/* * Copyright 2010 Jerome Glisse * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include "util/u_format.h" #include "util/u_memory.h" #include "pipe/p_shader_tokens.h" #include "r600_pipe.h" #include "r600_sq.h" #include "r600_opcodes.h" #include "r600_asm.h" #include "r600_formats.h" #include "r600d.h" #define NUM_OF_CYCLES 3 #define NUM_OF_COMPONENTS 4 static inline unsigned int r600_bc_get_num_operands(struct r600_bc *bc, struct r600_bc_alu *alu) { if(alu->is_op3) return 3; switch (bc->chiprev) { case CHIPREV_R600: case CHIPREV_R700: switch (alu->inst) { case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP: return 0; case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD_INT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE: return 2; case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOV: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_FLOOR: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FRACT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLOOR: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_TRUNC: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN: case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS: return 1; default: R600_ERR( "Need instruction operand number for 0x%x.\n", alu->inst); } break; case CHIPREV_EVERGREEN: switch (alu->inst) { case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP: return 0; case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD_INT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INTERP_XY: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INTERP_ZW: return 2; case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOV: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FRACT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLOOR: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_TRUNC: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT_FLOOR: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN: case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS: return 1; default: R600_ERR( "Need instruction operand number for 0x%x.\n", alu->inst); } break; } return 3; } int r700_bc_alu_build(struct r600_bc *bc, struct r600_bc_alu *alu, unsigned id); static struct r600_bc_cf *r600_bc_cf(void) { struct r600_bc_cf *cf = CALLOC_STRUCT(r600_bc_cf); if (cf == NULL) return NULL; LIST_INITHEAD(&cf->list); LIST_INITHEAD(&cf->alu); LIST_INITHEAD(&cf->vtx); LIST_INITHEAD(&cf->tex); return cf; } static struct r600_bc_alu *r600_bc_alu(void) { struct r600_bc_alu *alu = CALLOC_STRUCT(r600_bc_alu); if (alu == NULL) return NULL; LIST_INITHEAD(&alu->list); return alu; } static struct r600_bc_vtx *r600_bc_vtx(void) { struct r600_bc_vtx *vtx = CALLOC_STRUCT(r600_bc_vtx); if (vtx == NULL) return NULL; LIST_INITHEAD(&vtx->list); return vtx; } static struct r600_bc_tex *r600_bc_tex(void) { struct r600_bc_tex *tex = CALLOC_STRUCT(r600_bc_tex); if (tex == NULL) return NULL; LIST_INITHEAD(&tex->list); return tex; } int r600_bc_init(struct r600_bc *bc, enum radeon_family family) { LIST_INITHEAD(&bc->cf); bc->family = family; switch (bc->family) { case CHIP_R600: case CHIP_RV610: case CHIP_RV630: case CHIP_RV670: case CHIP_RV620: case CHIP_RV635: case CHIP_RS780: case CHIP_RS880: bc->chiprev = CHIPREV_R600; break; case CHIP_RV770: case CHIP_RV730: case CHIP_RV710: case CHIP_RV740: bc->chiprev = CHIPREV_R700; break; case CHIP_CEDAR: case CHIP_REDWOOD: case CHIP_JUNIPER: case CHIP_CYPRESS: case CHIP_HEMLOCK: case CHIP_PALM: case CHIP_BARTS: case CHIP_TURKS: case CHIP_CAICOS: bc->chiprev = CHIPREV_EVERGREEN; break; default: R600_ERR("unknown family %d\n", bc->family); return -EINVAL; } return 0; } static int r600_bc_add_cf(struct r600_bc *bc) { struct r600_bc_cf *cf = r600_bc_cf(); if (cf == NULL) return -ENOMEM; LIST_ADDTAIL(&cf->list, &bc->cf); if (bc->cf_last) cf->id = bc->cf_last->id + 2; bc->cf_last = cf; bc->ncf++; bc->ndw += 2; bc->force_add_cf = 0; return 0; } int r600_bc_add_output(struct r600_bc *bc, const struct r600_bc_output *output) { int r; if (bc->cf_last && (bc->cf_last->inst == output->inst || (bc->cf_last->inst == BC_INST(bc, V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT) && output->inst == BC_INST(bc, V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE))) && output->type == bc->cf_last->output.type && output->elem_size == bc->cf_last->output.elem_size && output->swizzle_x == bc->cf_last->output.swizzle_x && output->swizzle_y == bc->cf_last->output.swizzle_y && output->swizzle_z == bc->cf_last->output.swizzle_z && output->swizzle_w == bc->cf_last->output.swizzle_w && (output->burst_count + bc->cf_last->output.burst_count) <= 16) { if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr && (output->array_base + output->burst_count) == bc->cf_last->output.array_base) { bc->cf_last->output.end_of_program |= output->end_of_program; bc->cf_last->output.inst = output->inst; bc->cf_last->output.gpr = output->gpr; bc->cf_last->output.array_base = output->array_base; bc->cf_last->output.burst_count += output->burst_count; return 0; } else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) && output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) { bc->cf_last->output.end_of_program |= output->end_of_program; bc->cf_last->output.inst = output->inst; bc->cf_last->output.burst_count += output->burst_count; return 0; } } r = r600_bc_add_cf(bc); if (r) return r; bc->cf_last->inst = output->inst; memcpy(&bc->cf_last->output, output, sizeof(struct r600_bc_output)); return 0; } /* alu instructions that can ony exits once per group */ static int is_alu_once_inst(struct r600_bc *bc, struct r600_bc_alu *alu) { switch (bc->chiprev) { case CHIPREV_R600: case CHIPREV_R700: return !alu->is_op3 && ( alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_UINT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_UINT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_UINT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_UINT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_INV || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_POP || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_CLR || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_RESTORE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLT_PUSH_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLE_PUSH_INT); case CHIPREV_EVERGREEN: default: return !alu->is_op3 && ( alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_UINT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_UINT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_UINT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_UINT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_INV || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_POP || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_CLR || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_RESTORE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLT_PUSH_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLE_PUSH_INT); } } static int is_alu_reduction_inst(struct r600_bc *bc, struct r600_bc_alu *alu) { switch (bc->chiprev) { case CHIPREV_R600: case CHIPREV_R700: return !alu->is_op3 && ( alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4 || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4); case CHIPREV_EVERGREEN: default: return !alu->is_op3 && ( alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4 || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4); } } static int is_alu_cube_inst(struct r600_bc *bc, struct r600_bc_alu *alu) { switch (bc->chiprev) { case CHIPREV_R600: case CHIPREV_R700: return !alu->is_op3 && alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE; case CHIPREV_EVERGREEN: default: return !alu->is_op3 && alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE; } } static int is_alu_mova_inst(struct r600_bc *bc, struct r600_bc_alu *alu) { switch (bc->chiprev) { case CHIPREV_R600: case CHIPREV_R700: return !alu->is_op3 && ( alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_FLOOR || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT); case CHIPREV_EVERGREEN: default: return !alu->is_op3 && ( alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT); } } /* alu instructions that can only execute on the vector unit */ static int is_alu_vec_unit_inst(struct r600_bc *bc, struct r600_bc_alu *alu) { return is_alu_reduction_inst(bc, alu) || is_alu_mova_inst(bc, alu) || (bc->chiprev == CHIPREV_EVERGREEN && alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT_FLOOR); } /* alu instructions that can only execute on the trans unit */ static int is_alu_trans_unit_inst(struct r600_bc *bc, struct r600_bc_alu *alu) { switch (bc->chiprev) { case CHIPREV_R600: case CHIPREV_R700: if (!alu->is_op3) return alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ASHR_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHL_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHR_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_UINT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_INT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_UINT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_FF || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_FF || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN || alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SQRT_IEEE; else return alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT || alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT_D2 || alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT_M2 || alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT_M4; case CHIPREV_EVERGREEN: default: if (!alu->is_op3) /* Note that FLT_TO_INT_* instructions are vector-only instructions * on Evergreen, despite what the documentation says. FLT_TO_INT * can do both vector and scalar. */ return alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ASHR_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHL_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHR_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_UINT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_INT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_UINT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_FF || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_FF || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN || alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SQRT_IEEE; else return alu->inst == EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT; } } /* alu instructions that can execute on any unit */ static int is_alu_any_unit_inst(struct r600_bc *bc, struct r600_bc_alu *alu) { return !is_alu_vec_unit_inst(bc, alu) && !is_alu_trans_unit_inst(bc, alu); } static int assign_alu_units(struct r600_bc *bc, struct r600_bc_alu *alu_first, struct r600_bc_alu *assignment[5]) { struct r600_bc_alu *alu; unsigned i, chan, trans; for (i = 0; i < 5; i++) assignment[i] = NULL; for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bc_alu, alu->list.next, list)) { chan = alu->dst.chan; if (is_alu_trans_unit_inst(bc, alu)) trans = 1; else if (is_alu_vec_unit_inst(bc, alu)) trans = 0; else if (assignment[chan]) trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */ else trans = 0; if (trans) { if (assignment[4]) { assert(0); /* ALU.Trans has already been allocated. */ return -1; } assignment[4] = alu; } else { if (assignment[chan]) { assert(0); /* ALU.chan has already been allocated. */ return -1; } assignment[chan] = alu; } if (alu->last) break; } return 0; } struct alu_bank_swizzle { int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS]; int hw_cfile_addr[4]; int hw_cfile_elem[4]; }; static const unsigned cycle_for_bank_swizzle_vec[][3] = { [SQ_ALU_VEC_012] = { 0, 1, 2 }, [SQ_ALU_VEC_021] = { 0, 2, 1 }, [SQ_ALU_VEC_120] = { 1, 2, 0 }, [SQ_ALU_VEC_102] = { 1, 0, 2 }, [SQ_ALU_VEC_201] = { 2, 0, 1 }, [SQ_ALU_VEC_210] = { 2, 1, 0 } }; static const unsigned cycle_for_bank_swizzle_scl[][3] = { [SQ_ALU_SCL_210] = { 2, 1, 0 }, [SQ_ALU_SCL_122] = { 1, 2, 2 }, [SQ_ALU_SCL_212] = { 2, 1, 2 }, [SQ_ALU_SCL_221] = { 2, 2, 1 } }; static void init_bank_swizzle(struct alu_bank_swizzle *bs) { int i, cycle, component; /* set up gpr use */ for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++) for (component = 0; component < NUM_OF_COMPONENTS; component++) bs->hw_gpr[cycle][component] = -1; for (i = 0; i < 4; i++) bs->hw_cfile_addr[i] = -1; for (i = 0; i < 4; i++) bs->hw_cfile_elem[i] = -1; } static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle) { if (bs->hw_gpr[cycle][chan] == -1) bs->hw_gpr[cycle][chan] = sel; else if (bs->hw_gpr[cycle][chan] != (int)sel) { /* Another scalar operation has already used the GPR read port for the channel. */ return -1; } return 0; } static int reserve_cfile(struct r600_bc *bc, struct alu_bank_swizzle *bs, unsigned sel, unsigned chan) { int res, num_res = 4; if (bc->chiprev >= CHIPREV_R700) { num_res = 2; chan /= 2; } for (res = 0; res < num_res; ++res) { if (bs->hw_cfile_addr[res] == -1) { bs->hw_cfile_addr[res] = sel; bs->hw_cfile_elem[res] = chan; return 0; } else if (bs->hw_cfile_addr[res] == sel && bs->hw_cfile_elem[res] == chan) return 0; /* Read for this scalar element already reserved, nothing to do here. */ } /* All cfile read ports are used, cannot reference vector element. */ return -1; } static int is_gpr(unsigned sel) { return (sel >= 0 && sel <= 127); } /* CB constants start at 512, and get translated to a kcache index when ALU * clauses are constructed. Note that we handle kcache constants the same way * as (the now gone) cfile constants, is that really required? */ static int is_cfile(unsigned sel) { return (sel > 255 && sel < 512) || (sel > 511 && sel < 4607) || /* Kcache before translation. */ (sel > 127 && sel < 192); /* Kcache after translation. */ } static int is_const(int sel) { return is_cfile(sel) || (sel >= V_SQ_ALU_SRC_0 && sel <= V_SQ_ALU_SRC_LITERAL); } static int check_vector(struct r600_bc *bc, struct r600_bc_alu *alu, struct alu_bank_swizzle *bs, int bank_swizzle) { int r, src, num_src, sel, elem, cycle; num_src = r600_bc_get_num_operands(bc, alu); for (src = 0; src < num_src; src++) { sel = alu->src[src].sel; elem = alu->src[src].chan; if (is_gpr(sel)) { cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src]; if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan) /* Nothing to do; special-case optimization, * second source uses first source’s reservation. */ continue; else { r = reserve_gpr(bs, sel, elem, cycle); if (r) return r; } } else if (is_cfile(sel)) { r = reserve_cfile(bc, bs, sel, elem); if (r) return r; } /* No restrictions on PV, PS, literal or special constants. */ } return 0; } static int check_scalar(struct r600_bc *bc, struct r600_bc_alu *alu, struct alu_bank_swizzle *bs, int bank_swizzle) { int r, src, num_src, const_count, sel, elem, cycle; num_src = r600_bc_get_num_operands(bc, alu); for (const_count = 0, src = 0; src < num_src; ++src) { sel = alu->src[src].sel; elem = alu->src[src].chan; if (is_const(sel)) { /* Any constant, including literal and inline constants. */ if (const_count >= 2) /* More than two references to a constant in * transcendental operation. */ return -1; else const_count++; } if (is_cfile(sel)) { r = reserve_cfile(bc, bs, sel, elem); if (r) return r; } } for (src = 0; src < num_src; ++src) { sel = alu->src[src].sel; elem = alu->src[src].chan; if (is_gpr(sel)) { cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src]; if (cycle < const_count) /* Cycle for GPR load conflicts with * constant load in transcendental operation. */ return -1; r = reserve_gpr(bs, sel, elem, cycle); if (r) return r; } /* PV PS restrictions */ if (const_count && (sel == 254 || sel == 255)) { cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src]; if (cycle < const_count) return -1; } } return 0; } static int check_and_set_bank_swizzle(struct r600_bc *bc, struct r600_bc_alu *slots[5]) { struct alu_bank_swizzle bs; int bank_swizzle[5]; int i, r = 0, forced = 0; boolean scalar_only = true; for (i = 0; i < 5; i++) { if (slots[i] && slots[i]->bank_swizzle_force) { slots[i]->bank_swizzle = slots[i]->bank_swizzle_force; forced = 1; } if (i < 4 && slots[i]) scalar_only = false; } if (forced) return 0; /* Just check every possible combination of bank swizzle. * Not very efficent, but works on the first try in most of the cases. */ for (i = 0; i < 4; i++) bank_swizzle[i] = SQ_ALU_VEC_012; bank_swizzle[4] = SQ_ALU_SCL_210; while(bank_swizzle[4] <= SQ_ALU_SCL_221) { init_bank_swizzle(&bs); if (scalar_only == false) { for (i = 0; i < 4; i++) { if (slots[i]) { r = check_vector(bc, slots[i], &bs, bank_swizzle[i]); if (r) break; } } } else r = 0; if (!r && slots[4]) { r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]); } if (!r) { for (i = 0; i < 5; i++) { if (slots[i]) slots[i]->bank_swizzle = bank_swizzle[i]; } return 0; } if (scalar_only) { bank_swizzle[4]++; } else { for (i = 0; i < 5; i++) { bank_swizzle[i]++; if (bank_swizzle[i] <= SQ_ALU_VEC_210) break; else bank_swizzle[i] = SQ_ALU_VEC_012; } } } /* Couldn't find a working swizzle. */ return -1; } static int replace_gpr_with_pv_ps(struct r600_bc *bc, struct r600_bc_alu *slots[5], struct r600_bc_alu *alu_prev) { struct r600_bc_alu *prev[5]; int gpr[5], chan[5]; int i, j, r, src, num_src; r = assign_alu_units(bc, alu_prev, prev); if (r) return r; for (i = 0; i < 5; ++i) { if(prev[i] && prev[i]->dst.write && !prev[i]->dst.rel) { gpr[i] = prev[i]->dst.sel; /* cube writes more than PV.X */ if (!is_alu_cube_inst(bc, prev[i]) && is_alu_reduction_inst(bc, prev[i])) chan[i] = 0; else chan[i] = prev[i]->dst.chan; } else gpr[i] = -1; } for (i = 0; i < 5; ++i) { struct r600_bc_alu *alu = slots[i]; if(!alu) continue; num_src = r600_bc_get_num_operands(bc, alu); for (src = 0; src < num_src; ++src) { if (!is_gpr(alu->src[src].sel) || alu->src[src].rel) continue; if (alu->src[src].sel == gpr[4] && alu->src[src].chan == chan[4]) { alu->src[src].sel = V_SQ_ALU_SRC_PS; alu->src[src].chan = 0; continue; } for (j = 0; j < 4; ++j) { if (alu->src[src].sel == gpr[j] && alu->src[src].chan == j) { alu->src[src].sel = V_SQ_ALU_SRC_PV; alu->src[src].chan = chan[j]; break; } } } } return 0; } void r600_bc_special_constants(u32 value, unsigned *sel, unsigned *neg) { switch(value) { case 0: *sel = V_SQ_ALU_SRC_0; break; case 1: *sel = V_SQ_ALU_SRC_1_INT; break; case -1: *sel = V_SQ_ALU_SRC_M_1_INT; break; case 0x3F800000: /* 1.0f */ *sel = V_SQ_ALU_SRC_1; break; case 0x3F000000: /* 0.5f */ *sel = V_SQ_ALU_SRC_0_5; break; case 0xBF800000: /* -1.0f */ *sel = V_SQ_ALU_SRC_1; *neg ^= 1; break; case 0xBF000000: /* -0.5f */ *sel = V_SQ_ALU_SRC_0_5; *neg ^= 1; break; default: *sel = V_SQ_ALU_SRC_LITERAL; break; } } /* compute how many literal are needed */ static int r600_bc_alu_nliterals(struct r600_bc *bc, struct r600_bc_alu *alu, uint32_t literal[4], unsigned *nliteral) { unsigned num_src = r600_bc_get_num_operands(bc, alu); unsigned i, j; for (i = 0; i < num_src; ++i) { if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) { uint32_t value = alu->src[i].value; unsigned found = 0; for (j = 0; j < *nliteral; ++j) { if (literal[j] == value) { found = 1; break; } } if (!found) { if (*nliteral >= 4) return -EINVAL; literal[(*nliteral)++] = value; } } } return 0; } static void r600_bc_alu_adjust_literals(struct r600_bc *bc, struct r600_bc_alu *alu, uint32_t literal[4], unsigned nliteral) { unsigned num_src = r600_bc_get_num_operands(bc, alu); unsigned i, j; for (i = 0; i < num_src; ++i) { if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) { uint32_t value = alu->src[i].value; for (j = 0; j < nliteral; ++j) { if (literal[j] == value) { alu->src[i].chan = j; break; } } } } } static int merge_inst_groups(struct r600_bc *bc, struct r600_bc_alu *slots[5], struct r600_bc_alu *alu_prev) { struct r600_bc_alu *prev[5]; struct r600_bc_alu *result[5] = { NULL }; uint32_t literal[4], prev_literal[4]; unsigned nliteral = 0, prev_nliteral = 0; int i, j, r, src, num_src; int num_once_inst = 0; int have_mova = 0, have_rel = 0; r = assign_alu_units(bc, alu_prev, prev); if (r) return r; for (i = 0; i < 5; ++i) { struct r600_bc_alu *alu; /* check number of literals */ if (prev[i]) { if (r600_bc_alu_nliterals(bc, prev[i], literal, &nliteral)) return 0; if (r600_bc_alu_nliterals(bc, prev[i], prev_literal, &prev_nliteral)) return 0; if (is_alu_mova_inst(bc, prev[i])) { if (have_rel) return 0; have_mova = 1; } num_once_inst += is_alu_once_inst(bc, prev[i]); } if (slots[i] && r600_bc_alu_nliterals(bc, slots[i], literal, &nliteral)) return 0; /* Let's check used slots. */ if (prev[i] && !slots[i]) { result[i] = prev[i]; continue; } else if (prev[i] && slots[i]) { if (result[4] == NULL && prev[4] == NULL && slots[4] == NULL) { /* Trans unit is still free try to use it. */ if (is_alu_any_unit_inst(bc, slots[i])) { result[i] = prev[i]; result[4] = slots[i]; } else if (is_alu_any_unit_inst(bc, prev[i])) { result[i] = slots[i]; result[4] = prev[i]; } else return 0; } else return 0; } else if(!slots[i]) { continue; } else result[i] = slots[i]; alu = slots[i]; num_once_inst += is_alu_once_inst(bc, alu); /* Let's check dst gpr. */ if (alu->dst.rel) { if (have_mova) return 0; have_rel = 1; } /* Let's check source gprs */ num_src = r600_bc_get_num_operands(bc, alu); for (src = 0; src < num_src; ++src) { if (alu->src[src].rel) { if (have_mova) return 0; have_rel = 1; } /* Constants don't matter. */ if (!is_gpr(alu->src[src].sel)) continue; for (j = 0; j < 5; ++j) { if (!prev[j] || !prev[j]->dst.write) continue; /* If it's relative then we can't determin which gpr is really used. */ if (prev[j]->dst.chan == alu->src[src].chan && (prev[j]->dst.sel == alu->src[src].sel || prev[j]->dst.rel || alu->src[src].rel)) return 0; } } } /* more than one PRED_ or KILL_ ? */ if (num_once_inst > 1) return 0; /* check if the result can still be swizzlet */ r = check_and_set_bank_swizzle(bc, result); if (r) return 0; /* looks like everything worked out right, apply the changes */ /* undo adding previus literals */ bc->cf_last->ndw -= align(prev_nliteral, 2); /* sort instructions */ for (i = 0; i < 5; ++i) { slots[i] = result[i]; if (result[i]) { LIST_DEL(&result[i]->list); result[i]->last = 0; LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu); } } /* determine new last instruction */ LIST_ENTRY(struct r600_bc_alu, bc->cf_last->alu.prev, list)->last = 1; /* determine new first instruction */ for (i = 0; i < 5; ++i) { if (result[i]) { bc->cf_last->curr_bs_head = result[i]; break; } } bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head; bc->cf_last->prev2_bs_head = NULL; return 0; } /* This code handles kcache lines as single blocks of 32 constants. We could * probably do slightly better by recognizing that we actually have two * consecutive lines of 16 constants, but the resulting code would also be * somewhat more complicated. */ static int r600_bc_alloc_kcache_lines(struct r600_bc *bc, struct r600_bc_alu *alu, int type) { struct r600_bc_kcache *kcache = bc->cf_last->kcache; unsigned int required_lines; unsigned int free_lines = 0; unsigned int cache_line[3]; unsigned int count = 0; unsigned int i, j; int r; /* Collect required cache lines. */ for (i = 0; i < 3; ++i) { bool found = false; unsigned int line; if (alu->src[i].sel < 512) continue; line = ((alu->src[i].sel - 512) / 32) * 2; for (j = 0; j < count; ++j) { if (cache_line[j] == line) { found = true; break; } } if (!found) cache_line[count++] = line; } /* This should never actually happen. */ if (count >= 3) return -ENOMEM; for (i = 0; i < 2; ++i) { if (kcache[i].mode == V_SQ_CF_KCACHE_NOP) { ++free_lines; } } /* Filter lines pulled in by previous intructions. Note that this is * only for the required_lines count, we can't remove these from the * cache_line array since we may have to start a new ALU clause. */ for (i = 0, required_lines = count; i < count; ++i) { for (j = 0; j < 2; ++j) { if (kcache[j].mode == V_SQ_CF_KCACHE_LOCK_2 && kcache[j].addr == cache_line[i]) { --required_lines; break; } } } /* Start a new ALU clause if needed. */ if (required_lines > free_lines) { if ((r = r600_bc_add_cf(bc))) { return r; } bc->cf_last->inst = (type << 3); kcache = bc->cf_last->kcache; } /* Setup the kcache lines. */ for (i = 0; i < count; ++i) { bool found = false; for (j = 0; j < 2; ++j) { if (kcache[j].mode == V_SQ_CF_KCACHE_LOCK_2 && kcache[j].addr == cache_line[i]) { found = true; break; } } if (found) continue; for (j = 0; j < 2; ++j) { if (kcache[j].mode == V_SQ_CF_KCACHE_NOP) { kcache[j].bank = 0; kcache[j].addr = cache_line[i]; kcache[j].mode = V_SQ_CF_KCACHE_LOCK_2; break; } } } /* Alter the src operands to refer to the kcache. */ for (i = 0; i < 3; ++i) { static const unsigned int base[] = {128, 160, 256, 288}; unsigned int line; if (alu->src[i].sel < 512) continue; alu->src[i].sel -= 512; line = (alu->src[i].sel / 32) * 2; for (j = 0; j < 2; ++j) { if (kcache[j].mode == V_SQ_CF_KCACHE_LOCK_2 && kcache[j].addr == line) { alu->src[i].sel &= 0x1f; alu->src[i].sel += base[j]; break; } } } return 0; } int r600_bc_add_alu_type(struct r600_bc *bc, const struct r600_bc_alu *alu, int type) { struct r600_bc_alu *nalu = r600_bc_alu(); struct r600_bc_alu *lalu; int i, r; if (nalu == NULL) return -ENOMEM; memcpy(nalu, alu, sizeof(struct r600_bc_alu)); if (bc->cf_last != NULL && bc->cf_last->inst != (type << 3)) { /* check if we could add it anyway */ if (bc->cf_last->inst == (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU << 3) && type == V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE) { LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) { if (lalu->predicate) { bc->force_add_cf = 1; break; } } } else bc->force_add_cf = 1; } /* cf can contains only alu or only vtx or only tex */ if (bc->cf_last == NULL || bc->force_add_cf) { r = r600_bc_add_cf(bc); if (r) { free(nalu); return r; } } bc->cf_last->inst = (type << 3); /* Setup the kcache for this ALU instruction. This will start a new * ALU clause if needed. */ if ((r = r600_bc_alloc_kcache_lines(bc, nalu, type))) { free(nalu); return r; } if (!bc->cf_last->curr_bs_head) { bc->cf_last->curr_bs_head = nalu; } /* number of gpr == the last gpr used in any alu */ for (i = 0; i < 3; i++) { if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) { bc->ngpr = nalu->src[i].sel + 1; } if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL) r600_bc_special_constants(nalu->src[i].value, &nalu->src[i].sel, &nalu->src[i].neg); } if (nalu->dst.sel >= bc->ngpr) { bc->ngpr = nalu->dst.sel + 1; } LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu); /* each alu use 2 dwords */ bc->cf_last->ndw += 2; bc->ndw += 2; /* process cur ALU instructions for bank swizzle */ if (nalu->last) { uint32_t literal[4]; unsigned nliteral; struct r600_bc_alu *slots[5]; r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots); if (r) return r; if (bc->cf_last->prev_bs_head) { r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head); if (r) return r; } if (bc->cf_last->prev_bs_head) { r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head); if (r) return r; } r = check_and_set_bank_swizzle(bc, slots); if (r) return r; for (i = 0, nliteral = 0; i < 5; i++) { if (slots[i]) { r = r600_bc_alu_nliterals(bc, slots[i], literal, &nliteral); if (r) return r; } } bc->cf_last->ndw += align(nliteral, 2); /* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots) * worst case */ if ((bc->cf_last->ndw >> 1) >= 120) { bc->force_add_cf = 1; } bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head; bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head; bc->cf_last->curr_bs_head = NULL; } return 0; } int r600_bc_add_alu(struct r600_bc *bc, const struct r600_bc_alu *alu) { return r600_bc_add_alu_type(bc, alu, BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU)); } static unsigned r600_bc_num_tex_and_vtx_instructions(const struct r600_bc *bc) { switch (bc->chiprev) { case CHIPREV_R600: return 8; case CHIPREV_R700: return 16; case CHIPREV_EVERGREEN: return 64; default: R600_ERR("Unknown chiprev %d.\n", bc->chiprev); return 8; } } int r600_bc_add_vtx(struct r600_bc *bc, const struct r600_bc_vtx *vtx) { struct r600_bc_vtx *nvtx = r600_bc_vtx(); int r; if (nvtx == NULL) return -ENOMEM; memcpy(nvtx, vtx, sizeof(struct r600_bc_vtx)); /* cf can contains only alu or only vtx or only tex */ if (bc->cf_last == NULL || (bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_VTX && bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC) || bc->force_add_cf) { r = r600_bc_add_cf(bc); if (r) { free(nvtx); return r; } bc->cf_last->inst = V_SQ_CF_WORD1_SQ_CF_INST_VTX; } LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx); /* each fetch use 4 dwords */ bc->cf_last->ndw += 4; bc->ndw += 4; if ((bc->cf_last->ndw / 4) >= r600_bc_num_tex_and_vtx_instructions(bc)) bc->force_add_cf = 1; return 0; } int r600_bc_add_tex(struct r600_bc *bc, const struct r600_bc_tex *tex) { struct r600_bc_tex *ntex = r600_bc_tex(); int r; if (ntex == NULL) return -ENOMEM; memcpy(ntex, tex, sizeof(struct r600_bc_tex)); /* we can't fetch data und use it as texture lookup address in the same TEX clause */ if (bc->cf_last != NULL && bc->cf_last->inst == V_SQ_CF_WORD1_SQ_CF_INST_TEX) { struct r600_bc_tex *ttex; LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) { if (ttex->dst_gpr == ntex->src_gpr) { bc->force_add_cf = 1; break; } } } /* cf can contains only alu or only vtx or only tex */ if (bc->cf_last == NULL || bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_TEX || bc->force_add_cf) { r = r600_bc_add_cf(bc); if (r) { free(ntex); return r; } bc->cf_last->inst = V_SQ_CF_WORD1_SQ_CF_INST_TEX; } if (ntex->src_gpr >= bc->ngpr) { bc->ngpr = ntex->src_gpr + 1; } if (ntex->dst_gpr >= bc->ngpr) { bc->ngpr = ntex->dst_gpr + 1; } LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex); /* each texture fetch use 4 dwords */ bc->cf_last->ndw += 4; bc->ndw += 4; if ((bc->cf_last->ndw / 4) >= r600_bc_num_tex_and_vtx_instructions(bc)) bc->force_add_cf = 1; return 0; } int r600_bc_add_cfinst(struct r600_bc *bc, int inst) { int r; r = r600_bc_add_cf(bc); if (r) return r; bc->cf_last->cond = V_SQ_CF_COND_ACTIVE; bc->cf_last->inst = inst; return 0; } /* common to all 3 families */ static int r600_bc_vtx_build(struct r600_bc *bc, struct r600_bc_vtx *vtx, unsigned id) { bc->bytecode[id++] = S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) | S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) | S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) | S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x) | S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count); bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) | S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) | S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) | S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) | S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) | S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) | S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) | S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) | S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) | S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr); bc->bytecode[id++] = S_SQ_VTX_WORD2_OFFSET(vtx->offset) | S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian) | S_SQ_VTX_WORD2_MEGA_FETCH(1); bc->bytecode[id++] = 0; return 0; } /* common to all 3 families */ static int r600_bc_tex_build(struct r600_bc *bc, struct r600_bc_tex *tex, unsigned id) { bc->bytecode[id++] = S_SQ_TEX_WORD0_TEX_INST(tex->inst) | S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) | S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) | S_SQ_TEX_WORD0_SRC_REL(tex->src_rel); bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) | S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) | S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) | S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) | S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) | S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) | S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) | S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) | S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) | S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) | S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w); bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) | S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) | S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) | S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) | S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) | S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) | S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) | S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w); bc->bytecode[id++] = 0; return 0; } /* r600 only, r700/eg bits in r700_asm.c */ static int r600_bc_alu_build(struct r600_bc *bc, struct r600_bc_alu *alu, unsigned id) { /* don't replace gpr by pv or ps for destination register */ bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) | S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) | S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) | S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) | S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) | S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) | S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) | S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) | S_SQ_ALU_WORD0_LAST(alu->last); if (alu->is_op3) { bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) | S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) | S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) | S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) | S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) | S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) | S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) | S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) | S_SQ_ALU_WORD1_OP3_ALU_INST(alu->inst) | S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle); } else { bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) | S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) | S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) | S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) | S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) | S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) | S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) | S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) | S_SQ_ALU_WORD1_OP2_ALU_INST(alu->inst) | S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) | S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->predicate) | S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->predicate); } return 0; } static void r600_bc_cf_vtx_build(uint32_t *bytecode, const struct r600_bc_cf *cf) { *bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1); *bytecode++ = S_SQ_CF_WORD1_CF_INST(cf->inst) | S_SQ_CF_WORD1_BARRIER(1) | S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1); } /* common for r600/r700 - eg in eg_asm.c */ static int r600_bc_cf_build(struct r600_bc *bc, struct r600_bc_cf *cf) { unsigned id = cf->id; switch (cf->inst) { case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER << 3): bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) | S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) | S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) | S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank); bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(cf->inst >> 3) | S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) | S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) | S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) | S_SQ_CF_ALU_WORD1_BARRIER(1) | S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chiprev == CHIPREV_R600 ? cf->r6xx_uses_waterfall : 0) | S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1); break; case V_SQ_CF_WORD1_SQ_CF_INST_TEX: case V_SQ_CF_WORD1_SQ_CF_INST_VTX: case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC: if (bc->chiprev == CHIPREV_R700) r700_bc_cf_vtx_build(&bc->bytecode[id], cf); else r600_bc_cf_vtx_build(&bc->bytecode[id], cf); break; case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT: case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE: bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) | S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) | S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) | S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type); bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) | S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) | S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) | S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) | S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) | S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) | S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->output.inst) | S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program); break; case V_SQ_CF_WORD1_SQ_CF_INST_JUMP: case V_SQ_CF_WORD1_SQ_CF_INST_ELSE: case V_SQ_CF_WORD1_SQ_CF_INST_POP: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK: case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS: case V_SQ_CF_WORD1_SQ_CF_INST_RETURN: bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1); bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(cf->inst) | S_SQ_CF_WORD1_BARRIER(1) | S_SQ_CF_WORD1_COND(cf->cond) | S_SQ_CF_WORD1_POP_COUNT(cf->pop_count); break; default: R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst); return -EINVAL; } return 0; } int r600_bc_build(struct r600_bc *bc) { struct r600_bc_cf *cf; struct r600_bc_alu *alu; struct r600_bc_vtx *vtx; struct r600_bc_tex *tex; uint32_t literal[4]; unsigned nliteral; unsigned addr; int i, r; if (bc->callstack[0].max > 0) bc->nstack = ((bc->callstack[0].max + 3) >> 2) + 2; if (bc->type == TGSI_PROCESSOR_VERTEX && !bc->nstack) { bc->nstack = 1; } /* first path compute addr of each CF block */ /* addr start after all the CF instructions */ addr = bc->cf_last->id + 2; LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) { switch (cf->inst) { case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE << 3): break; case V_SQ_CF_WORD1_SQ_CF_INST_TEX: case V_SQ_CF_WORD1_SQ_CF_INST_VTX: case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC: /* fetch node need to be 16 bytes aligned*/ addr += 3; addr &= 0xFFFFFFFCUL; break; case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT: case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE: case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT: case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE: break; case V_SQ_CF_WORD1_SQ_CF_INST_JUMP: case V_SQ_CF_WORD1_SQ_CF_INST_ELSE: case V_SQ_CF_WORD1_SQ_CF_INST_POP: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK: case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS: case V_SQ_CF_WORD1_SQ_CF_INST_RETURN: break; default: R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst); return -EINVAL; } cf->addr = addr; addr += cf->ndw; bc->ndw = cf->addr + cf->ndw; } free(bc->bytecode); bc->bytecode = calloc(1, bc->ndw * 4); if (bc->bytecode == NULL) return -ENOMEM; LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) { addr = cf->addr; if (bc->chiprev == CHIPREV_EVERGREEN) r = eg_bc_cf_build(bc, cf); else r = r600_bc_cf_build(bc, cf); if (r) return r; switch (cf->inst) { case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE << 3): nliteral = 0; memset(literal, 0, sizeof(literal)); LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) { r = r600_bc_alu_nliterals(bc, alu, literal, &nliteral); if (r) return r; r600_bc_alu_adjust_literals(bc, alu, literal, nliteral); switch(bc->chiprev) { case CHIPREV_R600: r = r600_bc_alu_build(bc, alu, addr); break; case CHIPREV_R700: case CHIPREV_EVERGREEN: /* eg alu is same encoding as r700 */ r = r700_bc_alu_build(bc, alu, addr); break; default: R600_ERR("unknown family %d\n", bc->family); return -EINVAL; } if (r) return r; addr += 2; if (alu->last) { for (i = 0; i < align(nliteral, 2); ++i) { bc->bytecode[addr++] = literal[i]; } nliteral = 0; memset(literal, 0, sizeof(literal)); } } break; case V_SQ_CF_WORD1_SQ_CF_INST_VTX: case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC: LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) { r = r600_bc_vtx_build(bc, vtx, addr); if (r) return r; addr += 4; } break; case V_SQ_CF_WORD1_SQ_CF_INST_TEX: LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) { r = r600_bc_tex_build(bc, tex, addr); if (r) return r; addr += 4; } break; case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT: case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE: case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT: case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK: case V_SQ_CF_WORD1_SQ_CF_INST_JUMP: case V_SQ_CF_WORD1_SQ_CF_INST_ELSE: case V_SQ_CF_WORD1_SQ_CF_INST_POP: case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS: case V_SQ_CF_WORD1_SQ_CF_INST_RETURN: break; default: R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst); return -EINVAL; } } return 0; } void r600_bc_clear(struct r600_bc *bc) { struct r600_bc_cf *cf = NULL, *next_cf; free(bc->bytecode); bc->bytecode = NULL; LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) { struct r600_bc_alu *alu = NULL, *next_alu; struct r600_bc_tex *tex = NULL, *next_tex; struct r600_bc_tex *vtx = NULL, *next_vtx; LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) { free(alu); } LIST_INITHEAD(&cf->alu); LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) { free(tex); } LIST_INITHEAD(&cf->tex); LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) { free(vtx); } LIST_INITHEAD(&cf->vtx); free(cf); } LIST_INITHEAD(&cf->list); } void r600_bc_dump(struct r600_bc *bc) { struct r600_bc_cf *cf = NULL; struct r600_bc_alu *alu = NULL; struct r600_bc_vtx *vtx = NULL; struct r600_bc_tex *tex = NULL; unsigned i, id; uint32_t literal[4]; unsigned nliteral; char chip = '6'; switch (bc->chiprev) { case 1: chip = '7'; break; case 2: chip = 'E'; break; case 0: default: chip = '6'; break; } fprintf(stderr, "bytecode %d dw -- %d gprs ---------------------\n", bc->ndw, bc->ngpr); fprintf(stderr, " %c\n", chip); LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) { id = cf->id; switch (cf->inst) { case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER << 3): case (V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE << 3): fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]); fprintf(stderr, "ADDR:%d ", cf->addr); fprintf(stderr, "KCACHE_MODE0:%X ", cf->kcache[0].mode); fprintf(stderr, "KCACHE_BANK0:%X ", cf->kcache[0].bank); fprintf(stderr, "KCACHE_BANK1:%X\n", cf->kcache[1].bank); id++; fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]); fprintf(stderr, "INST:%d ", cf->inst); fprintf(stderr, "KCACHE_MODE1:%X ", cf->kcache[1].mode); fprintf(stderr, "KCACHE_ADDR0:%X ", cf->kcache[0].addr); fprintf(stderr, "KCACHE_ADDR1:%X ", cf->kcache[1].addr); fprintf(stderr, "COUNT:%d\n", cf->ndw / 2); break; case V_SQ_CF_WORD1_SQ_CF_INST_TEX: case V_SQ_CF_WORD1_SQ_CF_INST_VTX: case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC: fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]); fprintf(stderr, "ADDR:%d\n", cf->addr); id++; fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]); fprintf(stderr, "INST:%d ", cf->inst); fprintf(stderr, "COUNT:%d\n", cf->ndw / 4); break; case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT: case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE: fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]); fprintf(stderr, "GPR:%X ", cf->output.gpr); fprintf(stderr, "ELEM_SIZE:%X ", cf->output.elem_size); fprintf(stderr, "ARRAY_BASE:%X ", cf->output.array_base); fprintf(stderr, "TYPE:%X\n", cf->output.type); id++; fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]); fprintf(stderr, "SWIZ_X:%X ", cf->output.swizzle_x); fprintf(stderr, "SWIZ_Y:%X ", cf->output.swizzle_y); fprintf(stderr, "SWIZ_Z:%X ", cf->output.swizzle_z); fprintf(stderr, "SWIZ_W:%X ", cf->output.swizzle_w); fprintf(stderr, "BARRIER:%X ", cf->output.barrier); fprintf(stderr, "INST:%d ", cf->output.inst); fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count); fprintf(stderr, "EOP:%X\n", cf->output.end_of_program); break; case V_SQ_CF_WORD1_SQ_CF_INST_JUMP: case V_SQ_CF_WORD1_SQ_CF_INST_ELSE: case V_SQ_CF_WORD1_SQ_CF_INST_POP: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE: case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK: case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS: case V_SQ_CF_WORD1_SQ_CF_INST_RETURN: fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]); fprintf(stderr, "ADDR:%d\n", cf->cf_addr); id++; fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]); fprintf(stderr, "INST:%d ", cf->inst); fprintf(stderr, "COND:%X ", cf->cond); fprintf(stderr, "POP_COUNT:%X\n", cf->pop_count); break; } id = cf->addr; nliteral = 0; LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) { r600_bc_alu_nliterals(bc, alu, literal, &nliteral); fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]); fprintf(stderr, "SRC0(SEL:%d ", alu->src[0].sel); fprintf(stderr, "REL:%d ", alu->src[0].rel); fprintf(stderr, "CHAN:%d ", alu->src[0].chan); fprintf(stderr, "NEG:%d) ", alu->src[0].neg); fprintf(stderr, "SRC1(SEL:%d ", alu->src[1].sel); fprintf(stderr, "REL:%d ", alu->src[1].rel); fprintf(stderr, "CHAN:%d ", alu->src[1].chan); fprintf(stderr, "NEG:%d) ", alu->src[1].neg); fprintf(stderr, "LAST:%d)\n", alu->last); id++; fprintf(stderr, "%04d %08X %c ", id, bc->bytecode[id], alu->last ? '*' : ' '); fprintf(stderr, "INST:%d ", alu->inst); fprintf(stderr, "DST(SEL:%d ", alu->dst.sel); fprintf(stderr, "CHAN:%d ", alu->dst.chan); fprintf(stderr, "REL:%d ", alu->dst.rel); fprintf(stderr, "CLAMP:%d) ", alu->dst.clamp); fprintf(stderr, "BANK_SWIZZLE:%d ", alu->bank_swizzle); if (alu->is_op3) { fprintf(stderr, "SRC2(SEL:%d ", alu->src[2].sel); fprintf(stderr, "REL:%d ", alu->src[2].rel); fprintf(stderr, "CHAN:%d ", alu->src[2].chan); fprintf(stderr, "NEG:%d)\n", alu->src[2].neg); } else { fprintf(stderr, "SRC0_ABS:%d ", alu->src[0].abs); fprintf(stderr, "SRC1_ABS:%d ", alu->src[1].abs); fprintf(stderr, "WRITE_MASK:%d ", alu->dst.write); fprintf(stderr, "OMOD:%d ", alu->omod); fprintf(stderr, "EXECUTE_MASK:%d ", alu->predicate); fprintf(stderr, "UPDATE_PRED:%d\n", alu->predicate); } id++; if (alu->last) { for (i = 0; i < nliteral; i++, id++) { float *f = (float*)(bc->bytecode + id); fprintf(stderr, "%04d %08X\t%f\n", id, bc->bytecode[id], *f); } id += nliteral & 1; nliteral = 0; } } LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) { fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]); fprintf(stderr, "INST:%d ", tex->inst); fprintf(stderr, "RESOURCE_ID:%d ", tex->resource_id); fprintf(stderr, "SRC(GPR:%d ", tex->src_gpr); fprintf(stderr, "REL:%d)\n", tex->src_rel); id++; fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]); fprintf(stderr, "DST(GPR:%d ", tex->dst_gpr); fprintf(stderr, "REL:%d ", tex->dst_rel); fprintf(stderr, "SEL_X:%d ", tex->dst_sel_x); fprintf(stderr, "SEL_Y:%d ", tex->dst_sel_y); fprintf(stderr, "SEL_Z:%d ", tex->dst_sel_z); fprintf(stderr, "SEL_W:%d) ", tex->dst_sel_w); fprintf(stderr, "LOD_BIAS:%d ", tex->lod_bias); fprintf(stderr, "COORD_TYPE_X:%d ", tex->coord_type_x); fprintf(stderr, "COORD_TYPE_Y:%d ", tex->coord_type_y); fprintf(stderr, "COORD_TYPE_Z:%d ", tex->coord_type_z); fprintf(stderr, "COORD_TYPE_W:%d\n", tex->coord_type_w); id++; fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]); fprintf(stderr, "OFFSET_X:%d ", tex->offset_x); fprintf(stderr, "OFFSET_Y:%d ", tex->offset_y); fprintf(stderr, "OFFSET_Z:%d ", tex->offset_z); fprintf(stderr, "SAMPLER_ID:%d ", tex->sampler_id); fprintf(stderr, "SRC(SEL_X:%d ", tex->src_sel_x); fprintf(stderr, "SEL_Y:%d ", tex->src_sel_y); fprintf(stderr, "SEL_Z:%d ", tex->src_sel_z); fprintf(stderr, "SEL_W:%d)\n", tex->src_sel_w); id++; fprintf(stderr, "%04d %08X \n", id, bc->bytecode[id]); id++; } LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) { fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]); fprintf(stderr, "INST:%d ", vtx->inst); fprintf(stderr, "FETCH_TYPE:%d ", vtx->fetch_type); fprintf(stderr, "BUFFER_ID:%d\n", vtx->buffer_id); id++; /* This assumes that no semantic fetches exist */ fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]); fprintf(stderr, "SRC(GPR:%d ", vtx->src_gpr); fprintf(stderr, "SEL_X:%d) ", vtx->src_sel_x); fprintf(stderr, "MEGA_FETCH_COUNT:%d ", vtx->mega_fetch_count); fprintf(stderr, "DST(GPR:%d ", vtx->dst_gpr); fprintf(stderr, "SEL_X:%d ", vtx->dst_sel_x); fprintf(stderr, "SEL_Y:%d ", vtx->dst_sel_y); fprintf(stderr, "SEL_Z:%d ", vtx->dst_sel_z); fprintf(stderr, "SEL_W:%d) ", vtx->dst_sel_w); fprintf(stderr, "USE_CONST_FIELDS:%d ", vtx->use_const_fields); fprintf(stderr, "FORMAT(DATA:%d ", vtx->data_format); fprintf(stderr, "NUM:%d ", vtx->num_format_all); fprintf(stderr, "COMP:%d ", vtx->format_comp_all); fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all); id++; fprintf(stderr, "%04d %08X ", id, bc->bytecode[id]); fprintf(stderr, "ENDIAN:%d ", vtx->endian); fprintf(stderr, "OFFSET:%d\n", vtx->offset); /* TODO */ id++; fprintf(stderr, "%04d %08X \n", id, bc->bytecode[id]); id++; } } fprintf(stderr, "--------------------------------------\n"); } static void r600_vertex_data_type(enum pipe_format pformat, unsigned *format, unsigned *num_format, unsigned *format_comp, unsigned *endian) { const struct util_format_description *desc; unsigned i; *format = 0; *num_format = 0; *format_comp = 0; *endian = ENDIAN_NONE; desc = util_format_description(pformat); if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) { goto out_unknown; } /* Find the first non-VOID channel. */ for (i = 0; i < 4; i++) { if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) { break; } } *endian = r600_endian_swap(desc->channel[i].size); switch (desc->channel[i].type) { /* Half-floats, floats, ints */ case UTIL_FORMAT_TYPE_FLOAT: switch (desc->channel[i].size) { case 16: switch (desc->nr_channels) { case 1: *format = FMT_16_FLOAT; break; case 2: *format = FMT_16_16_FLOAT; break; case 3: case 4: *format = FMT_16_16_16_16_FLOAT; break; } break; case 32: switch (desc->nr_channels) { case 1: *format = FMT_32_FLOAT; break; case 2: *format = FMT_32_32_FLOAT; break; case 3: *format = FMT_32_32_32_FLOAT; break; case 4: *format = FMT_32_32_32_32_FLOAT; break; } break; default: goto out_unknown; } break; /* Unsigned ints */ case UTIL_FORMAT_TYPE_UNSIGNED: /* Signed ints */ case UTIL_FORMAT_TYPE_SIGNED: switch (desc->channel[i].size) { case 8: switch (desc->nr_channels) { case 1: *format = FMT_8; break; case 2: *format = FMT_8_8; break; case 3: case 4: *format = FMT_8_8_8_8; break; } break; case 16: switch (desc->nr_channels) { case 1: *format = FMT_16; break; case 2: *format = FMT_16_16; break; case 3: case 4: *format = FMT_16_16_16_16; break; } break; case 32: switch (desc->nr_channels) { case 1: *format = FMT_32; break; case 2: *format = FMT_32_32; break; case 3: *format = FMT_32_32_32; break; case 4: *format = FMT_32_32_32_32; break; } break; default: goto out_unknown; } break; default: goto out_unknown; } if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) { *format_comp = 1; } if (desc->channel[i].normalized) { *num_format = 0; } else { *num_format = 2; } return; out_unknown: R600_ERR("unsupported vertex format %s\n", util_format_name(pformat)); } int r600_vertex_elements_build_fetch_shader(struct r600_pipe_context *rctx, struct r600_vertex_element *ve) { static int dump_shaders = -1; struct r600_bc bc; struct r600_bc_vtx vtx; struct pipe_vertex_element *elements = ve->elements; const struct util_format_description *desc; unsigned fetch_resource_start = rctx->family >= CHIP_CEDAR ? 0 : 160; unsigned format, num_format, format_comp, endian; u32 *bytecode; int i, r; /* Vertex element offsets need special handling. If the offset is * bigger than what we can put in the fetch instruction we need to * alter the vertex resource offset. In order to simplify code we * will bind one resource per element in such cases. It's a worst * case scenario. */ for (i = 0; i < ve->count; i++) { ve->vbuffer_offset[i] = C_SQ_VTX_WORD2_OFFSET & elements[i].src_offset; if (ve->vbuffer_offset[i]) { ve->vbuffer_need_offset = 1; } } memset(&bc, 0, sizeof(bc)); r = r600_bc_init(&bc, r600_get_family(rctx->radeon)); if (r) return r; for (i = 0; i < ve->count; i++) { if (elements[i].instance_divisor > 1) { struct r600_bc_alu alu; memset(&alu, 0, sizeof(alu)); alu.inst = BC_INST(&bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT); alu.src[0].sel = 0; alu.src[0].chan = 3; alu.src[1].sel = V_SQ_ALU_SRC_LITERAL; alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1; alu.dst.sel = i + 1; alu.dst.chan = 3; alu.dst.write = 1; alu.last = 1; if ((r = r600_bc_add_alu(&bc, &alu))) { r600_bc_clear(&bc); return r; } } } for (i = 0; i < ve->count; i++) { unsigned vbuffer_index; r600_vertex_data_type(ve->elements[i].src_format, &format, &num_format, &format_comp, &endian); desc = util_format_description(ve->elements[i].src_format); if (desc == NULL) { r600_bc_clear(&bc); R600_ERR("unknown format %d\n", ve->elements[i].src_format); return -EINVAL; } /* see above for vbuffer_need_offset explanation */ vbuffer_index = elements[i].vertex_buffer_index; memset(&vtx, 0, sizeof(vtx)); vtx.buffer_id = (ve->vbuffer_need_offset ? i : vbuffer_index) + fetch_resource_start; vtx.fetch_type = elements[i].instance_divisor ? 1 : 0; vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0; vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0; vtx.mega_fetch_count = 0x1F; vtx.dst_gpr = i + 1; vtx.dst_sel_x = desc->swizzle[0]; vtx.dst_sel_y = desc->swizzle[1]; vtx.dst_sel_z = desc->swizzle[2]; vtx.dst_sel_w = desc->swizzle[3]; vtx.data_format = format; vtx.num_format_all = num_format; vtx.format_comp_all = format_comp; vtx.srf_mode_all = 1; vtx.offset = elements[i].src_offset; vtx.endian = endian; if ((r = r600_bc_add_vtx(&bc, &vtx))) { r600_bc_clear(&bc); return r; } } r600_bc_add_cfinst(&bc, BC_INST(&bc, V_SQ_CF_WORD1_SQ_CF_INST_RETURN)); if ((r = r600_bc_build(&bc))) { r600_bc_clear(&bc); return r; } if (dump_shaders == -1) dump_shaders = debug_get_bool_option("R600_DUMP_SHADERS", FALSE); if (dump_shaders) { fprintf(stderr, "--------------------------------------------------------------\n"); r600_bc_dump(&bc); fprintf(stderr, "______________________________________________________________\n"); } ve->fs_size = bc.ndw*4; /* use PIPE_BIND_VERTEX_BUFFER so we use the cache buffer manager */ ve->fetch_shader = r600_bo(rctx->radeon, ve->fs_size, 256, PIPE_BIND_VERTEX_BUFFER, 0); if (ve->fetch_shader == NULL) { r600_bc_clear(&bc); return -ENOMEM; } bytecode = r600_bo_map(rctx->radeon, ve->fetch_shader, 0, NULL); if (bytecode == NULL) { r600_bc_clear(&bc); r600_bo_reference(rctx->radeon, &ve->fetch_shader, NULL); return -ENOMEM; } if (R600_BIG_ENDIAN) { for (i = 0; i < ve->fs_size / 4; ++i) { bytecode[i] = bswap_32(bc.bytecode[i]); } } else { memcpy(bytecode, bc.bytecode, ve->fs_size); } r600_bo_unmap(rctx->radeon, ve->fetch_shader); r600_bc_clear(&bc); if (rctx->family >= CHIP_CEDAR) evergreen_fetch_shader(ve); else r600_fetch_shader(ve); return 0; }