/* * Copyright 2010 Jerome Glisse * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Jerome Glisse */ #include "r600_pipe.h" #include "r600d.h" #include "util/u_memory.h" #include #include void r600_need_cs_space(struct r600_context *ctx, unsigned num_dw, boolean count_draw_in) { /* Flush the DMA IB if it's not empty. */ if (radeon_emitted(ctx->b.dma.cs, 0)) ctx->b.dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL); if (!radeon_cs_memory_below_limit(ctx->b.screen, ctx->b.gfx.cs, ctx->b.vram, ctx->b.gtt)) { ctx->b.gtt = 0; ctx->b.vram = 0; ctx->b.gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL); return; } /* all will be accounted once relocation are emited */ ctx->b.gtt = 0; ctx->b.vram = 0; /* Check available space in CS. */ if (count_draw_in) { uint64_t mask; /* The number of dwords all the dirty states would take. */ mask = ctx->dirty_atoms; while (mask != 0) num_dw += ctx->atoms[u_bit_scan64(&mask)]->num_dw; /* The upper-bound of how much space a draw command would take. */ num_dw += R600_MAX_FLUSH_CS_DWORDS + R600_MAX_DRAW_CS_DWORDS; } /* Count in r600_suspend_queries. */ num_dw += ctx->b.num_cs_dw_queries_suspend; /* Count in streamout_end at the end of CS. */ if (ctx->b.streamout.begin_emitted) { num_dw += ctx->b.streamout.num_dw_for_end; } /* SX_MISC */ if (ctx->b.chip_class == R600) { num_dw += 3; } /* Count in framebuffer cache flushes at the end of CS. */ num_dw += R600_MAX_FLUSH_CS_DWORDS; /* The fence at the end of CS. */ num_dw += 10; /* Flush if there's not enough space. */ if (!ctx->b.ws->cs_check_space(ctx->b.gfx.cs, num_dw)) { ctx->b.gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL); } } void r600_flush_emit(struct r600_context *rctx) { struct radeon_winsys_cs *cs = rctx->b.gfx.cs; unsigned cp_coher_cntl = 0; unsigned wait_until = 0; if (!rctx->b.flags) { return; } /* Ensure coherency between streamout and shaders. */ if (rctx->b.flags & R600_CONTEXT_STREAMOUT_FLUSH) rctx->b.flags |= r600_get_flush_flags(R600_COHERENCY_SHADER); if (rctx->b.flags & R600_CONTEXT_WAIT_3D_IDLE) { wait_until |= S_008040_WAIT_3D_IDLE(1); } if (rctx->b.flags & R600_CONTEXT_WAIT_CP_DMA_IDLE) { wait_until |= S_008040_WAIT_CP_DMA_IDLE(1); } if (wait_until) { /* Use of WAIT_UNTIL is deprecated on Cayman+ */ if (rctx->b.family >= CHIP_CAYMAN) { /* emit a PS partial flush on Cayman/TN */ rctx->b.flags |= R600_CONTEXT_PS_PARTIAL_FLUSH; } } /* Wait packets must be executed first, because SURFACE_SYNC doesn't * wait for shaders if it's not flushing CB or DB. */ if (rctx->b.flags & R600_CONTEXT_PS_PARTIAL_FLUSH) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_PS_PARTIAL_FLUSH) | EVENT_INDEX(4)); } if (wait_until) { /* Use of WAIT_UNTIL is deprecated on Cayman+ */ if (rctx->b.family < CHIP_CAYMAN) { /* wait for things to settle */ radeon_set_config_reg(cs, R_008040_WAIT_UNTIL, wait_until); } } if (rctx->b.chip_class >= R700 && (rctx->b.flags & R600_CONTEXT_FLUSH_AND_INV_CB_META)) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0)); } if (rctx->b.chip_class >= R700 && (rctx->b.flags & R600_CONTEXT_FLUSH_AND_INV_DB_META)) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0)); /* Set FULL_CACHE_ENA for DB META flushes on r7xx and later. * * This hack predates use of FLUSH_AND_INV_DB_META, so it's * unclear whether it's still needed or even whether it has * any effect. */ cp_coher_cntl |= S_0085F0_FULL_CACHE_ENA(1); } if (rctx->b.flags & R600_CONTEXT_FLUSH_AND_INV || (rctx->b.chip_class == R600 && rctx->b.flags & R600_CONTEXT_STREAMOUT_FLUSH)) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_CACHE_FLUSH_AND_INV_EVENT) | EVENT_INDEX(0)); } if (rctx->b.flags & R600_CONTEXT_INV_CONST_CACHE) { /* Direct constant addressing uses the shader cache. * Indirect contant addressing uses the vertex cache. */ cp_coher_cntl |= S_0085F0_SH_ACTION_ENA(1) | (rctx->has_vertex_cache ? S_0085F0_VC_ACTION_ENA(1) : S_0085F0_TC_ACTION_ENA(1)); } if (rctx->b.flags & R600_CONTEXT_INV_VERTEX_CACHE) { cp_coher_cntl |= rctx->has_vertex_cache ? S_0085F0_VC_ACTION_ENA(1) : S_0085F0_TC_ACTION_ENA(1); } if (rctx->b.flags & R600_CONTEXT_INV_TEX_CACHE) { /* Textures use the texture cache. * Texture buffer objects use the vertex cache. */ cp_coher_cntl |= S_0085F0_TC_ACTION_ENA(1) | (rctx->has_vertex_cache ? S_0085F0_VC_ACTION_ENA(1) : 0); } /* Don't use the DB CP COHER logic on r6xx. * There are hw bugs. */ if (rctx->b.chip_class >= R700 && (rctx->b.flags & R600_CONTEXT_FLUSH_AND_INV_DB)) { cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) | S_0085F0_DB_DEST_BASE_ENA(1) | S_0085F0_SMX_ACTION_ENA(1); } /* Don't use the CB CP COHER logic on r6xx. * There are hw bugs. */ if (rctx->b.chip_class >= R700 && (rctx->b.flags & R600_CONTEXT_FLUSH_AND_INV_CB)) { cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) | S_0085F0_CB0_DEST_BASE_ENA(1) | S_0085F0_CB1_DEST_BASE_ENA(1) | S_0085F0_CB2_DEST_BASE_ENA(1) | S_0085F0_CB3_DEST_BASE_ENA(1) | S_0085F0_CB4_DEST_BASE_ENA(1) | S_0085F0_CB5_DEST_BASE_ENA(1) | S_0085F0_CB6_DEST_BASE_ENA(1) | S_0085F0_CB7_DEST_BASE_ENA(1) | S_0085F0_SMX_ACTION_ENA(1); if (rctx->b.chip_class >= EVERGREEN) cp_coher_cntl |= S_0085F0_CB8_DEST_BASE_ENA(1) | S_0085F0_CB9_DEST_BASE_ENA(1) | S_0085F0_CB10_DEST_BASE_ENA(1) | S_0085F0_CB11_DEST_BASE_ENA(1); } if (rctx->b.chip_class >= R700 && rctx->b.flags & R600_CONTEXT_STREAMOUT_FLUSH) { cp_coher_cntl |= S_0085F0_SO0_DEST_BASE_ENA(1) | S_0085F0_SO1_DEST_BASE_ENA(1) | S_0085F0_SO2_DEST_BASE_ENA(1) | S_0085F0_SO3_DEST_BASE_ENA(1) | S_0085F0_SMX_ACTION_ENA(1); } /* Workaround for buggy flushing on some R6xx chipsets. */ if ((rctx->b.flags & (R600_CONTEXT_FLUSH_AND_INV | R600_CONTEXT_STREAMOUT_FLUSH)) && (rctx->b.family == CHIP_RV670 || rctx->b.family == CHIP_RS780 || rctx->b.family == CHIP_RS880)) { cp_coher_cntl |= S_0085F0_CB1_DEST_BASE_ENA(1) | S_0085F0_DEST_BASE_0_ENA(1); } if (cp_coher_cntl) { radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, 0)); radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */ radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */ radeon_emit(cs, 0); /* CP_COHER_BASE */ radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */ } if (rctx->b.flags & R600_CONTEXT_START_PIPELINE_STATS) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_PIPELINESTAT_START) | EVENT_INDEX(0)); } else if (rctx->b.flags & R600_CONTEXT_STOP_PIPELINE_STATS) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_PIPELINESTAT_STOP) | EVENT_INDEX(0)); } /* everything is properly flushed */ rctx->b.flags = 0; } void r600_context_gfx_flush(void *context, unsigned flags, struct pipe_fence_handle **fence) { struct r600_context *ctx = context; struct radeon_winsys_cs *cs = ctx->b.gfx.cs; struct radeon_winsys *ws = ctx->b.ws; if (!radeon_emitted(cs, ctx->b.initial_gfx_cs_size)) return; if (r600_check_device_reset(&ctx->b)) return; r600_preflush_suspend_features(&ctx->b); /* flush the framebuffer cache */ ctx->b.flags |= R600_CONTEXT_FLUSH_AND_INV | R600_CONTEXT_FLUSH_AND_INV_CB | R600_CONTEXT_FLUSH_AND_INV_DB | R600_CONTEXT_FLUSH_AND_INV_CB_META | R600_CONTEXT_FLUSH_AND_INV_DB_META | R600_CONTEXT_WAIT_3D_IDLE | R600_CONTEXT_WAIT_CP_DMA_IDLE; r600_flush_emit(ctx); /* old kernels and userspace don't set SX_MISC, so we must reset it to 0 here */ if (ctx->b.chip_class == R600) { radeon_set_context_reg(cs, R_028350_SX_MISC, 0); } /* Flush the CS. */ ws->cs_flush(cs, flags, &ctx->b.last_gfx_fence); if (fence) ws->fence_reference(fence, ctx->b.last_gfx_fence); ctx->b.num_gfx_cs_flushes++; r600_begin_new_cs(ctx); } void r600_begin_new_cs(struct r600_context *ctx) { unsigned shader; ctx->b.flags = 0; ctx->b.gtt = 0; ctx->b.vram = 0; /* Begin a new CS. */ r600_emit_command_buffer(ctx->b.gfx.cs, &ctx->start_cs_cmd); /* Re-emit states. */ r600_mark_atom_dirty(ctx, &ctx->alphatest_state.atom); r600_mark_atom_dirty(ctx, &ctx->blend_color.atom); r600_mark_atom_dirty(ctx, &ctx->cb_misc_state.atom); r600_mark_atom_dirty(ctx, &ctx->clip_misc_state.atom); r600_mark_atom_dirty(ctx, &ctx->clip_state.atom); r600_mark_atom_dirty(ctx, &ctx->db_misc_state.atom); r600_mark_atom_dirty(ctx, &ctx->db_state.atom); r600_mark_atom_dirty(ctx, &ctx->framebuffer.atom); r600_mark_atom_dirty(ctx, &ctx->hw_shader_stages[R600_HW_STAGE_PS].atom); r600_mark_atom_dirty(ctx, &ctx->poly_offset_state.atom); r600_mark_atom_dirty(ctx, &ctx->vgt_state.atom); r600_mark_atom_dirty(ctx, &ctx->sample_mask.atom); ctx->b.scissors.dirty_mask = (1 << R600_MAX_VIEWPORTS) - 1; r600_mark_atom_dirty(ctx, &ctx->b.scissors.atom); ctx->b.viewports.dirty_mask = (1 << R600_MAX_VIEWPORTS) - 1; ctx->b.viewports.depth_range_dirty_mask = (1 << R600_MAX_VIEWPORTS) - 1; r600_mark_atom_dirty(ctx, &ctx->b.viewports.atom); if (ctx->b.chip_class <= EVERGREEN) { r600_mark_atom_dirty(ctx, &ctx->config_state.atom); } r600_mark_atom_dirty(ctx, &ctx->stencil_ref.atom); r600_mark_atom_dirty(ctx, &ctx->vertex_fetch_shader.atom); r600_mark_atom_dirty(ctx, &ctx->hw_shader_stages[R600_HW_STAGE_ES].atom); r600_mark_atom_dirty(ctx, &ctx->shader_stages.atom); if (ctx->gs_shader) { r600_mark_atom_dirty(ctx, &ctx->hw_shader_stages[R600_HW_STAGE_GS].atom); r600_mark_atom_dirty(ctx, &ctx->gs_rings.atom); } if (ctx->tes_shader) { r600_mark_atom_dirty(ctx, &ctx->hw_shader_stages[EG_HW_STAGE_HS].atom); r600_mark_atom_dirty(ctx, &ctx->hw_shader_stages[EG_HW_STAGE_LS].atom); } r600_mark_atom_dirty(ctx, &ctx->hw_shader_stages[R600_HW_STAGE_VS].atom); r600_mark_atom_dirty(ctx, &ctx->b.streamout.enable_atom); r600_mark_atom_dirty(ctx, &ctx->b.render_cond_atom); if (ctx->blend_state.cso) r600_mark_atom_dirty(ctx, &ctx->blend_state.atom); if (ctx->dsa_state.cso) r600_mark_atom_dirty(ctx, &ctx->dsa_state.atom); if (ctx->rasterizer_state.cso) r600_mark_atom_dirty(ctx, &ctx->rasterizer_state.atom); if (ctx->b.chip_class <= R700) { r600_mark_atom_dirty(ctx, &ctx->seamless_cube_map.atom); } ctx->vertex_buffer_state.dirty_mask = ctx->vertex_buffer_state.enabled_mask; r600_vertex_buffers_dirty(ctx); /* Re-emit shader resources. */ for (shader = 0; shader < PIPE_SHADER_TYPES; shader++) { struct r600_constbuf_state *constbuf = &ctx->constbuf_state[shader]; struct r600_textures_info *samplers = &ctx->samplers[shader]; constbuf->dirty_mask = constbuf->enabled_mask; samplers->views.dirty_mask = samplers->views.enabled_mask; samplers->states.dirty_mask = samplers->states.enabled_mask; r600_constant_buffers_dirty(ctx, constbuf); r600_sampler_views_dirty(ctx, &samplers->views); r600_sampler_states_dirty(ctx, &samplers->states); } r600_postflush_resume_features(&ctx->b); /* Re-emit the draw state. */ ctx->last_primitive_type = -1; ctx->last_start_instance = -1; assert(!ctx->b.gfx.cs->prev_dw); ctx->b.initial_gfx_cs_size = ctx->b.gfx.cs->current.cdw; } void r600_emit_pfp_sync_me(struct r600_context *rctx) { struct radeon_winsys_cs *cs = rctx->b.gfx.cs; if (rctx->b.chip_class >= EVERGREEN && rctx->b.screen->info.drm_minor >= 46) { radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); radeon_emit(cs, 0); } else { /* Emulate PFP_SYNC_ME by writing a value to memory in ME and * waiting for it in PFP. */ struct r600_resource *buf = NULL; unsigned offset, reloc; uint64_t va; /* 16-byte address alignment is required by WAIT_REG_MEM. */ u_suballocator_alloc(rctx->b.allocator_zeroed_memory, 4, 16, &offset, (struct pipe_resource**)&buf); if (!buf) { /* This is too heavyweight, but will work. */ rctx->b.gfx.flush(rctx, RADEON_FLUSH_ASYNC, NULL); return; } reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx, buf, RADEON_USAGE_READWRITE, RADEON_PRIO_FENCE); va = buf->gpu_address + offset; assert(va % 16 == 0); /* Write 1 to memory in ME. */ radeon_emit(cs, PKT3(PKT3_MEM_WRITE, 3, 0)); radeon_emit(cs, va); radeon_emit(cs, ((va >> 32) & 0xff) | MEM_WRITE_32_BITS); radeon_emit(cs, 1); radeon_emit(cs, 0); radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); radeon_emit(cs, reloc); /* Wait in PFP (PFP can only do GEQUAL against memory). */ radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); radeon_emit(cs, WAIT_REG_MEM_GEQUAL | WAIT_REG_MEM_MEMORY | WAIT_REG_MEM_PFP); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit(cs, 1); /* reference value */ radeon_emit(cs, 0xffffffff); /* mask */ radeon_emit(cs, 4); /* poll interval */ radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); radeon_emit(cs, reloc); r600_resource_reference(&buf, NULL); } } /* The max number of bytes to copy per packet. */ #define CP_DMA_MAX_BYTE_COUNT ((1 << 21) - 8) void r600_cp_dma_copy_buffer(struct r600_context *rctx, struct pipe_resource *dst, uint64_t dst_offset, struct pipe_resource *src, uint64_t src_offset, unsigned size) { struct radeon_winsys_cs *cs = rctx->b.gfx.cs; assert(size); assert(rctx->screen->b.has_cp_dma); /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset, dst_offset + size); dst_offset += r600_resource(dst)->gpu_address; src_offset += r600_resource(src)->gpu_address; /* Flush the caches where the resources are bound. */ rctx->b.flags |= r600_get_flush_flags(R600_COHERENCY_SHADER) | R600_CONTEXT_WAIT_3D_IDLE; /* There are differences between R700 and EG in CP DMA, * but we only use the common bits here. */ while (size) { unsigned sync = 0; unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT); unsigned src_reloc, dst_reloc; r600_need_cs_space(rctx, 10 + (rctx->b.flags ? R600_MAX_FLUSH_CS_DWORDS : 0) + 3 + R600_MAX_PFP_SYNC_ME_DWORDS, FALSE); /* Flush the caches for the first copy only. */ if (rctx->b.flags) { r600_flush_emit(rctx); } /* Do the synchronization after the last copy, so that all data is written to memory. */ if (size == byte_count) { sync = PKT3_CP_DMA_CP_SYNC; } /* This must be done after r600_need_cs_space. */ src_reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx, (struct r600_resource*)src, RADEON_USAGE_READ, RADEON_PRIO_CP_DMA); dst_reloc = radeon_add_to_buffer_list(&rctx->b, &rctx->b.gfx, (struct r600_resource*)dst, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA); radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0)); radeon_emit(cs, src_offset); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, sync | ((src_offset >> 32) & 0xff)); /* CP_SYNC [31] | SRC_ADDR_HI [7:0] */ radeon_emit(cs, dst_offset); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, (dst_offset >> 32) & 0xff); /* DST_ADDR_HI [7:0] */ radeon_emit(cs, byte_count); /* COMMAND [29:22] | BYTE_COUNT [20:0] */ radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); radeon_emit(cs, src_reloc); radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); radeon_emit(cs, dst_reloc); size -= byte_count; src_offset += byte_count; dst_offset += byte_count; } /* CP_DMA_CP_SYNC doesn't wait for idle on R6xx, but this does. */ if (rctx->b.chip_class == R600) radeon_set_config_reg(cs, R_008040_WAIT_UNTIL, S_008040_WAIT_CP_DMA_IDLE(1)); /* CP DMA is executed in ME, but index buffers are read by PFP. * This ensures that ME (CP DMA) is idle before PFP starts fetching * indices. If we wanted to execute CP DMA in PFP, this packet * should precede it. */ r600_emit_pfp_sync_me(rctx); } void r600_dma_copy_buffer(struct r600_context *rctx, struct pipe_resource *dst, struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset, uint64_t size) { struct radeon_winsys_cs *cs = rctx->b.dma.cs; unsigned i, ncopy, csize; struct r600_resource *rdst = (struct r600_resource*)dst; struct r600_resource *rsrc = (struct r600_resource*)src; /* Mark the buffer range of destination as valid (initialized), * so that transfer_map knows it should wait for the GPU when mapping * that range. */ util_range_add(&rdst->valid_buffer_range, dst_offset, dst_offset + size); size >>= 2; /* convert to dwords */ ncopy = (size / R600_DMA_COPY_MAX_SIZE_DW) + !!(size % R600_DMA_COPY_MAX_SIZE_DW); r600_need_dma_space(&rctx->b, ncopy * 5, rdst, rsrc); for (i = 0; i < ncopy; i++) { csize = size < R600_DMA_COPY_MAX_SIZE_DW ? size : R600_DMA_COPY_MAX_SIZE_DW; /* emit reloc before writing cs so that cs is always in consistent state */ radeon_add_to_buffer_list(&rctx->b, &rctx->b.dma, rsrc, RADEON_USAGE_READ, RADEON_PRIO_SDMA_BUFFER); radeon_add_to_buffer_list(&rctx->b, &rctx->b.dma, rdst, RADEON_USAGE_WRITE, RADEON_PRIO_SDMA_BUFFER); radeon_emit(cs, DMA_PACKET(DMA_PACKET_COPY, 0, 0, csize)); radeon_emit(cs, dst_offset & 0xfffffffc); radeon_emit(cs, src_offset & 0xfffffffc); radeon_emit(cs, (dst_offset >> 32UL) & 0xff); radeon_emit(cs, (src_offset >> 32UL) & 0xff); dst_offset += csize << 2; src_offset += csize << 2; size -= csize; } }