/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "r600_pipe_common.h" #include "r600_cs.h" #include "tgsi/tgsi_parse.h" #include "util/list.h" #include "util/u_draw_quad.h" #include "util/u_memory.h" #include "util/u_format_s3tc.h" #include "util/u_upload_mgr.h" #include "os/os_time.h" #include "vl/vl_decoder.h" #include "vl/vl_video_buffer.h" #include "radeon/radeon_video.h" #include "amd/common/ac_llvm_util.h" #include "amd/common/sid.h" #include #include #include #include struct r600_multi_fence { struct pipe_reference reference; struct pipe_fence_handle *gfx; struct pipe_fence_handle *sdma; /* If the context wasn't flushed at fence creation, this is non-NULL. */ struct { struct r600_common_context *ctx; unsigned ib_index; } gfx_unflushed; }; /* * shader binary helpers. */ void si_radeon_shader_binary_init(struct ac_shader_binary *b) { memset(b, 0, sizeof(*b)); } void si_radeon_shader_binary_clean(struct ac_shader_binary *b) { if (!b) return; FREE(b->code); FREE(b->config); FREE(b->rodata); FREE(b->global_symbol_offsets); FREE(b->relocs); FREE(b->disasm_string); FREE(b->llvm_ir_string); } /* * pipe_context */ /** * Write an EOP event. * * \param event EVENT_TYPE_* * \param event_flags Optional cache flush flags (TC) * \param data_sel 1 = fence, 3 = timestamp * \param buf Buffer * \param va GPU address * \param old_value Previous fence value (for a bug workaround) * \param new_value Fence value to write for this event. */ void si_gfx_write_event_eop(struct r600_common_context *ctx, unsigned event, unsigned event_flags, unsigned data_sel, struct r600_resource *buf, uint64_t va, uint32_t new_fence, unsigned query_type) { struct radeon_winsys_cs *cs = ctx->gfx.cs; unsigned op = EVENT_TYPE(event) | EVENT_INDEX(5) | event_flags; unsigned sel = EOP_DATA_SEL(data_sel); /* Wait for write confirmation before writing data, but don't send * an interrupt. */ if (data_sel != EOP_DATA_SEL_DISCARD) sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM); if (ctx->chip_class >= GFX9) { /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion * counters) must immediately precede every timestamp event to * prevent a GPU hang on GFX9. * * Occlusion queries don't need to do it here, because they * always do ZPASS_DONE before the timestamp. */ if (ctx->chip_class == GFX9 && query_type != PIPE_QUERY_OCCLUSION_COUNTER && query_type != PIPE_QUERY_OCCLUSION_PREDICATE && query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { struct r600_resource *scratch = ctx->eop_bug_scratch; assert(16 * ctx->screen->info.num_render_backends <= scratch->b.b.width0); radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); radeon_emit(cs, scratch->gpu_address); radeon_emit(cs, scratch->gpu_address >> 32); radeon_add_to_buffer_list(ctx, &ctx->gfx, scratch, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0)); radeon_emit(cs, op); radeon_emit(cs, sel); radeon_emit(cs, va); /* address lo */ radeon_emit(cs, va >> 32); /* address hi */ radeon_emit(cs, new_fence); /* immediate data lo */ radeon_emit(cs, 0); /* immediate data hi */ radeon_emit(cs, 0); /* unused */ } else { if (ctx->chip_class == CIK || ctx->chip_class == VI) { struct r600_resource *scratch = ctx->eop_bug_scratch; uint64_t va = scratch->gpu_address; /* Two EOP events are required to make all engines go idle * (and optional cache flushes executed) before the timestamp * is written. */ radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); radeon_emit(cs, op); radeon_emit(cs, va); radeon_emit(cs, ((va >> 32) & 0xffff) | sel); radeon_emit(cs, 0); /* immediate data */ radeon_emit(cs, 0); /* unused */ radeon_add_to_buffer_list(ctx, &ctx->gfx, scratch, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); radeon_emit(cs, op); radeon_emit(cs, va); radeon_emit(cs, ((va >> 32) & 0xffff) | sel); radeon_emit(cs, new_fence); /* immediate data */ radeon_emit(cs, 0); /* unused */ } if (buf) { radeon_add_to_buffer_list(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); } } unsigned si_gfx_write_fence_dwords(struct r600_common_screen *screen) { unsigned dwords = 6; if (screen->chip_class == CIK || screen->chip_class == VI) dwords *= 2; if (!screen->info.has_virtual_memory) dwords += 2; return dwords; } void si_gfx_wait_fence(struct r600_common_context *ctx, uint64_t va, uint32_t ref, uint32_t mask) { struct radeon_winsys_cs *cs = ctx->gfx.cs; radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit(cs, ref); /* reference value */ radeon_emit(cs, mask); /* mask */ radeon_emit(cs, 4); /* poll interval */ } static void r600_dma_emit_wait_idle(struct r600_common_context *rctx) { struct radeon_winsys_cs *cs = rctx->dma.cs; /* NOP waits for idle on Evergreen and later. */ if (rctx->chip_class >= CIK) radeon_emit(cs, 0x00000000); /* NOP */ else radeon_emit(cs, 0xf0000000); /* NOP */ } void si_need_dma_space(struct r600_common_context *ctx, unsigned num_dw, struct r600_resource *dst, struct r600_resource *src) { uint64_t vram = ctx->dma.cs->used_vram; uint64_t gtt = ctx->dma.cs->used_gart; if (dst) { vram += dst->vram_usage; gtt += dst->gart_usage; } if (src) { vram += src->vram_usage; gtt += src->gart_usage; } /* Flush the GFX IB if DMA depends on it. */ if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) && ((dst && ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf, RADEON_USAGE_READWRITE)) || (src && ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf, RADEON_USAGE_WRITE)))) ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL); /* Flush if there's not enough space, or if the memory usage per IB * is too large. * * IBs using too little memory are limited by the IB submission overhead. * IBs using too much memory are limited by the kernel/TTM overhead. * Too long IBs create CPU-GPU pipeline bubbles and add latency. * * This heuristic makes sure that DMA requests are executed * very soon after the call is made and lowers memory usage. * It improves texture upload performance by keeping the DMA * engine busy while uploads are being submitted. */ num_dw++; /* for emit_wait_idle below */ if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) || ctx->dma.cs->used_vram + ctx->dma.cs->used_gart > 64 * 1024 * 1024 || !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) { ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL); assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw); } /* Wait for idle if either buffer has been used in the IB before to * prevent read-after-write hazards. */ if ((dst && ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, dst->buf, RADEON_USAGE_READWRITE)) || (src && ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, src->buf, RADEON_USAGE_WRITE))) r600_dma_emit_wait_idle(ctx); /* If GPUVM is not supported, the CS checker needs 2 entries * in the buffer list per packet, which has to be done manually. */ if (ctx->screen->info.has_virtual_memory) { if (dst) radeon_add_to_buffer_list(ctx, &ctx->dma, dst, RADEON_USAGE_WRITE, RADEON_PRIO_SDMA_BUFFER); if (src) radeon_add_to_buffer_list(ctx, &ctx->dma, src, RADEON_USAGE_READ, RADEON_PRIO_SDMA_BUFFER); } /* this function is called before all DMA calls, so increment this. */ ctx->num_dma_calls++; } static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags) { } void si_preflush_suspend_features(struct r600_common_context *ctx) { /* suspend queries */ if (!LIST_IS_EMPTY(&ctx->active_queries)) si_suspend_queries(ctx); } void si_postflush_resume_features(struct r600_common_context *ctx) { /* resume queries */ if (!LIST_IS_EMPTY(&ctx->active_queries)) si_resume_queries(ctx); } static void r600_add_fence_dependency(struct r600_common_context *rctx, struct pipe_fence_handle *fence) { struct radeon_winsys *ws = rctx->ws; if (rctx->dma.cs) ws->cs_add_fence_dependency(rctx->dma.cs, fence); ws->cs_add_fence_dependency(rctx->gfx.cs, fence); } static void r600_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence) { struct r600_common_context *rctx = (struct r600_common_context *)ctx; struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence; /* Only amdgpu needs to handle fence dependencies (for fence imports). * radeon synchronizes all rings by default and will not implement * fence imports. */ if (rctx->screen->info.drm_major == 2) return; /* Only imported fences need to be handled by fence_server_sync, * because the winsys handles synchronizations automatically for BOs * within the process. * * Simply skip unflushed fences here, and the winsys will drop no-op * dependencies (i.e. dependencies within the same ring). */ if (rfence->gfx_unflushed.ctx) return; /* All unflushed commands will not start execution before * this fence dependency is signalled. * * Should we flush the context to allow more GPU parallelism? */ if (rfence->sdma) r600_add_fence_dependency(rctx, rfence->sdma); if (rfence->gfx) r600_add_fence_dependency(rctx, rfence->gfx); } static void r600_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd) { struct r600_common_screen *rscreen = (struct r600_common_screen*)ctx->screen; struct radeon_winsys *ws = rscreen->ws; struct r600_multi_fence *rfence; *pfence = NULL; if (!rscreen->info.has_sync_file) return; rfence = CALLOC_STRUCT(r600_multi_fence); if (!rfence) return; pipe_reference_init(&rfence->reference, 1); rfence->gfx = ws->fence_import_sync_file(ws, fd); if (!rfence->gfx) { FREE(rfence); return; } *pfence = (struct pipe_fence_handle*)rfence; } static int r600_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence) { struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; struct radeon_winsys *ws = rscreen->ws; struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence; int gfx_fd = -1, sdma_fd = -1; if (!rscreen->info.has_sync_file) return -1; /* Deferred fences aren't supported. */ assert(!rfence->gfx_unflushed.ctx); if (rfence->gfx_unflushed.ctx) return -1; if (rfence->sdma) { sdma_fd = ws->fence_export_sync_file(ws, rfence->sdma); if (sdma_fd == -1) return -1; } if (rfence->gfx) { gfx_fd = ws->fence_export_sync_file(ws, rfence->gfx); if (gfx_fd == -1) { if (sdma_fd != -1) close(sdma_fd); return -1; } } /* If we don't have FDs at this point, it means we don't have fences * either. */ if (sdma_fd == -1) return gfx_fd; if (gfx_fd == -1) return sdma_fd; /* Get a fence that will be a combination of both fences. */ sync_accumulate("radeonsi", &gfx_fd, sdma_fd); close(sdma_fd); return gfx_fd; } static void r600_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence, unsigned flags) { struct pipe_screen *screen = ctx->screen; struct r600_common_context *rctx = (struct r600_common_context *)ctx; struct radeon_winsys *ws = rctx->ws; struct pipe_fence_handle *gfx_fence = NULL; struct pipe_fence_handle *sdma_fence = NULL; bool deferred_fence = false; unsigned rflags = RADEON_FLUSH_ASYNC; if (flags & PIPE_FLUSH_END_OF_FRAME) rflags |= RADEON_FLUSH_END_OF_FRAME; /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */ if (rctx->dma.cs) rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL); if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) { if (fence) ws->fence_reference(&gfx_fence, rctx->last_gfx_fence); if (!(flags & PIPE_FLUSH_DEFERRED)) ws->cs_sync_flush(rctx->gfx.cs); } else { /* Instead of flushing, create a deferred fence. Constraints: * - The state tracker must allow a deferred flush. * - The state tracker must request a fence. * - fence_get_fd is not allowed. * Thread safety in fence_finish must be ensured by the state tracker. */ if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) { gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs); deferred_fence = true; } else { rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL); } } /* Both engines can signal out of order, so we need to keep both fences. */ if (fence) { struct r600_multi_fence *multi_fence = CALLOC_STRUCT(r600_multi_fence); if (!multi_fence) { ws->fence_reference(&sdma_fence, NULL); ws->fence_reference(&gfx_fence, NULL); goto finish; } multi_fence->reference.count = 1; /* If both fences are NULL, fence_finish will always return true. */ multi_fence->gfx = gfx_fence; multi_fence->sdma = sdma_fence; if (deferred_fence) { multi_fence->gfx_unflushed.ctx = rctx; multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes; } screen->fence_reference(screen, fence, NULL); *fence = (struct pipe_fence_handle*)multi_fence; } finish: if (!(flags & PIPE_FLUSH_DEFERRED)) { if (rctx->dma.cs) ws->cs_sync_flush(rctx->dma.cs); ws->cs_sync_flush(rctx->gfx.cs); } } static void r600_flush_dma_ring(void *ctx, unsigned flags, struct pipe_fence_handle **fence) { struct r600_common_context *rctx = (struct r600_common_context *)ctx; struct radeon_winsys_cs *cs = rctx->dma.cs; struct radeon_saved_cs saved; bool check_vm = (rctx->screen->debug_flags & DBG(CHECK_VM)) && rctx->check_vm_faults; if (!radeon_emitted(cs, 0)) { if (fence) rctx->ws->fence_reference(fence, rctx->last_sdma_fence); return; } if (check_vm) si_save_cs(rctx->ws, cs, &saved, true); rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence); if (fence) rctx->ws->fence_reference(fence, rctx->last_sdma_fence); if (check_vm) { /* Use conservative timeout 800ms, after which we won't wait any * longer and assume the GPU is hung. */ rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000); rctx->check_vm_faults(rctx, &saved, RING_DMA); si_clear_saved_cs(&saved); } } /** * Store a linearized copy of all chunks of \p cs together with the buffer * list in \p saved. */ void si_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs, struct radeon_saved_cs *saved, bool get_buffer_list) { uint32_t *buf; unsigned i; /* Save the IB chunks. */ saved->num_dw = cs->prev_dw + cs->current.cdw; saved->ib = MALLOC(4 * saved->num_dw); if (!saved->ib) goto oom; buf = saved->ib; for (i = 0; i < cs->num_prev; ++i) { memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4); buf += cs->prev[i].cdw; } memcpy(buf, cs->current.buf, cs->current.cdw * 4); if (!get_buffer_list) return; /* Save the buffer list. */ saved->bo_count = ws->cs_get_buffer_list(cs, NULL); saved->bo_list = CALLOC(saved->bo_count, sizeof(saved->bo_list[0])); if (!saved->bo_list) { FREE(saved->ib); goto oom; } ws->cs_get_buffer_list(cs, saved->bo_list); return; oom: fprintf(stderr, "%s: out of memory\n", __func__); memset(saved, 0, sizeof(*saved)); } void si_clear_saved_cs(struct radeon_saved_cs *saved) { FREE(saved->ib); FREE(saved->bo_list); memset(saved, 0, sizeof(*saved)); } static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx) { struct r600_common_context *rctx = (struct r600_common_context *)ctx; unsigned latest = rctx->ws->query_value(rctx->ws, RADEON_GPU_RESET_COUNTER); if (rctx->gpu_reset_counter == latest) return PIPE_NO_RESET; rctx->gpu_reset_counter = latest; return PIPE_UNKNOWN_CONTEXT_RESET; } static void r600_set_debug_callback(struct pipe_context *ctx, const struct pipe_debug_callback *cb) { struct r600_common_context *rctx = (struct r600_common_context *)ctx; if (cb) rctx->debug = *cb; else memset(&rctx->debug, 0, sizeof(rctx->debug)); } static void r600_set_device_reset_callback(struct pipe_context *ctx, const struct pipe_device_reset_callback *cb) { struct r600_common_context *rctx = (struct r600_common_context *)ctx; if (cb) rctx->device_reset_callback = *cb; else memset(&rctx->device_reset_callback, 0, sizeof(rctx->device_reset_callback)); } bool si_check_device_reset(struct r600_common_context *rctx) { enum pipe_reset_status status; if (!rctx->device_reset_callback.reset) return false; if (!rctx->b.get_device_reset_status) return false; status = rctx->b.get_device_reset_status(&rctx->b); if (status == PIPE_NO_RESET) return false; rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status); return true; } static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx, struct pipe_resource *dst, uint64_t offset, uint64_t size, unsigned value) { struct r600_common_context *rctx = (struct r600_common_context *)ctx; rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE); } static bool r600_resource_commit(struct pipe_context *pctx, struct pipe_resource *resource, unsigned level, struct pipe_box *box, bool commit) { struct r600_common_context *ctx = (struct r600_common_context *)pctx; struct r600_resource *res = r600_resource(resource); /* * Since buffer commitment changes cannot be pipelined, we need to * (a) flush any pending commands that refer to the buffer we're about * to change, and * (b) wait for threaded submit to finish, including those that were * triggered by some other, earlier operation. */ if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) && ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, res->buf, RADEON_USAGE_READWRITE)) { ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL); } if (radeon_emitted(ctx->dma.cs, 0) && ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, res->buf, RADEON_USAGE_READWRITE)) { ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL); } ctx->ws->cs_sync_flush(ctx->dma.cs); ctx->ws->cs_sync_flush(ctx->gfx.cs); assert(resource->target == PIPE_BUFFER); return ctx->ws->buffer_commit(res->buf, box->x, box->width, commit); } bool si_common_context_init(struct r600_common_context *rctx, struct r600_common_screen *rscreen, unsigned context_flags) { slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers); slab_create_child(&rctx->pool_transfers_unsync, &rscreen->pool_transfers); rctx->screen = rscreen; rctx->ws = rscreen->ws; rctx->family = rscreen->family; rctx->chip_class = rscreen->chip_class; rctx->b.invalidate_resource = si_invalidate_resource; rctx->b.resource_commit = r600_resource_commit; rctx->b.transfer_map = u_transfer_map_vtbl; rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl; rctx->b.transfer_unmap = u_transfer_unmap_vtbl; rctx->b.texture_subdata = u_default_texture_subdata; rctx->b.memory_barrier = r600_memory_barrier; rctx->b.flush = r600_flush_from_st; rctx->b.set_debug_callback = r600_set_debug_callback; rctx->b.create_fence_fd = r600_create_fence_fd; rctx->b.fence_server_sync = r600_fence_server_sync; rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback; rctx->b.buffer_subdata = si_buffer_subdata; if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) { rctx->b.get_device_reset_status = r600_get_reset_status; rctx->gpu_reset_counter = rctx->ws->query_value(rctx->ws, RADEON_GPU_RESET_COUNTER); } rctx->b.set_device_reset_callback = r600_set_device_reset_callback; si_init_context_texture_functions(rctx); si_init_query_functions(rctx); if (rctx->chip_class == CIK || rctx->chip_class == VI || rctx->chip_class == GFX9) { rctx->eop_bug_scratch = (struct r600_resource*) pipe_buffer_create(&rscreen->b, 0, PIPE_USAGE_DEFAULT, 16 * rscreen->info.num_render_backends); if (!rctx->eop_bug_scratch) return false; } rctx->allocator_zeroed_memory = u_suballocator_create(&rctx->b, rscreen->info.gart_page_size, 0, PIPE_USAGE_DEFAULT, 0, true); if (!rctx->allocator_zeroed_memory) return false; rctx->b.stream_uploader = u_upload_create(&rctx->b, 1024 * 1024, 0, PIPE_USAGE_STREAM); if (!rctx->b.stream_uploader) return false; rctx->b.const_uploader = u_upload_create(&rctx->b, 128 * 1024, 0, PIPE_USAGE_DEFAULT); if (!rctx->b.const_uploader) return false; rctx->ctx = rctx->ws->ctx_create(rctx->ws); if (!rctx->ctx) return false; if (rscreen->info.num_sdma_rings && !(rscreen->debug_flags & DBG(NO_ASYNC_DMA))) { rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA, r600_flush_dma_ring, rctx); rctx->dma.flush = r600_flush_dma_ring; } return true; } void si_common_context_cleanup(struct r600_common_context *rctx) { unsigned i,j; /* Release DCC stats. */ for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) { assert(!rctx->dcc_stats[i].query_active); for (j = 0; j < ARRAY_SIZE(rctx->dcc_stats[i].ps_stats); j++) if (rctx->dcc_stats[i].ps_stats[j]) rctx->b.destroy_query(&rctx->b, rctx->dcc_stats[i].ps_stats[j]); r600_texture_reference(&rctx->dcc_stats[i].tex, NULL); } if (rctx->query_result_shader) rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader); if (rctx->gfx.cs) rctx->ws->cs_destroy(rctx->gfx.cs); if (rctx->dma.cs) rctx->ws->cs_destroy(rctx->dma.cs); if (rctx->ctx) rctx->ws->ctx_destroy(rctx->ctx); if (rctx->b.stream_uploader) u_upload_destroy(rctx->b.stream_uploader); if (rctx->b.const_uploader) u_upload_destroy(rctx->b.const_uploader); slab_destroy_child(&rctx->pool_transfers); slab_destroy_child(&rctx->pool_transfers_unsync); if (rctx->allocator_zeroed_memory) { u_suballocator_destroy(rctx->allocator_zeroed_memory); } rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL); rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL); r600_resource_reference(&rctx->eop_bug_scratch, NULL); } /* * pipe_screen */ static const struct debug_named_value common_debug_options[] = { /* logging */ { "tex", DBG(TEX), "Print texture info" }, { "nir", DBG(NIR), "Enable experimental NIR shaders" }, { "compute", DBG(COMPUTE), "Print compute info" }, { "vm", DBG(VM), "Print virtual addresses when creating resources" }, { "info", DBG(INFO), "Print driver information" }, /* shaders */ { "vs", DBG(VS), "Print vertex shaders" }, { "gs", DBG(GS), "Print geometry shaders" }, { "ps", DBG(PS), "Print pixel shaders" }, { "cs", DBG(CS), "Print compute shaders" }, { "tcs", DBG(TCS), "Print tessellation control shaders" }, { "tes", DBG(TES), "Print tessellation evaluation shaders" }, { "noir", DBG(NO_IR), "Don't print the LLVM IR"}, { "notgsi", DBG(NO_TGSI), "Don't print the TGSI"}, { "noasm", DBG(NO_ASM), "Don't print disassembled shaders"}, { "preoptir", DBG(PREOPT_IR), "Print the LLVM IR before initial optimizations" }, { "checkir", DBG(CHECK_IR), "Enable additional sanity checks on shader IR" }, { "nooptvariant", DBG(NO_OPT_VARIANT), "Disable compiling optimized shader variants." }, { "testdma", DBG(TEST_DMA), "Invoke SDMA tests and exit." }, { "testvmfaultcp", DBG(TEST_VMFAULT_CP), "Invoke a CP VM fault test and exit." }, { "testvmfaultsdma", DBG(TEST_VMFAULT_SDMA), "Invoke a SDMA VM fault test and exit." }, { "testvmfaultshader", DBG(TEST_VMFAULT_SHADER), "Invoke a shader VM fault test and exit." }, /* features */ { "nodma", DBG(NO_ASYNC_DMA), "Disable asynchronous DMA" }, { "nohyperz", DBG(NO_HYPERZ), "Disable Hyper-Z" }, /* GL uses the word INVALIDATE, gallium uses the word DISCARD */ { "noinvalrange", DBG(NO_DISCARD_RANGE), "Disable handling of INVALIDATE_RANGE map flags" }, { "no2d", DBG(NO_2D_TILING), "Disable 2D tiling" }, { "notiling", DBG(NO_TILING), "Disable tiling" }, { "switch_on_eop", DBG(SWITCH_ON_EOP), "Program WD/IA to switch on end-of-packet." }, { "forcedma", DBG(FORCE_DMA), "Use asynchronous DMA for all operations when possible." }, { "precompile", DBG(PRECOMPILE), "Compile one shader variant at shader creation." }, { "nowc", DBG(NO_WC), "Disable GTT write combining" }, { "check_vm", DBG(CHECK_VM), "Check VM faults and dump debug info." }, { "nodcc", DBG(NO_DCC), "Disable DCC." }, { "nodccclear", DBG(NO_DCC_CLEAR), "Disable DCC fast clear." }, { "norbplus", DBG(NO_RB_PLUS), "Disable RB+." }, { "sisched", DBG(SI_SCHED), "Enable LLVM SI Machine Instruction Scheduler." }, { "mono", DBG(MONOLITHIC_SHADERS), "Use old-style monolithic shaders compiled on demand" }, { "unsafemath", DBG(UNSAFE_MATH), "Enable unsafe math shader optimizations" }, { "nodccfb", DBG(NO_DCC_FB), "Disable separate DCC on the main framebuffer" }, { "nodpbb", DBG(NO_DPBB), "Disable DPBB." }, { "nodfsm", DBG(NO_DFSM), "Disable DFSM." }, { "dpbb", DBG(DPBB), "Enable DPBB." }, { "dfsm", DBG(DFSM), "Enable DFSM." }, { "nooutoforder", DBG(NO_OUT_OF_ORDER), "Disable out-of-order rasterization" }, { "reserve_vmid", DBG(RESERVE_VMID), "Force VMID reservation per context." }, DEBUG_NAMED_VALUE_END /* must be last */ }; static const char* r600_get_vendor(struct pipe_screen* pscreen) { return "X.Org"; } static const char* r600_get_device_vendor(struct pipe_screen* pscreen) { return "AMD"; } static const char *r600_get_marketing_name(struct radeon_winsys *ws) { if (!ws->get_chip_name) return NULL; return ws->get_chip_name(ws); } static const char *r600_get_family_name(const struct r600_common_screen *rscreen) { switch (rscreen->info.family) { case CHIP_TAHITI: return "AMD TAHITI"; case CHIP_PITCAIRN: return "AMD PITCAIRN"; case CHIP_VERDE: return "AMD CAPE VERDE"; case CHIP_OLAND: return "AMD OLAND"; case CHIP_HAINAN: return "AMD HAINAN"; case CHIP_BONAIRE: return "AMD BONAIRE"; case CHIP_KAVERI: return "AMD KAVERI"; case CHIP_KABINI: return "AMD KABINI"; case CHIP_HAWAII: return "AMD HAWAII"; case CHIP_MULLINS: return "AMD MULLINS"; case CHIP_TONGA: return "AMD TONGA"; case CHIP_ICELAND: return "AMD ICELAND"; case CHIP_CARRIZO: return "AMD CARRIZO"; case CHIP_FIJI: return "AMD FIJI"; case CHIP_POLARIS10: return "AMD POLARIS10"; case CHIP_POLARIS11: return "AMD POLARIS11"; case CHIP_POLARIS12: return "AMD POLARIS12"; case CHIP_STONEY: return "AMD STONEY"; case CHIP_VEGA10: return "AMD VEGA10"; case CHIP_RAVEN: return "AMD RAVEN"; default: return "AMD unknown"; } } static void r600_disk_cache_create(struct r600_common_screen *rscreen) { /* Don't use the cache if shader dumping is enabled. */ if (rscreen->debug_flags & DBG_ALL_SHADERS) return; uint32_t mesa_timestamp; if (disk_cache_get_function_timestamp(r600_disk_cache_create, &mesa_timestamp)) { char *timestamp_str; int res = -1; uint32_t llvm_timestamp; if (disk_cache_get_function_timestamp(LLVMInitializeAMDGPUTargetInfo, &llvm_timestamp)) { res = asprintf(×tamp_str, "%u_%u", mesa_timestamp, llvm_timestamp); } if (res != -1) { /* These flags affect shader compilation. */ uint64_t shader_debug_flags = rscreen->debug_flags & (DBG(FS_CORRECT_DERIVS_AFTER_KILL) | DBG(SI_SCHED) | DBG(UNSAFE_MATH)); rscreen->disk_shader_cache = disk_cache_create(r600_get_family_name(rscreen), timestamp_str, shader_debug_flags); free(timestamp_str); } } } static struct disk_cache *r600_get_disk_shader_cache(struct pipe_screen *pscreen) { struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen; return rscreen->disk_shader_cache; } static const char* r600_get_name(struct pipe_screen* pscreen) { struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen; return rscreen->renderer_string; } static float r600_get_paramf(struct pipe_screen* pscreen, enum pipe_capf param) { switch (param) { case PIPE_CAPF_MAX_LINE_WIDTH: case PIPE_CAPF_MAX_LINE_WIDTH_AA: case PIPE_CAPF_MAX_POINT_WIDTH: case PIPE_CAPF_MAX_POINT_WIDTH_AA: return 8192.0f; case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY: return 16.0f; case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS: return 16.0f; case PIPE_CAPF_GUARD_BAND_LEFT: case PIPE_CAPF_GUARD_BAND_TOP: case PIPE_CAPF_GUARD_BAND_RIGHT: case PIPE_CAPF_GUARD_BAND_BOTTOM: return 0.0f; } return 0.0f; } static int r600_get_video_param(struct pipe_screen *screen, enum pipe_video_profile profile, enum pipe_video_entrypoint entrypoint, enum pipe_video_cap param) { switch (param) { case PIPE_VIDEO_CAP_SUPPORTED: return vl_profile_supported(screen, profile, entrypoint); case PIPE_VIDEO_CAP_NPOT_TEXTURES: return 1; case PIPE_VIDEO_CAP_MAX_WIDTH: case PIPE_VIDEO_CAP_MAX_HEIGHT: return vl_video_buffer_max_size(screen); case PIPE_VIDEO_CAP_PREFERED_FORMAT: return PIPE_FORMAT_NV12; case PIPE_VIDEO_CAP_PREFERS_INTERLACED: return false; case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED: return false; case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE: return true; case PIPE_VIDEO_CAP_MAX_LEVEL: return vl_level_supported(screen, profile); default: return 0; } } static unsigned get_max_threads_per_block(struct r600_common_screen *screen, enum pipe_shader_ir ir_type) { if (ir_type != PIPE_SHADER_IR_TGSI) return 256; /* Only 16 waves per thread-group on gfx9. */ if (screen->chip_class >= GFX9) return 1024; /* Up to 40 waves per thread-group on GCN < gfx9. Expose a nice * round number. */ return 2048; } static int r600_get_compute_param(struct pipe_screen *screen, enum pipe_shader_ir ir_type, enum pipe_compute_cap param, void *ret) { struct r600_common_screen *rscreen = (struct r600_common_screen *)screen; //TODO: select these params by asic switch (param) { case PIPE_COMPUTE_CAP_IR_TARGET: { const char *gpu; const char *triple; if (HAVE_LLVM < 0x0400) triple = "amdgcn--"; else triple = "amdgcn-mesa-mesa3d"; gpu = ac_get_llvm_processor_name(rscreen->family); if (ret) { sprintf(ret, "%s-%s", gpu, triple); } /* +2 for dash and terminating NIL byte */ return (strlen(triple) + strlen(gpu) + 2) * sizeof(char); } case PIPE_COMPUTE_CAP_GRID_DIMENSION: if (ret) { uint64_t *grid_dimension = ret; grid_dimension[0] = 3; } return 1 * sizeof(uint64_t); case PIPE_COMPUTE_CAP_MAX_GRID_SIZE: if (ret) { uint64_t *grid_size = ret; grid_size[0] = 65535; grid_size[1] = 65535; grid_size[2] = 65535; } return 3 * sizeof(uint64_t) ; case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE: if (ret) { uint64_t *block_size = ret; unsigned threads_per_block = get_max_threads_per_block(rscreen, ir_type); block_size[0] = threads_per_block; block_size[1] = threads_per_block; block_size[2] = threads_per_block; } return 3 * sizeof(uint64_t); case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK: if (ret) { uint64_t *max_threads_per_block = ret; *max_threads_per_block = get_max_threads_per_block(rscreen, ir_type); } return sizeof(uint64_t); case PIPE_COMPUTE_CAP_ADDRESS_BITS: if (ret) { uint32_t *address_bits = ret; address_bits[0] = 64; } return 1 * sizeof(uint32_t); case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE: if (ret) { uint64_t *max_global_size = ret; uint64_t max_mem_alloc_size; r600_get_compute_param(screen, ir_type, PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE, &max_mem_alloc_size); /* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least * 1/4 of the MAX_GLOBAL_SIZE. Since the * MAX_MEM_ALLOC_SIZE is fixed for older kernels, * make sure we never report more than * 4 * MAX_MEM_ALLOC_SIZE. */ *max_global_size = MIN2(4 * max_mem_alloc_size, MAX2(rscreen->info.gart_size, rscreen->info.vram_size)); } return sizeof(uint64_t); case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE: if (ret) { uint64_t *max_local_size = ret; /* Value reported by the closed source driver. */ *max_local_size = 32768; } return sizeof(uint64_t); case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE: if (ret) { uint64_t *max_input_size = ret; /* Value reported by the closed source driver. */ *max_input_size = 1024; } return sizeof(uint64_t); case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE: if (ret) { uint64_t *max_mem_alloc_size = ret; *max_mem_alloc_size = rscreen->info.max_alloc_size; } return sizeof(uint64_t); case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY: if (ret) { uint32_t *max_clock_frequency = ret; *max_clock_frequency = rscreen->info.max_shader_clock; } return sizeof(uint32_t); case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS: if (ret) { uint32_t *max_compute_units = ret; *max_compute_units = rscreen->info.num_good_compute_units; } return sizeof(uint32_t); case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED: if (ret) { uint32_t *images_supported = ret; *images_supported = 0; } return sizeof(uint32_t); case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE: break; /* unused */ case PIPE_COMPUTE_CAP_SUBGROUP_SIZE: if (ret) { uint32_t *subgroup_size = ret; *subgroup_size = 64; } return sizeof(uint32_t); case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK: if (ret) { uint64_t *max_variable_threads_per_block = ret; if (ir_type == PIPE_SHADER_IR_TGSI) *max_variable_threads_per_block = SI_MAX_VARIABLE_THREADS_PER_BLOCK; else *max_variable_threads_per_block = 0; } return sizeof(uint64_t); } fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param); return 0; } static uint64_t r600_get_timestamp(struct pipe_screen *screen) { struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) / rscreen->info.clock_crystal_freq; } static void r600_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst, struct pipe_fence_handle *src) { struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws; struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst; struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src; if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) { ws->fence_reference(&(*rdst)->gfx, NULL); ws->fence_reference(&(*rdst)->sdma, NULL); FREE(*rdst); } *rdst = rsrc; } static boolean r600_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx, struct pipe_fence_handle *fence, uint64_t timeout) { struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws; struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence; struct r600_common_context *rctx; int64_t abs_timeout = os_time_get_absolute_timeout(timeout); ctx = threaded_context_unwrap_sync(ctx); rctx = ctx ? (struct r600_common_context*)ctx : NULL; if (rfence->sdma) { if (!rws->fence_wait(rws, rfence->sdma, timeout)) return false; /* Recompute the timeout after waiting. */ if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { int64_t time = os_time_get_nano(); timeout = abs_timeout > time ? abs_timeout - time : 0; } } if (!rfence->gfx) return true; /* Flush the gfx IB if it hasn't been flushed yet. */ if (rctx && rfence->gfx_unflushed.ctx == rctx && rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) { rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL); rfence->gfx_unflushed.ctx = NULL; if (!timeout) return false; /* Recompute the timeout after all that. */ if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { int64_t time = os_time_get_nano(); timeout = abs_timeout > time ? abs_timeout - time : 0; } } return rws->fence_wait(rws, rfence->gfx, timeout); } static void r600_query_memory_info(struct pipe_screen *screen, struct pipe_memory_info *info) { struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; struct radeon_winsys *ws = rscreen->ws; unsigned vram_usage, gtt_usage; info->total_device_memory = rscreen->info.vram_size / 1024; info->total_staging_memory = rscreen->info.gart_size / 1024; /* The real TTM memory usage is somewhat random, because: * * 1) TTM delays freeing memory, because it can only free it after * fences expire. * * 2) The memory usage can be really low if big VRAM evictions are * taking place, but the real usage is well above the size of VRAM. * * Instead, return statistics of this process. */ vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024; gtt_usage = ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024; info->avail_device_memory = vram_usage <= info->total_device_memory ? info->total_device_memory - vram_usage : 0; info->avail_staging_memory = gtt_usage <= info->total_staging_memory ? info->total_staging_memory - gtt_usage : 0; info->device_memory_evicted = ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024; if (rscreen->info.drm_major == 3 && rscreen->info.drm_minor >= 4) info->nr_device_memory_evictions = ws->query_value(ws, RADEON_NUM_EVICTIONS); else /* Just return the number of evicted 64KB pages. */ info->nr_device_memory_evictions = info->device_memory_evicted / 64; } struct pipe_resource *si_resource_create_common(struct pipe_screen *screen, const struct pipe_resource *templ) { if (templ->target == PIPE_BUFFER) { return si_buffer_create(screen, templ, 256); } else { return si_texture_create(screen, templ); } } bool si_common_screen_init(struct r600_common_screen *rscreen, struct radeon_winsys *ws) { char family_name[32] = {}, llvm_string[32] = {}, kernel_version[128] = {}; struct utsname uname_data; const char *chip_name; ws->query_info(ws, &rscreen->info); rscreen->ws = ws; if ((chip_name = r600_get_marketing_name(ws))) snprintf(family_name, sizeof(family_name), "%s / ", r600_get_family_name(rscreen) + 4); else chip_name = r600_get_family_name(rscreen); if (uname(&uname_data) == 0) snprintf(kernel_version, sizeof(kernel_version), " / %s", uname_data.release); if (HAVE_LLVM > 0) { snprintf(llvm_string, sizeof(llvm_string), ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff, HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH); } snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string), "%s (%sDRM %i.%i.%i%s%s)", chip_name, family_name, rscreen->info.drm_major, rscreen->info.drm_minor, rscreen->info.drm_patchlevel, kernel_version, llvm_string); rscreen->b.get_name = r600_get_name; rscreen->b.get_vendor = r600_get_vendor; rscreen->b.get_device_vendor = r600_get_device_vendor; rscreen->b.get_disk_shader_cache = r600_get_disk_shader_cache; rscreen->b.get_compute_param = r600_get_compute_param; rscreen->b.get_paramf = r600_get_paramf; rscreen->b.get_timestamp = r600_get_timestamp; rscreen->b.fence_finish = r600_fence_finish; rscreen->b.fence_reference = r600_fence_reference; rscreen->b.resource_destroy = u_resource_destroy_vtbl; rscreen->b.resource_from_user_memory = si_buffer_from_user_memory; rscreen->b.query_memory_info = r600_query_memory_info; rscreen->b.fence_get_fd = r600_fence_get_fd; if (rscreen->info.has_hw_decode) { rscreen->b.get_video_param = si_vid_get_video_param; rscreen->b.is_video_format_supported = si_vid_is_format_supported; } else { rscreen->b.get_video_param = r600_get_video_param; rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported; } si_init_screen_texture_functions(rscreen); si_init_screen_query_functions(rscreen); rscreen->family = rscreen->info.family; rscreen->chip_class = rscreen->info.chip_class; rscreen->debug_flags |= debug_get_flags_option("R600_DEBUG", common_debug_options, 0); rscreen->has_rbplus = false; rscreen->rbplus_allowed = false; r600_disk_cache_create(rscreen); slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64); rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1)); if (rscreen->force_aniso >= 0) { printf("radeon: Forcing anisotropy filter to %ix\n", /* round down to a power of two */ 1 << util_logbase2(rscreen->force_aniso)); } (void) mtx_init(&rscreen->aux_context_lock, mtx_plain); (void) mtx_init(&rscreen->gpu_load_mutex, mtx_plain); if (rscreen->debug_flags & DBG(INFO)) { printf("pci (domain:bus:dev.func): %04x:%02x:%02x.%x\n", rscreen->info.pci_domain, rscreen->info.pci_bus, rscreen->info.pci_dev, rscreen->info.pci_func); printf("pci_id = 0x%x\n", rscreen->info.pci_id); printf("family = %i (%s)\n", rscreen->info.family, r600_get_family_name(rscreen)); printf("chip_class = %i\n", rscreen->info.chip_class); printf("pte_fragment_size = %u\n", rscreen->info.pte_fragment_size); printf("gart_page_size = %u\n", rscreen->info.gart_page_size); printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024)); printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024)); printf("vram_vis_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_vis_size, 1024*1024)); printf("max_alloc_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024)); printf("min_alloc_size = %u\n", rscreen->info.min_alloc_size); printf("has_dedicated_vram = %u\n", rscreen->info.has_dedicated_vram); printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory); printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2); printf("has_hw_decode = %u\n", rscreen->info.has_hw_decode); printf("num_sdma_rings = %i\n", rscreen->info.num_sdma_rings); printf("num_compute_rings = %u\n", rscreen->info.num_compute_rings); printf("uvd_fw_version = %u\n", rscreen->info.uvd_fw_version); printf("vce_fw_version = %u\n", rscreen->info.vce_fw_version); printf("me_fw_version = %i\n", rscreen->info.me_fw_version); printf("me_fw_feature = %i\n", rscreen->info.me_fw_feature); printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version); printf("pfp_fw_feature = %i\n", rscreen->info.pfp_fw_feature); printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version); printf("ce_fw_feature = %i\n", rscreen->info.ce_fw_feature); printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config); printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq); printf("tcc_cache_line_size = %u\n", rscreen->info.tcc_cache_line_size); printf("drm = %i.%i.%i\n", rscreen->info.drm_major, rscreen->info.drm_minor, rscreen->info.drm_patchlevel); printf("has_userptr = %i\n", rscreen->info.has_userptr); printf("has_syncobj = %u\n", rscreen->info.has_syncobj); printf("has_sync_file = %u\n", rscreen->info.has_sync_file); printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes); printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock); printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units); printf("max_se = %i\n", rscreen->info.max_se); printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se); printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map); printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid); printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks); printf("num_render_backends = %i\n", rscreen->info.num_render_backends); printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes); printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes); printf("enabled_rb_mask = 0x%x\n", rscreen->info.enabled_rb_mask); printf("max_alignment = %u\n", (unsigned)rscreen->info.max_alignment); } return true; } void si_destroy_common_screen(struct r600_common_screen *rscreen) { si_perfcounters_destroy(rscreen); si_gpu_load_kill_thread(rscreen); mtx_destroy(&rscreen->gpu_load_mutex); mtx_destroy(&rscreen->aux_context_lock); rscreen->aux_context->destroy(rscreen->aux_context); slab_destroy_parent(&rscreen->pool_transfers); disk_cache_destroy(rscreen->disk_shader_cache); rscreen->ws->destroy(rscreen->ws); FREE(rscreen); } bool si_can_dump_shader(struct r600_common_screen *rscreen, unsigned processor) { return rscreen->debug_flags & (1 << processor); } bool si_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor) { return (rscreen->debug_flags & DBG(CHECK_IR)) || si_can_dump_shader(rscreen, processor); } void si_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst, uint64_t offset, uint64_t size, unsigned value) { struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context; mtx_lock(&rscreen->aux_context_lock); rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value); rscreen->aux_context->flush(rscreen->aux_context, NULL, 0); mtx_unlock(&rscreen->aux_context_lock); }