/* * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Adam Rak */ #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_context.h" #include "util/u_blitter.h" #include "util/u_double_list.h" #include "util/u_transfer.h" #include "util/u_surface.h" #include "util/u_pack_color.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "util/u_framebuffer.h" #include "r600_shader.h" #include "r600_pipe.h" #include "r600_formats.h" #include "compute_memory_pool.h" #include "evergreen_compute.h" #include "evergreen_compute_internal.h" #include #define ITEM_ALIGNMENT 1024 /** * Creates a new pool. */ struct compute_memory_pool* compute_memory_pool_new( struct r600_screen * rscreen) { struct compute_memory_pool* pool = (struct compute_memory_pool*) CALLOC(sizeof(struct compute_memory_pool), 1); if (pool == NULL) return NULL; COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n"); pool->screen = rscreen; pool->item_list = (struct list_head *) CALLOC(sizeof(struct list_head), 1); pool->unallocated_list = (struct list_head *) CALLOC(sizeof(struct list_head), 1); list_inithead(pool->item_list); list_inithead(pool->unallocated_list); return pool; } /** * Initializes the pool with a size of \a initial_size_in_dw. * \param pool The pool to be initialized. * \param initial_size_in_dw The initial size. * \see compute_memory_grow_defrag_pool */ static void compute_memory_pool_init(struct compute_memory_pool * pool, unsigned initial_size_in_dw) { COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %u\n", initial_size_in_dw); pool->size_in_dw = initial_size_in_dw; pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen, pool->size_in_dw * 4); } /** * Frees all stuff in the pool and the pool struct itself too. */ void compute_memory_pool_delete(struct compute_memory_pool* pool) { COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n"); free(pool->shadow); if (pool->bo) { pool->screen->b.b.resource_destroy((struct pipe_screen *) pool->screen, (struct pipe_resource *)pool->bo); } /* In theory, all of the items were freed in compute_memory_free. * Just delete the list heads */ free(pool->item_list); free(pool->unallocated_list); /* And then the pool itself */ free(pool); } /** * Searches for an empty space in the pool, return with the pointer to the * allocatable space in the pool. * \param size_in_dw The size of the space we are looking for. * \return -1 on failure */ int64_t compute_memory_prealloc_chunk( struct compute_memory_pool* pool, int64_t size_in_dw) { struct compute_memory_item *item; int last_end = 0; assert(size_in_dw <= pool->size_in_dw); COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n", size_in_dw); LIST_FOR_EACH_ENTRY(item, pool->item_list, link) { if (last_end + size_in_dw <= item->start_in_dw) { return last_end; } last_end = item->start_in_dw + align(item->size_in_dw, ITEM_ALIGNMENT); } if (pool->size_in_dw - last_end < size_in_dw) { return -1; } return last_end; } /** * Search for the chunk where we can link our new chunk after it. * \param start_in_dw The position of the item we want to add to the pool. * \return The item that is just before the passed position */ struct list_head *compute_memory_postalloc_chunk( struct compute_memory_pool* pool, int64_t start_in_dw) { struct compute_memory_item *item; struct compute_memory_item *next; struct list_head *next_link; COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n", start_in_dw); /* Check if we can insert it in the front of the list */ item = LIST_ENTRY(struct compute_memory_item, pool->item_list->next, link); if (LIST_IS_EMPTY(pool->item_list) || item->start_in_dw > start_in_dw) { return pool->item_list; } LIST_FOR_EACH_ENTRY(item, pool->item_list, link) { next_link = item->link.next; if (next_link != pool->item_list) { next = container_of(next_link, item, link); if (item->start_in_dw < start_in_dw && next->start_in_dw > start_in_dw) { return &item->link; } } else { /* end of chain */ assert(item->start_in_dw < start_in_dw); return &item->link; } } assert(0 && "unreachable"); return NULL; } /** * Reallocates and defragments the pool, conserves data. * \returns -1 if it fails, 0 otherwise * \see compute_memory_finalize_pending */ int compute_memory_grow_defrag_pool(struct compute_memory_pool *pool, struct pipe_context *pipe, int new_size_in_dw) { new_size_in_dw = align(new_size_in_dw, ITEM_ALIGNMENT); COMPUTE_DBG(pool->screen, "* compute_memory_grow_defrag_pool() " "new_size_in_dw = %d (%d bytes)\n", new_size_in_dw, new_size_in_dw * 4); assert(new_size_in_dw >= pool->size_in_dw); if (!pool->bo) { compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16)); } else { struct r600_resource *temp = NULL; temp = (struct r600_resource *)r600_compute_buffer_alloc_vram( pool->screen, new_size_in_dw * 4); if (temp != NULL) { struct pipe_resource *src = (struct pipe_resource *)pool->bo; struct pipe_resource *dst = (struct pipe_resource *)temp; COMPUTE_DBG(pool->screen, " Growing and defragmenting the pool " "using a temporary resource\n"); compute_memory_defrag(pool, src, dst, pipe); pool->screen->b.b.resource_destroy( (struct pipe_screen *)pool->screen, src); pool->bo = temp; pool->size_in_dw = new_size_in_dw; } else { COMPUTE_DBG(pool->screen, " The creation of the temporary resource failed\n" " Falling back to using 'shadow'\n"); compute_memory_shadow(pool, pipe, 1); pool->shadow = realloc(pool->shadow, new_size_in_dw * 4); if (pool->shadow == NULL) return -1; pool->size_in_dw = new_size_in_dw; pool->screen->b.b.resource_destroy( (struct pipe_screen *)pool->screen, (struct pipe_resource *)pool->bo); pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram( pool->screen, pool->size_in_dw * 4); compute_memory_shadow(pool, pipe, 0); if (pool->status & POOL_FRAGMENTED) { struct pipe_resource *src = (struct pipe_resource *)pool->bo; compute_memory_defrag(pool, src, src, pipe); } } } return 0; } /** * Copy pool from device to host, or host to device. * \param device_to_host 1 for device->host, 0 for host->device * \see compute_memory_grow_defrag_pool */ void compute_memory_shadow(struct compute_memory_pool* pool, struct pipe_context * pipe, int device_to_host) { struct compute_memory_item chunk; COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n", device_to_host); chunk.id = 0; chunk.start_in_dw = 0; chunk.size_in_dw = pool->size_in_dw; compute_memory_transfer(pool, pipe, device_to_host, &chunk, pool->shadow, 0, pool->size_in_dw*4); } /** * Moves all the items marked for promotion from the \a unallocated_list * to the \a item_list. * \return -1 if it fails, 0 otherwise * \see evergreen_set_global_binding */ int compute_memory_finalize_pending(struct compute_memory_pool* pool, struct pipe_context * pipe) { struct compute_memory_item *item, *next; int64_t allocated = 0; int64_t unallocated = 0; int64_t last_pos; int err = 0; COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n"); LIST_FOR_EACH_ENTRY(item, pool->item_list, link) { COMPUTE_DBG(pool->screen, " + list: offset = %"PRIi64" id = %"PRIi64" size = %"PRIi64" " "(%"PRIi64" bytes)\n", item->start_in_dw, item->id, item->size_in_dw, item->size_in_dw * 4); } /* Calculate the total allocated size */ LIST_FOR_EACH_ENTRY(item, pool->item_list, link) { allocated += align(item->size_in_dw, ITEM_ALIGNMENT); } /* Calculate the total unallocated size of the items that * will be promoted to the pool */ LIST_FOR_EACH_ENTRY(item, pool->unallocated_list, link) { if (item->status & ITEM_FOR_PROMOTING) unallocated += align(item->size_in_dw, ITEM_ALIGNMENT); } if (unallocated == 0) { return 0; } if (pool->size_in_dw < allocated + unallocated) { err = compute_memory_grow_defrag_pool(pool, pipe, allocated + unallocated); if (err == -1) return -1; } else if (pool->status & POOL_FRAGMENTED) { struct pipe_resource *src = (struct pipe_resource *)pool->bo; compute_memory_defrag(pool, src, src, pipe); } /* After defragmenting the pool, allocated is equal to the first available * position for new items in the pool */ last_pos = allocated; /* Loop through all the unallocated items, check if they are marked * for promoting, allocate space for them and add them to the item_list. */ LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) { if (item->status & ITEM_FOR_PROMOTING) { err = compute_memory_promote_item(pool, item, pipe, last_pos); item->status &= ~ITEM_FOR_PROMOTING; last_pos += align(item->size_in_dw, ITEM_ALIGNMENT); if (err == -1) return -1; } } return 0; } /** * Defragments the pool, so that there's no gap between items. * \param pool The pool to be defragmented * \param src The origin resource * \param dst The destination resource * \see compute_memory_grow_defrag_pool and compute_memory_finalize_pending */ void compute_memory_defrag(struct compute_memory_pool *pool, struct pipe_resource *src, struct pipe_resource *dst, struct pipe_context *pipe) { struct compute_memory_item *item; int64_t last_pos; COMPUTE_DBG(pool->screen, "* compute_memory_defrag()\n"); last_pos = 0; LIST_FOR_EACH_ENTRY(item, pool->item_list, link) { if (src != dst || item->start_in_dw != last_pos) { assert(last_pos <= item->start_in_dw); compute_memory_move_item(pool, src, dst, item, last_pos, pipe); } last_pos += align(item->size_in_dw, ITEM_ALIGNMENT); } pool->status &= ~POOL_FRAGMENTED; } /** * Moves an item from the \a unallocated_list to the \a item_list. * \param item The item that will be promoted. * \return -1 if it fails, 0 otherwise * \see compute_memory_finalize_pending */ int compute_memory_promote_item(struct compute_memory_pool *pool, struct compute_memory_item *item, struct pipe_context *pipe, int64_t start_in_dw) { struct pipe_screen *screen = (struct pipe_screen *)pool->screen; struct r600_context *rctx = (struct r600_context *)pipe; struct pipe_resource *src = (struct pipe_resource *)item->real_buffer; struct pipe_resource *dst = (struct pipe_resource *)pool->bo; struct pipe_box box; COMPUTE_DBG(pool->screen, "* compute_memory_promote_item()\n" " + Promoting Item: %"PRIi64" , starting at: %"PRIi64" (%"PRIi64" bytes) " "size: %"PRIi64" (%"PRIi64" bytes)\n\t\t\tnew start: %"PRIi64" (%"PRIi64" bytes)\n", item->id, item->start_in_dw, item->start_in_dw * 4, item->size_in_dw, item->size_in_dw * 4, start_in_dw, start_in_dw * 4); /* Remove the item from the unallocated list */ list_del(&item->link); /* Add it back to the item_list */ list_addtail(&item->link, pool->item_list); item->start_in_dw = start_in_dw; if (src != NULL) { u_box_1d(0, item->size_in_dw * 4, &box); rctx->b.b.resource_copy_region(pipe, dst, 0, item->start_in_dw * 4, 0 ,0, src, 0, &box); /* We check if the item is mapped for reading. * In this case, we need to keep the temporary buffer 'alive' * because it is possible to keep a map active for reading * while a kernel (that reads from it) executes */ if (!(item->status & ITEM_MAPPED_FOR_READING)) { pool->screen->b.b.resource_destroy(screen, src); item->real_buffer = NULL; } } return 0; } /** * Moves an item from the \a item_list to the \a unallocated_list. * \param item The item that will be demoted * \see r600_compute_global_transfer_map */ void compute_memory_demote_item(struct compute_memory_pool *pool, struct compute_memory_item *item, struct pipe_context *pipe) { struct r600_context *rctx = (struct r600_context *)pipe; struct pipe_resource *src = (struct pipe_resource *)pool->bo; struct pipe_resource *dst; struct pipe_box box; COMPUTE_DBG(pool->screen, "* compute_memory_demote_item()\n" " + Demoting Item: %"PRIi64", starting at: %"PRIi64" (%"PRIi64" bytes) " "size: %"PRIi64" (%"PRIi64" bytes)\n", item->id, item->start_in_dw, item->start_in_dw * 4, item->size_in_dw, item->size_in_dw * 4); /* First, we remove the item from the item_list */ list_del(&item->link); /* Now we add it to the unallocated list */ list_addtail(&item->link, pool->unallocated_list); /* We check if the intermediate buffer exists, and if it * doesn't, we create it again */ if (item->real_buffer == NULL) { item->real_buffer = (struct r600_resource*)r600_compute_buffer_alloc_vram( pool->screen, item->size_in_dw * 4); } dst = (struct pipe_resource *)item->real_buffer; /* We transfer the memory from the item in the pool to the * temporary buffer */ u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box); rctx->b.b.resource_copy_region(pipe, dst, 0, 0, 0, 0, src, 0, &box); /* Remember to mark the buffer as 'pending' by setting start_in_dw to -1 */ item->start_in_dw = -1; if (item->link.next != pool->item_list) { pool->status |= POOL_FRAGMENTED; } } /** * Moves the item \a item forward from the resource \a src to the * resource \a dst at \a new_start_in_dw * * This function assumes two things: * 1) The item is \b only moved forward, unless src is different from dst * 2) The item \b won't change it's position inside the \a item_list * * \param item The item that will be moved * \param new_start_in_dw The new position of the item in \a item_list * \see compute_memory_defrag */ void compute_memory_move_item(struct compute_memory_pool *pool, struct pipe_resource *src, struct pipe_resource *dst, struct compute_memory_item *item, uint64_t new_start_in_dw, struct pipe_context *pipe) { struct pipe_screen *screen = (struct pipe_screen *)pool->screen; struct r600_context *rctx = (struct r600_context *)pipe; struct pipe_box box; struct compute_memory_item *prev; COMPUTE_DBG(pool->screen, "* compute_memory_move_item()\n" " + Moving item %"PRIi64" from %"PRIi64" (%"PRIi64" bytes) to %"PRIu64" (%"PRIu64" bytes)\n", item->id, item->start_in_dw, item->start_in_dw * 4, new_start_in_dw, new_start_in_dw * 4); if (pool->item_list != item->link.prev) { prev = container_of(item->link.prev, item, link); assert(prev->start_in_dw + prev->size_in_dw <= new_start_in_dw); } u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box); /* If the ranges don't overlap, or we are copying from one resource * to another, we can just copy the item directly */ if (src != dst || new_start_in_dw + item->size_in_dw <= item->start_in_dw) { rctx->b.b.resource_copy_region(pipe, dst, 0, new_start_in_dw * 4, 0, 0, src, 0, &box); } else { /* The ranges overlap, we will try first to use an intermediate * resource to move the item */ struct pipe_resource *tmp = (struct pipe_resource *) r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4); if (tmp != NULL) { rctx->b.b.resource_copy_region(pipe, tmp, 0, 0, 0, 0, src, 0, &box); box.x = 0; rctx->b.b.resource_copy_region(pipe, dst, 0, new_start_in_dw * 4, 0, 0, tmp, 0, &box); pool->screen->b.b.resource_destroy(screen, tmp); } else { /* The allocation of the temporary resource failed, * falling back to use mappings */ uint32_t *map; int64_t offset; struct pipe_transfer *trans; offset = item->start_in_dw - new_start_in_dw; u_box_1d(new_start_in_dw * 4, (offset + item->size_in_dw) * 4, &box); map = pipe->transfer_map(pipe, src, 0, PIPE_TRANSFER_READ_WRITE, &box, &trans); assert(map); assert(trans); memmove(map, map + offset, item->size_in_dw * 4); pipe->transfer_unmap(pipe, trans); } } item->start_in_dw = new_start_in_dw; } /** * Frees the memory asociated to the item with id \a id from the pool. * \param id The id of the item to be freed. */ void compute_memory_free(struct compute_memory_pool* pool, int64_t id) { struct compute_memory_item *item, *next; struct pipe_screen *screen = (struct pipe_screen *)pool->screen; struct pipe_resource *res; COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id); LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->item_list, link) { if (item->id == id) { if (item->link.next != pool->item_list) { pool->status |= POOL_FRAGMENTED; } list_del(&item->link); if (item->real_buffer) { res = (struct pipe_resource *)item->real_buffer; pool->screen->b.b.resource_destroy( screen, res); } free(item); return; } } LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) { if (item->id == id) { list_del(&item->link); if (item->real_buffer) { res = (struct pipe_resource *)item->real_buffer; pool->screen->b.b.resource_destroy( screen, res); } free(item); return; } } fprintf(stderr, "Internal error, invalid id %"PRIi64" " "for compute_memory_free\n", id); assert(0 && "error"); } /** * Creates pending allocations for new items, these items are * placed in the unallocated_list. * \param size_in_dw The size, in double words, of the new item. * \return The new item * \see r600_compute_global_buffer_create */ struct compute_memory_item* compute_memory_alloc( struct compute_memory_pool* pool, int64_t size_in_dw) { struct compute_memory_item *new_item = NULL; COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n", size_in_dw, 4 * size_in_dw); new_item = (struct compute_memory_item *) CALLOC(sizeof(struct compute_memory_item), 1); if (new_item == NULL) return NULL; new_item->size_in_dw = size_in_dw; new_item->start_in_dw = -1; /* mark pending */ new_item->id = pool->next_id++; new_item->pool = pool; new_item->real_buffer = NULL; list_addtail(&new_item->link, pool->unallocated_list); COMPUTE_DBG(pool->screen, " + Adding item %p id = %"PRIi64" size = %"PRIi64" (%"PRIi64" bytes)\n", new_item, new_item->id, new_item->size_in_dw, new_item->size_in_dw * 4); return new_item; } /** * Transfer data host<->device, offset and size is in bytes. * \param device_to_host 1 for device->host, 0 for host->device. * \see compute_memory_shadow */ void compute_memory_transfer( struct compute_memory_pool* pool, struct pipe_context * pipe, int device_to_host, struct compute_memory_item* chunk, void* data, int offset_in_chunk, int size) { int64_t aligned_size = pool->size_in_dw; struct pipe_resource* gart = (struct pipe_resource*)pool->bo; int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk; struct pipe_transfer *xfer; uint32_t *map; assert(gart); COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, " "offset_in_chunk = %d, size = %d\n", device_to_host, offset_in_chunk, size); if (device_to_host) { map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ, &(struct pipe_box) { .width = aligned_size * 4, .height = 1, .depth = 1 }, &xfer); assert(xfer); assert(map); memcpy(data, map + internal_offset, size); pipe->transfer_unmap(pipe, xfer); } else { map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE, &(struct pipe_box) { .width = aligned_size * 4, .height = 1, .depth = 1 }, &xfer); assert(xfer); assert(map); memcpy(map + internal_offset, data, size); pipe->transfer_unmap(pipe, xfer); } } /** * Transfer data between chunk<->data, it is for VRAM<->GART transfers */ void compute_memory_transfer_direct( struct compute_memory_pool* pool, int chunk_to_data, struct compute_memory_item* chunk, struct r600_resource* data, int offset_in_chunk, int offset_in_data, int size) { ///TODO: DMA }