctx; struct r600_texture *rtex = (struct r600_texture*)texture; struct r600_transfer *trans; struct r600_resource *buf; unsigned offset = 0; char *map; bool use_staging_texture = false; assert(!(texture->flags & SI_RESOURCE_FLAG_TRANSFER)); assert(box->width && box->height && box->depth); /* Depth textures use staging unconditionally. */ if (!rtex->is_depth) { /* Degrade the tile mode if we get too many transfers on APUs. * On dGPUs, the staging texture is always faster. * Only count uploads that are at least 4x4 pixels large. */ if (!sctx->screen->info.has_dedicated_vram && level == 0 && box->width >= 4 && box->height >= 4 && p_atomic_inc_return(&rtex->num_level0_transfers) == 10) { bool can_invalidate = si_can_invalidate_texture(sctx->screen, rtex, usage, box); si_reallocate_texture_inplace(sctx, rtex, PIPE_BIND_LINEAR, can_invalidate); } /* Tiled textures need to be converted into a linear texture for CPU * access. The staging texture is always linear and is placed in GART. * * Reading from VRAM or GTT WC is slow, always use the staging * texture in this case. * * Use the staging texture for uploads if the underlying BO * is busy. */ if (!rtex->surface.is_linear) use_staging_texture = true; else if (usage & PIPE_TRANSFER_READ) use_staging_texture = rtex->resource.domains & RADEON_DOMAIN_VRAM || rtex->resource.flags & RADEON_FLAG_GTT_WC; /* Write & linear only: */ else if (si_rings_is_buffer_referenced(sctx, rtex->resource.buf, RADEON_USAGE_READWRITE) || !sctx->b.ws->buffer_wait(rtex->resource.buf, 0, RADEON_USAGE_READWRITE)) { /* It's busy. */ if (si_can_invalidate_texture(sctx->screen, rtex, usage, box)) si_texture_invalidate_storage(sctx, rtex); else use_staging_texture = true; } } trans = CALLOC_STRUCT(r600_transfer); if (!trans) return NULL; pipe_resource_reference(&trans->b.b.resource, texture); trans->b.b.level = level; trans->b.b.usage = usage; trans->b.b.box = *box; if (rtex->is_depth) { struct r600_texture *staging_depth; if (rtex->resource.b.b.nr_samples > 1) { /* MSAA depth buffers need to be converted to single sample buffers. * * Mapping MSAA depth buffers can occur if ReadPixels is called * with a multisample GLX visual. * * First downsample the depth buffer to a temporary texture, * then decompress the temporary one to staging. * * Only the region being mapped is transfered. */ struct pipe_resource resource; si_init_temp_resource_from_box(&resource, texture, box, level, 0); if (!si_init_flushed_depth_texture(ctx, &resource, &staging_depth)) { PRINT_ERR("failed to create temporary texture to hold untiled copy\n"); FREE(trans); return NULL; } if (usage & PIPE_TRANSFER_READ) { struct pipe_resource *temp = ctx->screen->resource_create(ctx->screen, &resource); if (!temp) { PRINT_ERR("failed to create a temporary depth texture\n"); FREE(trans); return NULL; } si_copy_region_with_blit(ctx, temp, 0, 0, 0, 0, texture, level, box); si_blit_decompress_depth(ctx, (struct r600_texture*)temp, staging_depth, 0, 0, 0, box->depth, 0, 0); pipe_resource_reference(&temp, NULL); } /* Just get the strides. */ si_texture_get_offset(sctx->screen, staging_depth, level, NULL, &trans->b.b.stride, &trans->b.b.layer_stride); } else { /* XXX: only readback the rectangle which is being mapped? */ /* XXX: when discard is true, no need to read back from depth texture */ if (!si_init_flushed_depth_texture(ctx, texture, &staging_depth)) { PRINT_ERR("failed to create temporary texture to hold untiled copy\n"); FREE(trans); return NULL; } si_blit_decompress_depth(ctx, rtex, staging_depth, level, level, box->z, box->z + box->depth - 1, 0, 0); offset = si_texture_get_offset(sctx->screen, staging_depth, level, box, &trans->b.b.stride, &trans->b.b.layer_stride); } trans->staging = (struct r600_resource*)staging_depth; buf = trans->staging; } else if (use_staging_texture) { struct pipe_resource resource; struct r600_texture *staging; si_init_temp_resource_from_box(&resource, texture, box, level, SI_RESOURCE_FLAG_TRANSFER); resource.usage = (usage & PIPE_TRANSFER_READ) ? PIPE_USAGE_STAGING : PIPE_USAGE_STREAM; /* Create the temporary texture. */ staging = (struct r600_texture*)ctx->screen->resource_create(ctx->screen, &resource); if (!staging) { PRINT_ERR("failed to create temporary texture to hold untiled copy\n"); FREE(trans); return NULL; } trans->staging = &staging->resource; /* Just get the strides. */ si_texture_get_offset(sctx->screen, staging, 0, NULL, &trans->b.b.stride, &trans->b.b.layer_stride); if (usage & PIPE_TRANSFER_READ) si_copy_to_staging_texture(ctx, trans); else usage |= PIPE_TRANSFER_UNSYNCHRONIZED; buf = trans->staging; } else { /* the resource is mapped directly */ offset = si_texture_get_offset(sctx->screen, rtex, level, box, &trans->b.b.stride, &trans->b.b.layer_stride); buf = &rtex->resource; } if (!(map = si_buffer_map_sync_with_rings(sctx, buf, usage))) { r600_resource_reference(&trans->staging, NULL); FREE(trans); return NULL; } *ptransfer = &trans->b.b; return map + offset; } static void si_texture_transfer_unmap(struct pipe_context *ctx, struct pipe_transfer* transfer) { struct si_context *sctx = (struct si_context*)ctx; struct r600_transfer *rtransfer = (struct r600_transfer*)transfer; struct pipe_resource *texture = transfer->resource; struct r600_texture *rtex = (struct r600_texture*)texture; if ((transfer->usage & PIPE_TRANSFER_WRITE) && rtransfer->staging) { if (rtex->is_depth && rtex->resource.b.b.nr_samples <= 1) { ctx->resource_copy_region(ctx, texture, transfer->level, transfer->box.x, transfer->box.y, transfer->box.z, &rtransfer->staging->b.b, transfer->level, &transfer->box); } else { si_copy_from_staging_texture(ctx, rtransfer); } } if (rtransfer->staging) { sctx->b.num_alloc_tex_transfer_bytes += rtransfer->staging->buf->size; r600_resource_reference(&rtransfer->staging, NULL); } /* Heuristic for {upload, draw, upload, draw, ..}: * * Flush the gfx IB if we've allocated too much texture storage. * * The idea is that we don't want to build IBs that use too much * memory and put pressure on the kernel memory manager and we also * want to make temporary and invalidated buffers go idle ASAP to * decrease the total memory usage or make them reusable. The memory * usage will be slightly higher than given here because of the buffer * cache in the winsys. * * The result is that the kernel memory manager is never a bottleneck. */ if (sctx->b.num_alloc_tex_transfer_bytes > sctx->screen->info.gart_size / 4) { si_flush_gfx_cs(sctx, PIPE_FLUSH_ASYNC, NULL); sctx->b.num_alloc_tex_transfer_bytes = 0; } pipe_resource_reference(&transfer->resource, NULL); FREE(transfer); } static const struct u_resource_vtbl si_texture_vtbl = { NULL, /* get_handle */ si_texture_destroy, /* resource_destroy */ si_texture_transfer_map, /* transfer_map */ u_default_transfer_flush_region, /* transfer_flush_region */ si_texture_transfer_unmap, /* transfer_unmap */ }; /* DCC channel type categories within which formats can be reinterpreted * while keeping the same DCC encoding. The swizzle must also match. */ enum dcc_channel_type { dcc_channel_float, /* uint and sint can be merged if we never use TC-compatible DCC clear * encoding with the clear value of 1. */ dcc_channel_uint, dcc_channel_sint, dcc_channel_uint_10_10_10_2, dcc_channel_incompatible, }; /* Return the type of DCC encoding. */ static enum dcc_channel_type vi_get_dcc_channel_type(const struct util_format_description *desc) { int i; /* Find the first non-void channel. */ for (i = 0; i < desc->nr_channels; i++) if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) break; if (i == desc->nr_channels) return dcc_channel_incompatible; switch (desc->channel[i].size) { case 32: case 16: case 8: if (desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT) return dcc_channel_float; if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) return dcc_channel_uint; return dcc_channel_sint; case 10: return dcc_channel_uint_10_10_10_2; default: return dcc_channel_incompatible; } } /* Return if it's allowed to reinterpret one format as another with DCC enabled. */ bool vi_dcc_formats_compatible(enum pipe_format format1, enum pipe_format format2) { const struct util_format_description *desc1, *desc2; enum dcc_channel_type type1, type2; int i; if (format1 == format2) return true; desc1 = util_format_description(format1); desc2 = util_format_description(format2); if (desc1->nr_channels != desc2->nr_channels) return false; /* Swizzles must be the same. */ for (i = 0; i < desc1->nr_channels; i++) if (desc1->swizzle[i] <= PIPE_SWIZZLE_W && desc2->swizzle[i] <= PIPE_SWIZZLE_W && desc1->swizzle[i] != desc2->swizzle[i]) return false; type1 = vi_get_dcc_channel_type(desc1); type2 = vi_get_dcc_channel_type(desc2); return type1 != dcc_channel_incompatible && type2 != dcc_channel_incompatible && type1 == type2; } bool vi_dcc_formats_are_incompatible(struct pipe_resource *tex, unsigned level, enum pipe_format view_format) { struct r600_texture *rtex = (struct r600_texture *)tex; return vi_dcc_enabled(rtex, level) && !vi_dcc_formats_compatible(tex->format, view_format); } /* This can't be merged with the above function, because * vi_dcc_formats_compatible should be called only when DCC is enabled. */ void vi_disable_dcc_if_incompatible_format(struct si_context *sctx, struct pipe_resource *tex, unsigned level, enum pipe_format view_format) { struct r600_texture *rtex = (struct r600_texture *)tex; if (vi_dcc_formats_are_incompatible(tex, level, view_format)) if (!si_texture_disable_dcc(sctx, (struct r600_texture*)tex)) si_decompress_dcc(sctx, rtex); } struct pipe_surface *si_create_surface_custom(struct pipe_context *pipe, struct pipe_resource *texture, const struct pipe_surface *templ, unsigned width0, unsigned height0, unsigned width, unsigned height) { struct r600_surface *surface = CALLOC_STRUCT(r600_surface); if (!surface) return NULL; assert(templ->u.tex.first_layer <= util_max_layer(texture, templ->u.tex.level)); assert(templ->u.tex.last_layer <= util_max_layer(texture, templ->u.tex.level)); pipe_reference_init(&surface->base.reference, 1); pipe_resource_reference(&surface->base.texture, texture); surface->base.context = pipe; surface->base.format = templ->format; surface->base.width = width; surface->base.height = height; surface->base.u = templ->u; surface->width0 = width0; surface->height0 = height0; surface->dcc_incompatible = texture->target != PIPE_BUFFER && vi_dcc_formats_are_incompatible(texture, templ->u.tex.level, templ->format); return &surface->base; } static struct pipe_surface *si_create_surface(struct pipe_context *pipe, struct pipe_resource *tex, const struct pipe_surface *templ) { unsigned level = templ->u.tex.level; unsigned width = u_minify(tex->width0, level); unsigned height = u_minify(tex->height0, level); unsigned width0 = tex->width0; unsigned height0 = tex->height0; if (tex->target != PIPE_BUFFER && templ->format != tex->format) { const struct util_format_description *tex_desc = util_format_description(tex->format); const struct util_format_description *templ_desc = util_format_description(templ->format); assert(tex_desc->block.bits == templ_desc->block.bits); /* Adjust size of surface if and only if the block width or * height is changed. */ if (tex_desc->block.width != templ_desc->block.width || tex_desc->block.height != templ_desc->block.height) { unsigned nblks_x = util_format_get_nblocksx(tex->format, width); unsigned nblks_y = util_format_get_nblocksy(tex->format, height); width = nblks_x * templ_desc->block.width; height = nblks_y * templ_desc->block.height; width0 = util_format_get_nblocksx(tex->format, width0); height0 = util_format_get_nblocksy(tex->format, height0); } } return si_create_surface_custom(pipe, tex, templ, width0, height0, width, height); } static void si_surface_destroy(struct pipe_context *pipe, struct pipe_surface *surface) { pipe_resource_reference(&surface->texture, NULL); FREE(surface); } unsigned si_translate_colorswap(enum pipe_format format, bool do_endian_swap) { const struct util_format_description *desc = util_format_description(format); #define HAS_SWIZZLE(chan,swz) (desc->swizzle[chan] == PIPE_SWIZZLE_##swz) if (format == PIPE_FORMAT_R11G11B10_FLOAT) /* isn't plain */ return V_028C70_SWAP_STD; if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) return ~0U; switch (desc->nr_channels) { case 1: if (HAS_SWIZZLE(0,X)) return V_028C70_SWAP_STD; /* X___ */ else if (HAS_SWIZZLE(3,X)) return V_028C70_SWAP_ALT_REV; /* ___X */ break; case 2: if ((HAS_SWIZZLE(0,X) && HAS_SWIZZLE(1,Y)) || (HAS_SWIZZLE(0,X) && HAS_SWIZZLE(1,NONE)) || (HAS_SWIZZLE(0,NONE) && HAS_SWIZZLE(1,Y))) return V_028C70_SWAP_STD; /* XY__ */ else if ((HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(1,X)) || (HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(1,NONE)) || (HAS_SWIZZLE(0,NONE) && HAS_SWIZZLE(1,X))) /* YX__ */ return (do_endian_swap ? V_028C70_SWAP_STD : V_028C70_SWAP_STD_REV); else if (HAS_SWIZZLE(0,X) && HAS_SWIZZLE(3,Y)) return V_028C70_SWAP_ALT; /* X__Y */ else if (HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(3,X)) return V_028C70_SWAP_ALT_REV; /* Y__X */ break; case 3: if (HAS_SWIZZLE(0,X)) return (do_endian_swap ? V_028C70_SWAP_STD_REV : V_028C70_SWAP_STD); else if (HAS_SWIZZLE(0,Z)) return V_028C70_SWAP_STD_REV; /* ZYX */ break; case 4: /* check the middle channels, the 1st and 4th channel can be NONE */ if (HAS_SWIZZLE(1,Y) && HAS_SWIZZLE(2,Z)) { return V_028C70_SWAP_STD; /* XYZW */ } else if (HAS_SWIZZLE(1,Z) && HAS_SWIZZLE(2,Y)) { return V_028C70_SWAP_STD_REV; /* WZYX */ } else if (HAS_SWIZZLE(1,Y) && HAS_SWIZZLE(2,X)) { return V_028C70_SWAP_ALT; /* ZYXW */ } else if (HAS_SWIZZLE(1,Z) && HAS_SWIZZLE(2,W)) { /* YZWX */ if (desc->is_array) return V_028C70_SWAP_ALT_REV; else return (do_endian_swap ? V_028C70_SWAP_ALT : V_028C70_SWAP_ALT_REV); } break; } return ~0U; } /* PIPELINE_STAT-BASED DCC ENABLEMENT FOR DISPLAYABLE SURFACES */ static void vi_dcc_clean_up_context_slot(struct si_context *sctx, int slot) { int i; if (sctx->b.dcc_stats[slot].query_active) vi_separate_dcc_stop_query(sctx, sctx->b.dcc_stats[slot].tex); for (i = 0; i < ARRAY_SIZE(sctx->b.dcc_stats[slot].ps_stats); i++) if (sctx->b.dcc_stats[slot].ps_stats[i]) { sctx->b.b.destroy_query(&sctx->b.b, sctx->b.dcc_stats[slot].ps_stats[i]); sctx->b.dcc_stats[slot].ps_stats[i] = NULL; } r600_texture_reference(&sctx->b.dcc_stats[slot].tex, NULL); } /** * Return the per-context slot where DCC statistics queries for the texture live. */ static unsigned vi_get_context_dcc_stats_index(struct si_context *sctx, struct r600_texture *tex) { int i, empty_slot = -1; /* Remove zombie textures (textures kept alive by this array only). */ for (i = 0; i < ARRAY_SIZE(sctx->b.dcc_stats); i++) if (sctx->b.dcc_stats[i].tex && sctx->b.dcc_stats[i].tex->resource.b.b.reference.count == 1) vi_dcc_clean_up_context_slot(sctx, i); /* Find the texture. */ for (i = 0; i < ARRAY_SIZE(sctx->b.dcc_stats); i++) { /* Return if found. */ if (sctx->b.dcc_stats[i].tex == tex) { sctx->b.dcc_stats[i].last_use_timestamp = os_time_get(); return i; } /* Record the first seen empty slot. */ if (empty_slot == -1 && !sctx->b.dcc_stats[i].tex) empty_slot = i; } /* Not found. Remove the oldest member to make space in the array. */ if (empty_slot == -1) { int oldest_slot = 0; /* Find the oldest slot. */ for (i = 1; i < ARRAY_SIZE(sctx->b.dcc_stats); i++) if (sctx->b.dcc_stats[oldest_slot].last_use_timestamp > sctx->b.dcc_stats[i].last_use_timestamp) oldest_slot = i; /* Clean up the oldest slot. */ vi_dcc_clean_up_context_slot(sctx, oldest_slot); empty_slot = oldest_slot; } /* Add the texture to the new slot. */ r600_texture_reference(&sctx->b.dcc_stats[empty_slot].tex, tex); sctx->b.dcc_stats[empty_slot].last_use_timestamp = os_time_get(); return empty_slot; } static struct pipe_query * vi_create_resuming_pipestats_query(struct si_context *sctx) { struct si_query_hw *query = (struct si_query_hw*) sctx->b.b.create_query(&sctx->b.b, PIPE_QUERY_PIPELINE_STATISTICS, 0); query->flags |= SI_QUERY_HW_FLAG_BEGIN_RESUMES; return (struct pipe_query*)query; } /** * Called when binding a color buffer. */ void vi_separate_dcc_start_query(struct si_context *sctx, struct r600_texture *tex) { unsigned i = vi_get_context_dcc_stats_index(sctx, tex); assert(!sctx->b.dcc_stats[i].query_active); if (!sctx->b.dcc_stats[i].ps_stats[0]) sctx->b.dcc_stats[i].ps_stats[0] = vi_create_resuming_pipestats_query(sctx); /* begin or resume the query */ sctx->b.b.begin_query(&sctx->b.b, sctx->b.dcc_stats[i].ps_stats[0]); sctx->b.dcc_stats[i].query_active = true; } /** * Called when unbinding a color buffer. */ void vi_separate_dcc_stop_query(struct si_context *sctx, struct r600_texture *tex) { unsigned i = vi_get_context_dcc_stats_index(sctx, tex); assert(sctx->b.dcc_stats[i].query_active); assert(sctx->b.dcc_stats[i].ps_stats[0]); /* pause or end the query */ sctx->b.b.end_query(&sctx->b.b, sctx->b.dcc_stats[i].ps_stats[0]); sctx->b.dcc_stats[i].query_active = false; } static bool vi_should_enable_separate_dcc(struct r600_texture *tex) { /* The minimum number of fullscreen draws per frame that is required * to enable DCC. */ return tex->ps_draw_ratio + tex->num_slow_clears >= 5; } /* Called by fast clear. */ void vi_separate_dcc_try_enable(struct si_context *sctx, struct r600_texture *tex) { /* The intent is to use this with shared displayable back buffers, * but it's not strictly limited only to them. */ if (!tex->resource.b.is_shared || !(tex->resource.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) || tex->resource.b.b.target != PIPE_TEXTURE_2D || tex->resource.b.b.last_level > 0 || !tex->surface.dcc_size) return; if (tex->dcc_offset) return; /* already enabled */ /* Enable the DCC stat gathering. */ if (!tex->dcc_gather_statistics) { tex->dcc_gather_statistics = true; vi_separate_dcc_start_query(sctx, tex); } if (!vi_should_enable_separate_dcc(tex)) return; /* stats show that DCC decompression is too expensive */ assert(tex->surface.num_dcc_levels); assert(!tex->dcc_separate_buffer); si_texture_discard_cmask(sctx->screen, tex); /* Get a DCC buffer. */ if (tex->last_dcc_separate_buffer) { assert(tex->dcc_gather_statistics); assert(!tex->dcc_separate_buffer); tex->dcc_separate_buffer = tex->last_dcc_separate_buffer; tex->last_dcc_separate_buffer = NULL; } else { tex->dcc_separate_buffer = (struct r600_resource*) si_aligned_buffer_create(sctx->b.b.screen, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, tex->surface.dcc_size, tex->surface.dcc_alignment); if (!tex->dcc_separate_buffer) return; } /* dcc_offset is the absolute GPUVM address. */ tex->dcc_offset = tex->dcc_separate_buffer->gpu_address; /* no need to flag anything since this is called by fast clear that * flags framebuffer state */ } /** * Called by pipe_context::flush_resource, the place where DCC decompression * takes place. */ void vi_separate_dcc_process_and_reset_stats(struct pipe_context *ctx, struct r600_texture *tex) { struct si_context *sctx = (struct si_context*)ctx; struct pipe_query *tmp; unsigned i = vi_get_context_dcc_stats_index(sctx, tex); bool query_active = sctx->b.dcc_stats[i].query_active; bool disable = false; if (sctx->b.dcc_stats[i].ps_stats[2]) { union pipe_query_result result; /* Read the results. */ ctx->get_query_result(ctx, sctx->b.dcc_stats[i].ps_stats[2], true, &result); si_query_hw_reset_buffers(sctx, (struct si_query_hw*) sctx->b.dcc_stats[i].ps_stats[2]); /* Compute the approximate number of fullscreen draws. */ tex->ps_draw_ratio = result.pipeline_statistics.ps_invocations / (tex->resource.b.b.width0 * tex->resource.b.b.height0); sctx->b.last_tex_ps_draw_ratio = tex->ps_draw_ratio; disable = tex->dcc_separate_buffer && !vi_should_enable_separate_dcc(tex); } tex->num_slow_clears = 0; /* stop the statistics query for ps_stats[0] */ if (query_active) vi_separate_dcc_stop_query(sctx, tex); /* Move the queries in the queue by one. */ tmp = sctx->b.dcc_stats[i].ps_stats[2]; sctx->b.dcc_stats[i].ps_stats[2] = sctx->b.dcc_stats[i].ps_stats[1]; sctx->b.dcc_stats[i].ps_stats[1] = sctx->b.dcc_stats[i].ps_stats[0]; sctx->b.dcc_stats[i].ps_stats[0] = tmp; /* create and start a new query as ps_stats[0] */ if (query_active) vi_separate_dcc_start_query(sctx, tex); if (disable) { assert(!tex->last_dcc_separate_buffer); tex->last_dcc_separate_buffer = tex->dcc_separate_buffer; tex->dcc_separate_buffer = NULL; tex->dcc_offset = 0; /* no need to flag anything since this is called after * decompression that re-sets framebuffer state */ } } static struct pipe_memory_object * si_memobj_from_handle(struct pipe_screen *screen, struct winsys_handle *whandle, bool dedicated) { struct si_screen *sscreen = (struct si_screen*)screen; struct r600_memory_object *memobj = CALLOC_STRUCT(r600_memory_object); struct pb_buffer *buf = NULL; uint32_t stride, offset; if (!memobj) return NULL; buf = sscreen->ws->buffer_from_handle(sscreen->ws, whandle, &stride, &offset); if (!buf) { free(memobj); return NULL; } memobj->b.dedicated = dedicated; memobj->buf = buf; memobj->stride = stride; memobj->offset = offset; return (struct pipe_memory_object *)memobj; } static void si_memobj_destroy(struct pipe_screen *screen, struct pipe_memory_object *_memobj) { struct r600_memory_object *memobj = (struct r600_memory_object *)_memobj; pb_reference(&memobj->buf, NULL); free(memobj); } static struct pipe_resource * si_texture_from_memobj(struct pipe_screen *screen, const struct pipe_resource *templ, struct pipe_memory_object *_memobj, uint64_t offset) { int r; struct si_screen *sscreen = (struct si_screen*)screen; struct r600_memory_object *memobj = (struct r600_memory_object *)_memobj; struct r600_texture *rtex; struct radeon_surf surface = {}; struct radeon_bo_metadata metadata = {}; enum radeon_surf_mode array_mode; bool is_scanout; struct pb_buffer *buf = NULL; if (memobj->b.dedicated) { sscreen->ws->buffer_get_metadata(memobj->buf, &metadata); si_surface_import_metadata(sscreen, &surface, &metadata, &array_mode, &is_scanout); } else { /** * The bo metadata is unset for un-dedicated images. So we fall * back to linear. See answer to question 5 of the * VK_KHX_external_memory spec for some details. * * It is possible that this case isn't going to work if the * surface pitch isn't correctly aligned by default. * * In order to support it correctly we require multi-image * metadata to be syncrhonized between radv and radeonsi. The * semantics of associating multiple image metadata to a memory * object on the vulkan export side are not concretely defined * either. * * All the use cases we are aware of at the moment for memory * objects use dedicated allocations. So lets keep the initial * implementation simple. * * A possible alternative is to attempt to reconstruct the * tiling information when the TexParameter TEXTURE_TILING_EXT * is set. */ array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED; is_scanout = false; } r = si_init_surface(sscreen, &surface, templ, array_mode, memobj->stride, offset, true, is_scanout, false, false); if (r) return NULL; rtex = si_texture_create_object(screen, templ, memobj->buf, &surface); if (!rtex) return NULL; /* r600_texture_create_object doesn't increment refcount of * memobj->buf, so increment it here. */ pb_reference(&buf, memobj->buf); rtex->resource.b.is_shared = true; rtex->resource.external_usage = PIPE_HANDLE_USAGE_READ_WRITE; si_apply_opaque_metadata(sscreen, rtex, &metadata); return &rtex->resource.b.b; } static bool si_check_resource_capability(struct pipe_screen *screen, struct pipe_resource *resource, unsigned bind) { struct r600_texture *tex = (struct r600_texture*)resource; /* Buffers only support the linear flag. */ if (resource->target == PIPE_BUFFER) return (bind & ~PIPE_BIND_LINEAR) == 0; if (bind & PIPE_BIND_LINEAR && !tex->surface.is_linear) return false; if (bind & PIPE_BIND_SCANOUT && !tex->surface.is_displayable) return false; /* TODO: PIPE_BIND_CURSOR - do we care? */ return true; } void si_init_screen_texture_functions(struct si_screen *sscreen) { sscreen->b.resource_from_handle = si_texture_from_handle; sscreen->b.resource_get_handle = si_texture_get_handle; sscreen->b.resource_from_memobj = si_texture_from_memobj; sscreen->b.memobj_create_from_handle = si_memobj_from_handle; sscreen->b.memobj_destroy = si_memobj_destroy; sscreen->b.check_resource_capability = si_check_resource_capability; } void si_init_context_texture_functions(struct si_context *sctx) { sctx->b.b.create_surface = si_create_surface; sctx->b.b.surface_destroy = si_surface_destroy; }